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Abstract. This paper discusses a best-practice representation

of uncertainty in satellite remote sensing data. An estimate

of uncertainty is necessary to make appropriate use of the

information conveyed by a measurement. Traditional error

propagation quantifies the uncertainty in a measurement due

to well-understood perturbations in a measurement and in

auxiliary data – known, quantified “unknowns”. The under-

constrained nature of most satellite remote sensing observa-

tions requires the use of various approximations and assump-

tions that produce non-linear systematic errors that are not

readily assessed – known, unquantifiable “unknowns”. Ad-

ditional errors result from the inability to resolve all scales of

variation in the measured quantity – unknown “unknowns”.

The latter two categories of error are dominant in under-

constrained remote sensing retrievals, and the difficulty of

their quantification limits the utility of existing uncertainty

estimates, degrading confidence in such data.

This paper proposes the use of ensemble techniques to

present multiple self-consistent realisations of a data set as

a means of depicting unquantified uncertainties. These are

generated using various systems (different algorithms or for-

ward models) believed to be appropriate to the conditions ob-

served. Benefiting from the experience of the climate mod-

elling community, an ensemble provides a user with a more

complete representation of the uncertainty as understood by

the data producer and greater freedom to consider different

realisations of the data.

1 Introduction

All measurements are subject to error, the difference between

the value obtained and the theoretical true value (or measur-

and). Errors are traditionally classified as “random” or “sys-

tematic” depending on if they would have zero or non-zero

mean (respectively) when considering an infinite number of

measurements of the same circumstances. The uncertainty on

a measurement describes the expected magnitude of the er-

ror by characterising the distribution of error that would be

found if the measurement was infinitely repeated. These con-

cepts are sketched in Fig. 1.

Uncertainty is a vital component of data as it provides

– a means of efficiently and consistently communicating

the strengths and limitations of data to users, and

– a metric with which to compare and consolidate differ-

ent estimates of a measurand.

The importance of quoting the uncertainty on any measure-

ment and the thorough validation of both are well accepted,

being essential for data assimilation (one of the primary uses

of satellite data products). However, the terms “uncertainty”

and “validation” are used inconsistently.

This paper aims to present a succinct outline of uncertainty

and validation and their best-practice application to satellite

remote sensing of the environment. Satellite remote sensing

is a sequence of processes that estimate a geophysical quan-

tity from a measurement of the current or voltage produced

by a space-based detector in response to the radiation inci-

dent upon it. Each step in processing, formally described in

Table 1, is subject to various sources of error. This formalisa-

tion was applied as early as 1970 for Nimbus 4 data process-
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Figure 1. An illustration of error and uncertainty. The error in a

measurement (purple arrow) is the difference between the true value

of the measurand (solid blue) and the value measured (dashed red).

The black line shows the frequency distribution of values that would

be obtained if the measurement were infinitely repeated, referred to

as the distribution of error. (a) A conventional random error. The

uncertainty (green arrow) characterises the distribution of error by

its width. (b) An error with a systematic component. This cannot be

characterised with a single value.

ing (G. Peskett, personal communication, 2015), but did not

enter the peer-reviewed literature until much later (Ducher,

1980).

Standardised methods for uncertainty estimation can be in-

sufficient for satellite remote sensing data as they assume a

well-constrained measurement where the sources of error are

established – known, quantifiable unknowns. The dominance

of systematic errors in satellite remote sensing data intro-

duce known, unquantified unknowns (such as the impact of

cloud filtering) and unknown unknowns (such as variability

on scales smaller than that observed).

Ensemble techniques, a method widely used in the weather

and climate communities, provide multiple self-consistent

realisations of a data set as a means of representing non-

linear error propagation and variations resulting from am-

biguous representations of natural processes. This paper ar-

gues that such techniques provide an effective means to rep-

resent and communicate the uncertainty resulting from the

latter two categories of “unknowns” affecting satellite remote

sensing data.

The discussions to follow aim to be accessible to both

users and producers of satellite remote sensing data, and the

issues considered apply (theoretically) to all satellite-based

instruments. The relative importance of each point will de-

pend on the precise technique considered, and the concepts

will not be considered for all possible measurements. Illus-

trative examples will primarily draw from the characterisa-

tion of aerosol, cloud, and the surface with a hypothetical

nadir-viewing radiometer in a low Earth orbit (∼ 800 km)

with a spatial resolution of ∼ 1 km having bands in the vis-

ible and infrared. This specification is typical of a number

of past and existing instruments such as the Along Track

Scanning Radiometer (ATSR) series, the Advanced Visible

High Resolution Radiometer (AVHRR) series, and the Mod-

erate Resolution Imaging Spectroradiometer (MODIS) on

the Aqua and Terra platforms.

Table 1. Satellite data processing levels, adapted from Chase

(1986).

Level 0 Reconstructed, unprocessed instrument data at

full resolution.

Level 1A Reconstructed, unprocessed instrument data,

time-referenced and annotated with ancillary

information such as radiometric and geometric

calibration coefficients and geolocation param-

eters. Data may be at full resolution or an aver-

age over some retrieval area.

Level 1B Level 1A data that have been converted to phys-

ical units (e.g. brightness temperature rather

than voltage). Not all instruments will have a

Level 1B equivalent.

Level 2 Derived environmental variables (e.g. ocean

wave height, soil moisture) at the same resolu-

tion and location as the Level 1 source data.

Level 3 Variables mapped onto uniform space-time grid

scales, usually with some corrections for com-

pleteness and consistency (e.g. interpolation of

missing points, interlacing multiple orbits).

Section 2 outlines the accepted definition of uncertainty,

and the use of ensemble techniques in characterising the dis-

tribution of systematic errors in satellite remote sensing data.

These are discussed with respect to specific sources of error

in Sect. 3. Retrieval validation is considered in Sect. 4. Sec-

tion 5 discusses the importance of qualitative information in

the communication of uncertainty to data users, while Sect. 6

summarises some conclusions and recommendations.

2 Representing uncertainty

2.1 Within retrieval theory

A generalised description of a retrieval technique is that it

uses observations y and auxiliary information b to find some

quantities of interest x that satisfy

y = F (x,b)+ ε, (1)

which is practically performed by evaluating

x =G(y,b), (2)

where the forward model F approximates the process by

which the instrument and the environment translate the de-

sired quantities x into the observation y and whose formu-

lation will depend on the choice of basis x. The error in the

measurements and forward model is denoted ε, and the in-

verse functionG is some statistical or approximate inversion

of the forward model, for which many schemes exist (e.g.

Rodgers, 2000; Twomey, 1997).
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If a hat denotes the theoretical true value of a quantity or

function, the error in the retrieval is given by ε = x− x̂. It

is affected by sources that fall between the following three

extremes.

– Random fluctuations in the measurement, such as ther-

mal fluctuations and shot noise. These are unavoidable

but generally linear and (at least approximately) nor-

mally distributed such that the uncertainty can be rep-

resented by the standard deviation of their distribution.

When using Eq. (2), the uncertainty resulting from ran-

dom errors in multiple measurements can be calculated

using the standard “propagation of errors” (Clause 5.1.2

of Working Group 1, 2008)

σxj =

√√√√ N∑
i=1

(
σyi

∂Gj

∂yi

)2

, (3)

where σxj is the uncertainty in the j th element of x and

N observations were considered, which are assumed to

have uncorrelated errors.

– Simplifications and approximations made in the tech-

nique. These errors are systematic and are unlikely to

be quantified (as they would have been included in the

forward model if they were). Such errors are commonly

characterised through validation.

– The degree to which the observation is representative of

the situation it is proposed to describe. These are espe-

cially important for satellite observations, where mea-

surements are averaged over some volume of the atmo-

sphere that does not necessarily correspond to the scale

of physical perturbations, such as turbulent mixing or

cloud contamination.

These considerations compound when considering the un-

certainty resulting from the use of auxiliary parameters, b.

If the uncertainty on the auxiliary parameters is well known,

it is straightforward to propagate it into the retrieval using

Eq. (3) with the substitution y→ b. However, the data may

not map directly onto the defined state (e.g. observations at

a different spatial resolution taken at a different sub-solar

time), introducing additional error. If an auxiliary parame-

ter is very poorly known, it may be preferable to retrieve it as

an additional element of x, though in doing so the problem

may become under-constrained (if it was not already). Even

where it is possible to make additional measurements, it is

often necessary to input an independently retrieved quantity

rather than work from raw data.

2.2 Formal definition

The metrological community has prepared an extensive sum-

mary of best-practice in the assessment of uncertainty in

measurements – the Guide to the expression of uncertainty

in measurement (Working Group 1, 2008, known hereafter

as the GUM). It defines uncertainty as a “parameter, associ-

ated with the result of a measurement, that characterises the

dispersion of the values that could reasonably be attributed

to the measurand.” This definition has been adopted by the

European Space Agency’s (ESA) Climate Change Initiative

(CCI project teams, 2010).

In clause 0.4, the GUM states that an ideal method for

evaluating uncertainty should be universal, in that it is ap-

plicable to all types of data. The reported uncertainty should

then be internally consistent, being directly derivable from

the information that was used in its calculation, and trans-

ferable, such that it can be input to subsequent calculations.

These are achieved by assuming that any probability distri-

bution from which errors are sampled can be accurately de-

scribed by a single variance. If a series of N observations xi
are made, the mean is 〈x〉 = 1

N

∑N
i=1xi with variance

σ 2
〈x〉 =

∑N
i=1(xi −〈x〉)

2

N − 1
. (4)

Clause 4.3 provides guidelines for determining a pseudo-

variance when observations are not repeated, such as where

the measurand is known to fall between two limits. With that,

Eq. (3) can be evaluated for the equations used to derive the

measurement (outlined in clause 5).

2.3 Application to satellite remote sensing

These conventions apply equally to satellite remote sensing

data but represent an impractical ideal that does not help an

analyst fully represent their understanding of the uncertainty

in their data. This is due to the simplistic treatment of sys-

tematic errors. Clause 3.2.4 of the GUM states that, “It is

assumed that the result of a measurement has been corrected

for all recognized significant systematic effects and that ev-

ery effort has been made to identify such effects.” While data

producers put significant effort into identifying systematic er-

rors, their quantification can be a difficult and occasionally

impossible task. For such errors, it is unclear that their distri-

bution is symmetric, such that the emphasis on traditional er-

ror propagation contributes to many analysts neglecting im-

portant systematic errors as they cannot be quantified with

confidence (Li et al., 2009; Kokhanovsky et al., 2010). This

applies primarily to highly under-constrained observations.

A few measurements of the radiation at the top of atmo-

sphere (TOA) cannot be used to deduce the intricate state of

the atmosphere and surface in the observed column without

substantial simplification of the physics and/or additional in-

formation on the variation of the state. Systematic errors are

produced where these assumptions break down (e.g. using

an inaccurate water vapour profile when evaluating measure-

ments affected by water absorption).

The magnitude and nature of systematic errors experi-

enced is a function of the state observed. A common example
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Figure 2. Distortion of the distribution of error for different selec-

tions of measurand when observing a cloud. (Non-linearities exag-

gerated for illustration.) (a) Measured TOA radiance suffers ran-

dom errors, which have a symmetric distribution. (b) Transforma-

tion with the Planck function warps the distribution when reporting

cloud top temperature. (c) These are further distorted when cloud

top pressure is calculated. An additional error (grey; not to scale) is

introduced by the auxiliary data used in that calculation, giving an

irregular total distribution (black).

is the differing treatment of land and sea surfaces. Averaging

adjacent retrievals will not necessarily combine errors sam-

pled from the same distribution. As the uncertainty of a re-

trieval is a function of the environment observed, they must

be ascertained on a pixel-by-pixel basis to be meaningful.

The basis chosen to describe a system also impacts the

expression of uncertainty. Consider the retrieval of cloud

top temperature or pressure from measurements by a nadir-

viewing infrared radiometer (for a more detailed descrip-

tion, see King, 1992; Fischer and Grassl, 1991; Schiffer and

Rossow, 1983). The observed signal is the radiance at TOA,

which is converted (using the Planck function) into the radi-

ating temperature of the droplets at the top of the cloud. As

that transform is non-linear, a symmetric distribution of ran-

dom error in the radiance will not be symmetric when consid-

ering temperature, as sketched in Fig. 2. Similarly, the cloud

top pressure is calculated from the temperature by interpolat-

ing a meteorological profile. As temperature varies linearly

with height while pressure varies logarithmically, the distri-

bution will be further distorted in pressure space, in addition

to the uncertainty introduced by the meteorological profile.

If errors are expected to be small (as in the radiance to tem-

perature transform), the non-linearity will be minimal and

a variance-based representation of error is sensible. Other-

wise, the distribution of error may be skewed or asymmetric

such that one value is insufficient to describe it. Ensemble

techniques can provide the additional information required

to characterise the distribution of error properly.

2.4 Ensemble techniques

As illustrated above, the standard error propagation tech-

niques do not properly represent the distribution of non-

linear errors. In such situations, the uncertainty can be ap-

proximated by the variation in an ensemble of individu-

ally self-consistent predictions. An example is numerical

weather prediction (NWP). Rather than predict the weather

from the output of a single model run, multiple runs are

performed (Buizza et al., 2005) with each initialised by a

perturbed version of the initial state (the perturbations be-

ing consistent with the uncertainty in the observations used).

The weather is chaotic, such that small changes in the in-

put data produce significant and non-linear changes in the

result (Lorenz, 1965). The ensemble of forecasts captures the

variability as an approximation of the uncertainty in a fore-

cast (Houtekamer and Lefaivre, 1997), such as the fraction

of model runs in which a given feature is observed, in a way

that standard error propagation cannot.

Non-linear error propagation in satellite remote sensing

observations can be characterised via ensembles. Each mem-

ber of the ensemble adds a random perturbation to the mea-

surements y and ancillary parameters b (in accordance with

their respective error distributions). The feasibility of doing

this in large-scale processing is limited by computational cost

so it is primarily useful as a method to validate the calculated

uncertainties (commonly referred to as a sensitivity study).

Ensembles are also widely used in the climate modelling

community (for example, Flato et al., 2013; Crucifix et al.,

2005; Meehl et al., 2000). Many processes cannot be accu-

rately modelled at the coarse resolutions practical for climate

modelling. These are parametrised, but there are many possi-

ble schemes and each has associated unquantifiable system-

atic errors. The diversity in an ensemble of models (using dif-

ferent assumptions and simplifications) approximates the un-

certainty in those models. This approximation is limited (as

it cannot sample uncertainty related to features that are ne-

glected from all of the models) but can still be useful (Knutti,

2010).

Such ensembles could be useful to assess the impact of

a priori assumptions in poorly constrained retrievals (such

as the selection of aerosol microphysical properties). To il-

lustrate the concept, consider estimating the volume of an

aluminium bucket knowing only its mass. As the density of

aluminium is known and the thickness of metal used to make

the bucket is assumed, the mass can be converted into a sur-

face area. The volume is then determined from the surface

area by assuming the shape and height of the bucket. That

choice of shape (i.e. the forward model) will greatly affect

how the retrieval interprets the mass measurement.

This is portrayed in Fig. 3. Each line represents a differ-

ent forward model for converting mass into volume. A slice

(lines of the same colour) shows the impact of shape on the

form of the forward model. Looking through the slices (dif-

ferent colours of the same line style) shows the impact of the

assumed height. Note the following.

– When the bucket is assumed to have a height of 12 cm

(purple), the three different models produce consistent

results between 0.15 and 0.3 kg. The error due to using

an inappropriate model there will be small, but increases

for masses > 0.3 kg. The error is a function of the true

state.
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Figure 3. An ensemble of forward models for the volume of a

bucket (x axis) as a function of its mass (y axis). A third param-

eter, the bucket’s height, is not measured and so must be assumed.

Its impact is shown over five slices of the z axis. Solid, dotted, and

dashed lines denote cylindrical, hemispherical, and conical buckets

respectively. The material is assumed to have thickness 1 mm and

density 2.7 g cm−3.

– For a height of 24 cm (red) the models diverge greatly;

a 0.32 kg bucket could have a volume between 0.10 and

11 L. Thus, the use of an incorrect model will introduce

substantial error. The error is a function of the forward

model’s parameters.

– In this example the actual shape of the bucket is not

known, so it is not possible to rigorously quantify the

error resulting from the choice of forward model. With-

out additional information, the results for a hemispheri-

cal bucket are just as valid as a conical one despite their

significantly different interpretations of the data (e.g. a

hemispherical bucket has a minimum mass for a given

height while a conical one does not).

The form of the ensemble will depend on its intended use

and a priori knowledge. In this example, the ensemble would

be three estimates of the volume (one for each shape). The

uncertainty resulting from errors in the weight, density, and

thickness would be given separately for each ensemble mem-

ber. If genuinely nothing was known about the height, the

ensemble could be extended to represent a range of heights.

In reality, some auxiliary information will exist that should

constrain the values.

The standard deviation across ensemble members may be

a useful proxy where the models are consistent, as in the

12 cm slice, but not generally. Non-linear errors can be most

meaningfully described through an ensemble, with which

many users already have extensive experience (Rayner et al.,

2014). Ensemble techniques are universal, being a generali-

sation of the GUM’s techniques to a poorly constrained prob-

lem (i.e. a well-constrained problem has a one-member en-

semble). Each realisation of the data is internally consistent,

and the ensemble presents a more complete understanding of

the data, as ambiguities are explicitly highlighted. The infor-

mation is transferable using the well-established techniques

of the modelling community.

This example is artificial but illustrates the utility of en-

semble techniques to satellite remote sensing data.

– Retrievals of aerosol optical depth are strongly affected

by the choice of aerosol microphysical properties. Anal-

ogous to the choice of bucket shape, these properties al-

ter the form of the forward model and introduce unquan-

tifiable errors. An ensemble can be produced by evalu-

ating the observations with various models, as currently

performed by the MISR (Multi-angle Imaging Spectro-

radiometer, Liu et al., 2009) and ORAC (Optimal Re-

trieval of Aerosol and Cloud, Thomas et al., 2009) algo-

rithms.

– A variety of techniques can be used to merge multi-

ple satellite sensors into a single, long-term product,

such as the Jason-1 and Jason-2 mean sea-level mis-

sions (Ablain et al., 2015) or the SeaWiFS (Sea-Viewing

Wide Field-of-View Sensor) and MODIS Terra and

Aqua ocean colour data (Maritorena and Siegel, 2005).

These correspond to the choice of bucket height – a

poorly constrained retrieval parameter.

– Retrieval parameters and auxiliary data have associated

uncertainties. Where the propagation of these is highly

non-linear, they can be estimated via ensemble tech-

niques analogous to the NWP approach, as done by Liu

et al. (2015). Rather than present an ensemble of re-

trievals, Mears et al. (2011) produced an ensemble of

estimated errors (as perturbations about the measured

value presume it is the mean of the true distribution).

– Errors that are correlated over large temporal and/or

spatial scales are impractical to calculate and represent

with traditional covariance matrices. Ensembles have

been used to represent these in sea surface temperature

(SST) products (Kennedy et al., 2011a, b), with less

problematic errors represented by separate uncertainty

estimates.

In essence, the ensemble approach is useful for character-

ising the error resulting from an incomplete description of the

situation observed. At the expense of increased data volume,

an ensemble provides the user with

1. a more appropriate representation of the uncertainty re-

sulting from the realisation of the problem, and

2. the freedom to select the portrayal(s) of the data most

appropriate to their purposes.

An ensemble also facilitates the intercomparison of different

methodologies, through which techniques can be refined or

rejected.
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3 Evaluating errors in a satellite observation

Despite their extensive use in the community (and this pa-

per), the classification of errors as random or systematic is

limited. A random error can appear to introduce a systematic

bias after propagation through a non-linear equation due to

its asymmetric distribution, and the distribution of a system-

atic error has finite width. The use of these terms is better

understood as synonyms for the non-technical meanings of

noise and bias, respectively.

The GUM chose to eschew classification of error alto-

gether, instead classifying uncertainties as type A and B de-

pendent on if they were calculated from an observed fre-

quency distribution (i.e. traditional statistical techniques) or

an assumed probability density function. This provides an

important focus on the different techniques through which

uncertainty is calculated, but does not address the interest of

data users in understanding the cause of errors in a measure-

ment. The source of an error affects how it is realised and its

relative importance in the eyes of data producers and users.

Five classifications of error by source are proposed, which

will be discussed in turn.

3.1 Measurement errors

Measurement errors result from statistical variation in the

measurand or random fluctuations in the detector and elec-

tronics. To assess these accurately, it is important that a mea-

surement is traceable to a well-documented standard. This

requires the straightforward (if not simple) comparison of an

instrument to a thoroughly characterised reference. Further

the response of any instrument will evolve over time, neces-

sitating the periodic repeat of calibration procedures.

Satellite radiometers are characterised prior to launch (e.g.

Hickey and Karoli, 1974; Barnes et al., 1998; Tanelli et al.,

2008), to varying levels of accuracy, providing a traceable

assessment of uncertainty. However, the stresses of launch

can irrevocably and unpredictably alter the behaviour of an

instrument, such that this assessment merely provides a first

guess of the performance in practice (e.g. Kummerow et al.,

2000). It is impossible to perform calibration in orbit analo-

gous to the laboratory-based format. Some instruments carry

calibration sources to provide continual, in situ evaluation

(e.g. Smith et al., 2012). Though designed to be more robust

than the instrument itself, these have been shown to have sta-

bility issues (Xiong et al., 2010). Hence, it is unreasonable to

expect a traceable assessment of uncertainty for a satellite-

borne sensor analogous to any ground-based instrument.

Vicarious methods of calibration can be used, whereby the

response of the instrument to a known stimulus is considered

(e.g. Slater et al., 1996; Fougnie et al., 2007; Powell et al.,

2009; Kuze et al., 2014). For example, radiometers have been

calibrated by observing an area of the Libyan desert known to

have a very stable surface reflectance over time (Smith et al.,

2002) or the Moon (Eplee et al., 2011). This can complement

pre-launch calibration or may be the only direct calibration

possible (Heidinger et al., 2003). Calibrations are periodi-

cally re-evaluated and new data sets released (e.g. the recent

ATSR V1.2 or MODIS L1B Collection 6). For such calibra-

tions to be traceable, it is necessary to establish international

standard reference sites that are independently and regularly

monitored.

3.2 Parameter errors

Retrievals using satellite observations virtually always re-

quire auxiliary information as there is insufficient informa-

tion available to retrieve all parameters of the atmosphere

and the surface simultaneously. For example, the accuracy

of line-by-line radiative transfer calculations depends upon

the spectroscopic data used (see, for example, Fischer et al.,

2008). Parameters will be produced by an independent re-

trieval and have associated uncertainties. If uncertainty is

reported via a standard deviation, it can be propagated us-

ing Eq. (3). More complex uncertainties can be represented

through an ensemble.

3.3 Approximation errors

It is not always practical to evaluate the most precise for-

mulation of a forward model. For example, the atmosphere

may be approximated as plane parallel to simplify the equa-

tions or look-up tables (LUTs) may be used rather than solv-

ing the equations of radiative transfer. Such approximations

will introduce error. Often known as “forward model error”

(Rodgers, 2000), it can be assessed by comparing the perfor-

mance of the rigorous and simplified forward models through

simulated data. These errors can be highly state-dependent

but should also be small (as otherwise the approximation was

misguided), such that it should be appropriate to quantify

the maximum error and convert that into an effective stan-

dard deviation (GUM Clause 4.3). To continue the analogy

of Sect. 2.4, an approximation error would result from as-

suming the bucket is perfectly cylindrical when it is actually

slightly tapered.

3.4 Resolution errors

3.4.1 Definition of the measurand

How a measurand is defined affects which errors are rele-

vant. Summarising clause D.3 of the GUM, consider the use

of a micrometer to measure the thickness of a sheet of paper.

As the sheet will not be uniform, the true value depends on

the precise location of the measurement. Hence, when mea-

suring “the thickness of this sheet of paper”, the variation

of thickness across the sheet is an additional source of error

to be considered when estimating the uncertainty. This error

can be neglected by defining the measurand as “the thickness

of this sheet of paper at this point”, but that is of little practi-

cal use. Similarly, “the thickness of a sheet of paper from this

Atmos. Meas. Tech., 8, 4699–4718, 2015 www.atmos-meas-tech.net/8/4699/2015/
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supplier” is a more useful measurand, for which the error due

to variations between different sheets would also need to be

considered.

A datum in a satellite product is understood to represent

an average of some physical quantity over the observed pixel

at a specified time. Compared to the situations considered in

the GUM, these suffer a number of important limitations.

1. It is not possible to redefine the scope of the measur-

and (i.e. changing from “this sheet of paper” to “a sheet

from this supplier”) as that is prescribed by the optics

of the instrument. What will be called the resolution er-

ror derives from the inability of the measurement to re-

solve the desired measurand. This generally results from

variations in the quantity on scales smaller than a pixel,

analogous to the variations in thickness over a sheet of

paper.

2. The perturbations are not necessarily independent. For

example, in the open ocean it is reasonable to expect that

mixing will homogenise SST over a pixel, but in coastal

waters variations in depth and sediment concentration

introduce spatially correlated perturbations that will not

average to zero.

3. Unlike the thickness example, it is not possible to re-

peat the observation. Atmospheric states evolve over

minutes to hours and influence (to some extent) any

environmental observation such that two instruments

can never strictly observe the same state. This con-

trasts with laboratory-based measurements, where ex-

periments generally accumulate statistical confidence

through repeated measurement of equivalent circum-

stances.

The last point can be addressed by averaging adjacent pix-

els from the same sensor. When done with Level 1 data,

this is known as superpixeling (Munechika et al., 1993). It

is commonly used in aerosol retrievals to reduce measure-

ment error (e.g. Sayer et al., 2010a), as aerosols are assumed

to vary over scales much larger than a pixel (order 50 km,

Anderson et al., 2003). Such averaging is not valid in the

presence of cloud, which is fundamentally a stochastic fea-

ture with an extended region of influence (Grandey and Stier,

2010).

When Level 2 data are aggregated onto a regular grid, the

result is Level 3 data. Averages over hundreds of kilometres

and days to weeks are similar to the scales evaluated by cli-

mate models, and the volume of data is vastly more manage-

able. Such data are susceptible to additional limitations.

– The definition of the measurand is even more impor-

tant. It may appear sufficient to describe a product as

(for example) “average SST in March 2005 over 30–

31◦ N and 10–11◦W”, but the satellite’s spatial sam-

pling will greatly affect the value. Comparison of satel-

lite products to model outputs can only be successful if

the model is sampled as if observed by that satellite (so

called “instrument simulators”, e.g. Sayer et al., 2010b).

– Satellite products are only representative of the time

they observe (Privette et al., 1995). If the quantity has a

diurnal cycle, the measurand should be described as an

average at a specific time. That time may evolve through

a record due to satellite drift, such that data from the be-

ginning of such a record may not be directly comparable

to those at the end.

– Resolution errors are a function of the pixel size and

the variability of the measured quantity. A satellite da-

tum is interpreted as a spatial average over the footprint

of the pixel. This presumes that the value retrieved is

equal to the average of retrievals from infinitely high

spatial resolution data (i.e. the derivative of the prod-

uct with respect to the measurement is linear for varia-

tions within the pixel). While this approximation holds

in many circumstances, it is not universally true and cer-

tainly breaks down as pixels are aggregated to represent

a larger spatial scale.

– For retrievals that use an a priori constraint, each re-

trieved value contains a contribution from the a priori.

When averaging, if the a priori is not “removed” from

the value, it will contribute repeatedly to the average,

biasing it. Neglecting covariance between state vector

elements, this can be done via

x′i =

(
xi

σ 2
i

−
xa

σ 2
a

)
(5)

To account for covariance, see Eq. (10.47) of Rodgers

(2000). The values x′i can then be averaged as desired,

explicitly including the a priori value once.

Level 2 data can also be averaged while remaining on the

satellite grid (for example, Hsu et al., 2013), which could be

referred to as Level 2.5 data.

3.4.2 Impact of sampling

The interaction of cloud with the radiation field is sufficiently

complex and variable that it is not generally possible to re-

trieve its properties simultaneously with the surface and/or

other atmospheric constituents. Hence, most atmospheric

measurements are pre-filtered for the presence of cloud via

one of a plethora of empirical techniques (e.g. Ackerman

et al., 1998; Stowe et al., 1999; Pavolonis and Heidinger,

2004; Curier et al., 2009). This constrains the retrieval to ob-

servations believed to be appropriate to the forward model

used.

The filtering process impacts the sampling of the prod-

uct, as regions with persistent cloud cover will be neglected.
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Level 3 products are particularly susceptible to these sam-

pling effects. The concept is also known as “fair-weather

bias” as the exclusively clear-sky conditions considered are

not necessarily representative of the long-term average con-

ditions that the measurand purports to describe (an example

can found in Levy et al., 2009). Ensemble techniques can

be used to characterise this error either by demonstrating the

changes in coverage as a function of the cloud filter used

or by explicitly considering cloudy conditions as an alterna-

tive realisation of the system (for which the state vector will

likely be different).

Filtering can remove exceptional events. Aerosol retrievals

often assume all data with optical thickness above some

threshold are cloud contaminated, but it is possible for dust or

volcanic ash to achieve an optical thickness above any useful

threshold. This systematically removes high optical depths

from long-term averages, producing a low bias in average

products and failing to characterise the largest (and poten-

tially most important) events. Such limits should be stated

within the product definition to make this distinction clear.

Sampling is also affected by the instrument swath. As ex-

amined in Sayer et al. (2015), there is often a distortion

of pixel size, shape, and overlap near the edges of a swath

(e.g. the MODIS “bowtie effect”). The local solar time of

pixels is variable across any swath. These effects complicate

the definition of the measurand and raise important questions

for the production of Level 3 data: Should overlapping data

from different swaths be combined despite differences in lo-

cal time? When combining pixels, should they be weighted

by their area? Should distorted pixels be excluded from such

averages entirely?

3.5 System errors

The stochastic change in TOA radiance due to the presence

of cloud (or other optically thick layer such as smoke or vol-

canic ash) is a long-standing problem in satellite remote sens-

ing. The issue is that the forward model, F in Eq. (1), has a

significantly different form for each stochastic realisation of

the environment. One realisation will be referred to as a sys-

tem.

If there is no a priori knowledge of which system is appro-

priate, the forward model could be formed from the linear

sum of all possible systems; e.g.

y = aF clear sky(xa,ba)+ bF cloud(xb,bb)

+ cF smoke(xc,bc)+ ·· ·+ ε, (6)

where a,b,c, . . . are the weighting of each system, which

sum to unity. Each system is represented by a unique

state xa,xb,xc, . . ., and there may be degeneracies between

them (e.g. each state may quantify the surface reflectance).

While this approach may be successful for some multispec-

tral observation systems, in most cases it makes an under-

constrained problem worse.

Another technique is to assume the measurements are of a

specific system (i.e. one of the weights is unity and the others

are zero). The choice of system is based on prior knowledge,

usually relative values of radiances or their spatial variability

(e.g. the cloud flagging discussed in Sect. 3.4.2). However,

the choice of thresholds is often application dependent, lead-

ing to gross error (e.g. Sect. 3.2 of Holzer-Popp et al., 2015)

as there is a substantial difference between asking “Is this an

observation of X?” and “Is this observation suitable for anal-

ysis with my model of X?” The former desires an appraisal

of the state based on data; the latter seeks to minimise for-

ward model errors.

An alternative approach is to perform a retrieval with each

relevant system in turn and choose a posteriori the best sys-

tem (e.g. Levy et al., 2013). Ideally, the fit to the mea-

surements would indicate a best choice of system, shown

schematically in Fig. 4. Difficulty emerges when multiple

systems produce values with indistinguishable fits to the

measurements (e.g. the measurements can be fit equally well

by a water cloud or thick aerosol haze). In either case, anal-

ogous to the 24 cm slice of Fig. 3, an unquantified error may

be present due to deviations between the forward model and

reality. This manner of reporting an ensemble of all the sys-

tems evaluated allows the error to be at least sampled.

3.6 Existing terminology

The combined impact of approximation, resolution, and sys-

tem errors was defined as “structural uncertainty” by Thorne

et al. (2005). Their emphasis was that the choices made

by different investigators in the analysis of the same data

can produce discrepancies. The terminology proposed above

clarifies the type of choices which introduce such errors to an

analysis and delineates by the manner in which they would

be assessed. Regardless, this paper would prefer “structural

error” as it is the error that is structural, not its uncertainty.

The term “structural uncertainty” is used by Draper (1995)

to describe system errors, though with respect to statistical

rather than physical models.

3.7 Summary

Measurement and parameter errors are both intrinsic sources

of uncertainty in a retrieval. Measurement errors affect the

quantities measured and analysed by the retrieval. Parameter

errors are propagated from auxiliary inputs, such as meteo-

rological data or empirical constants. Resolution errors result

from finite sampling of a constantly varying system. These

can be especially important as satellites do not sample the

environment randomly but with a systematic bias due to the

satellite’s orbit and quality control or filtering.

Approximation errors represent aspects of the analysis that

could have been done more precisely but do not affect the

fundamental measurand. A plane parallel atmosphere is a

simplification of the real world; it would not be observed.
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Figure 4. One-dimensional representation of a retrieval considering

multiple systems (realisations of the forward model that do not nec-

essarily retrieve the same variable). For a system, the retrieved state

is the minimum of its cost function (indicated by a circle). The state

with globally minimal cost (across all systems) is a posteriori taken

as the best representation of the observed environment.

System errors express choices in the analysis that alter the

measurand. An assumed aerosol optical model will represent

a possible state of particulates in the atmosphere; it may be

unlikely but still possible. The system error results from the

difference between the assumed system and reality.

4 Retrieval validation

Validation is a vital step in the production of any data set,

confirming that the data and methodology are fit for their pur-

pose. Often thought of as the conclusion of data generation,

it provides guidance for future development of the algorithm

and so is better considered a step in the cycle of retrieval de-

velopment (see Fig. 5). Validation should be traceable and

repeatable and can take two forms that will be discussed in

this section:

– Internal validation: the comparison of measurements

from a single instrument;

– External validation: the comparison of measurements

with correlative measurements made by a different in-

strument.

These can be thought of as assessing the precision and ac-

curacy of the retrieval, respectively, and can establish that

the methodology produces physically consistent results. The

process should demonstrate that new data are consistent with

independent results, estimate the relative error between the

techniques considered, and show that the predicted uncer-

tainties accurately describe the distribution of that error.

This paper construes a validation as a comparison against

real data only. There is use in evaluating the performance of

an algorithm against simulated data, but that is considered

a step in retrieval refinement (confirming it behaves as ex-

pected in controlled conditions) rather than a validation.

Figure 5. The cycle of retrieval development. The initial formula-

tion and algorithm are repeatedly revised in light of internal valida-

tion activities. When consistent results are achieved, an external val-

idation is performed (and published) to begin the operational cycle,

where data are generated and disseminated. The application and cri-

tique of the data by the scientific community then feeds into further

refinement of the algorithm (or entirely new algorithms). The devel-

opment and operational cycles continue independent of the larger

cycle but over time operations will increasingly dominate resources

as the product becomes increasingly fit for purpose.

4.1 External validation

Users will be most familiar with external validation – the

comparison of observations from two or more instruments.

This focuses on quantifying the correlation and difference

between data sets. While such validation activities are funda-

mental to the characterisation and minimisation of systematic

errors, they should not be confused with a quantification of

uncertainty. Validation techniques are neither universal (be-

ing dependant on the collocation criteria), internally consis-

tent (as external data are used), nor transferable (being rep-

resentative of only the conditions considered).

4.1.1 Weighting functions

When comparing two data sets, neither quantifies “the truth”

(even when one is substantially more precise than the other).

Both have associated errors, random and systematic such that

all that can be said is the products are consistent with each

other. Also, simply because two measurements purport to

quantify the same measurand does not mean they actually

do. Weighting functions illustrate the difference in sensitiv-

ity between instruments.

As an illustration, consider cloud top height (CTH). The

entire cloud emits thermal radiation, much of which will be

scattered or absorbed within the cloud. Radiation from the

cloud observed by a satellite corresponds to photons that

found an unimpeded path to TOA. Hence, a radiometer quan-

tifies an average of the cloud’s temperature profile weighted

by the probability that a photon from that level can arrive at

TOA. The distribution of the weight is known as the weight-

ing function, and is sketched in red in Fig. 6a. Due to the

www.atmos-meas-tech.net/8/4699/2015/ Atmos. Meas. Tech., 8, 4699–4718, 2015



4708 A. C. Povey and R. G. Grainger: Uncertainty estimation in satellite remote sensing

lack of information about the vertical extent of the cloud, it is

common to assume the cloud is infinitely thin (e.g. Poulsen

et al., 2012), and the measurand would be more accurately

described as the “effective cloud radiating height”.

A very simple model of this situation assumes that radi-

ation increases linearly with optical path τ measured in the

direction away from the observer. That radiance is attenuated

with the exponential of τ so the observed radiance R can be

approximated as

R = aτe−τ , (7)

where a is some constant. This function has a maximum at

τ = 1. This result approximately holds in more detailed cal-

culations, such that a useful rule of thumb is that a radiance

can be thought of as emanating from the level of the atmo-

sphere at unit optical path.

The Cloud-Aerosol Lidar with Orthogonal Polarization

(CALIOP) is commonly used to validate CTH (e.g. Holz

et al., 2008; Stengel et al., 2013). CALIOP measures the

backscatter from a pulsed laser beam as a function of height,

which is predominately a function of the number of particles

in the beam. CTH is identified by the rapid increase in signal

at the edge of the cloud as particle density increases. This re-

sults in a weighting function that is substantially sharper and

peaked at the physical top of the cloud (black in Fig. 6).

A direct comparison of these two products will find that

radiometer-retrieved CTH are consistently lower than those

from the lidar. To validate the satellite against the lidar prop-

erly, it is necessary to use the satellite’s weighting function to

calculate an “effective cloud radiating height” from the lidar

profiles (see, for example, Sayer et al., 2011). All variables

retrieved may have a weighting function, such as cloud effec-

tive radius (Platnick, 2000). When measurements are com-

pared, it must be done on a common basis.

More formally, a weighting function describes the depen-

dence of a measurement on the underlying state. When the

state chosen to describe a measurement is not an orthogo-

nal basis of the observed state, a variable in the state vector

will not uniquely determine an element of the true state. The

relationship between the retrieved state and true state is ex-

pressed by the averaging kernel A= ∂x̂/∂x, which satisfies

x− xa = A(x̂− xa)+ ε
′, (8)

where ε′ represents the action of G on ε.

Consider where x has two elements: the CTH and total

optical thickness. In the lidar retrieval, these two variables

are independent; Alidar is a unit matrix. In the radiometer re-

trieval, the CTH retrieved is a function of the optical depth

profile and Arad contains off-diagonal elements. To illustrate,

consider when an optically thin cloud (τ � 1) lies above a

thicker cloud (Fig. 6b). The lidar will identify CTH as the

physical top of the thin cloud, but the radiometer will retrieve

a CTH between the clouds. As the upper cloud’s thickness

increases, the weighting function is increasingly dominated

Figure 6. Schematic of the weighting functions for CTH for an in-

frared radiometer (red) and lidar (black), with dashed lines denot-

ing the value retrieved. (a) For a thick cloud, the radiometer is most

sensitive to the region one optical depth into the cloud while the

lidar detects the physical cloud top. (b) The lidar’s sensitivity is un-

changed when a thin cloud lies over a thicker one, but the radiometer

observes both clouds, resulting in an unphysical CTH somewhere

between the two. (c) Compares (b) with the weighting function for

a wider radiometer band (blue, exaggerated).

by the upper cloud. The retrieved CTH is dependent on the

upper cloud’s optical thickness. The averaging kernel would

be

Arad =

(
1− ∂CTH

∂τ
∂CTH
∂τ

0 1

)
. (9)

The off-diagonal elements of the averaging kernel repre-

sent aspects of the state that cannot be resolved by the chosen

basis and forward model. Here, a two-layer cloud cannot be

properly represented when the basis only describes the prop-

erties of a single-layer cloud. The characterisation of an aver-
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aging kernel may require the use of an extended state vector

and simulations with a more detailed model. (If the retrieval

had been posed over that extended state vector, the averaging

kernel would have been diagonal.)

4.1.2 Comparing retrieved quantities

Retrievals will be compared over some collection of observa-

tions representing only a subset of the realisable state vectors

(e.g. a SST product compared to ship-based measurements

will only encapsulate the variation in SST over major ship-

ping lanes rather than globally). As systematic errors are cir-

cumstantial, this collection represents only a sample of the

complete distribution – just as the definition of a measurand

frames how its value can be understood and used, the scope

of a validation frames the understanding of systematic errors.

Towards the aim of repeatability, validation should be per-

formed in a manner such that, if an additional source of data

were introduced (e.g. a new instrument site or satellite or-

bit), the conclusions would not be expected to change. In the

highly common case that there are insufficient data to achieve

this, the scope of the validation should be clearly outlined.

One would naïvely judge if two retrievals are consistent by

considering,

χ2
= (x1− x2)

T(S1+S2)
−1 (x1− x2) , (10)

where Si is the covariance of a retrieved solution. Rodgers

and Connor (2003) noted that this does not apply for re-

trievals with differing averaging kernels. If the averaging ker-

nel is not calculated, it is not possible to compare the data

from different sensors rigorously, even from the same algo-

rithm.

Different algorithms have distinct sensitivities to the same

input information. Products from different sensors consider

distinct inputs and so react differently to the same atmo-

spheric state. Even where channels with similar wavelengths

are used, they will have different band passes which sub-

tly affect their sensitivity (weighting functions). For exam-

ple, the scattering properties of smaller droplets change more

rapidly with wavelength than those of larger droplets. In

Fig. 6c a second radiometer with a wider band pass has a

broader weighting function (which will vary with droplet size

because the cloud’s transmission varies at the edges of the

band.)

When independent observations are not available to ex-

ternally validate data, one can compare a product to model

output provided the model is sampled as if viewed by a satel-

lite. The retrieval’s averaging kernel and weighting functions

are necessary to translate the physical variables quantified by

the model (e.g. particle number density) into the observed

measurand. Further, a method for estimating the random er-

ror variance of a geophysical variable from three collocated

data sets was proposed by Stoffelen (1998) and has become

an important evaluation method in Earth observation.

4.1.3 Formalism for comparison

The formalism of Rodgers and Connor (2003) is widely used

in the trace gas community (e.g. Froidevaux et al., 2008;

Wunch et al., 2010). It is less straightforward but equally im-

portant in any comparison of data products and will be briefly

summarised. The collection of states compared is assumed to

have a mean state xc with covariance Sc. This could be the

mean of one of the data sets considered, or represent prior

information, such as a climatology from a previous measure-

ment campaign.

Equation (8) linearises the retrieved state about the a pri-

ori state. The two retrievals are unlikely to share an a priori.

Hence, to consider compatible averaging kernels it is nec-

essary to translate both data sets to a common linearisation

point, for which xc and Sc are suitable. The necessary trans-

lation is

x̄i = xi − xc+ (Ai − I)(xai − xc) (11)

≡ Ai(x̂− xc)+ ε
′

i . (12)

The difference between retrievals is then,

δ = x̄1− x̄2 ≡ (A1−A2)(x̂− xc)+ ε
′

1− ε
′

2, (13)

which has covariance,

Sδ = (A1−A2)
TSc (A1−A2)+S1+S2. (14)

Thus, rather then Eq. (10), an appropriate comparison metric

is

χ2
= (x̄1− x̄2)

TS−1
δ (x̄1− x̄2) . (15)

When one product is of much higher resolution, such as

the comparison against CALIOP described in Sect. 4.1.1, it

may be possible to transform it onto the basis of the other via

x̄∗2 = xc+A1 (x̄2− xc) , (16)

for which

δ∗ = x̄1− x̄
∗

2 ≡ (A1−A1A2)(x̂− xc)+ ε
′

1−A1ε
′

2, (17)

which has covariance,

Sδ∗ = (A1−A1A2)Sc(A1−A1A2)
T
+S1+A1S2AT

1 . (18)

As Eq. (11) casts each observation on the same lineari-

sation point, these techniques can be directly applied to the

comparison of more than two instruments.

4.1.4 Expected error envelopes

Expected error envelopes are a common means of present-

ing the result of a validation of, for example, aerosol opti-

cal depth τ (e.g. Kahn et al., 2005; Levy et al., 2010). The

difference between the retrieved value and that reported by
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the Aerosol Robotic Network (AERONET) approximates the

“error” in the retrieval. The “expected error envelope” is the

width of the observed distribution of “error” and is described

like an uncertainty. The value is an “envelope” because the

distribution widens with increasing retrieved optical depth,

such that the final value is reported as ±(a+ bτ), where a

represents the minimum width of the “error” distribution and

b represents the rate at which it widens with increasing op-

tical depth. Envelopes can be stratified according to the ob-

served conditions and retrieval assumptions.

This is an efficient means of communicating the results of

the validation against AERONET and conveys a quantitative

measure of the degree of certainty the data producer has in

their product. It is not, strictly, an estimation of uncertainty.

Such validation techniques are neither universal (being de-

pendant on the collocation criteria), internally consistent (as

external data are used), nor transferable (being representative

of only the conditions considered). Though envelopes pro-

vide a diagnostic approximation of the uncertainty, additional

correction is necessary to use them as prognostic uncertain-

ties (Hyer et al., 2011). Treating envelopes as a transferable

uncertainty has led to significant difficulty integrating data

from different sensors as global and local sources of error

are disconnected (Holzer-Popp et al., 2014).

This application of envelopes conveys an incorrect ap-

preciation of the uncertainty to users as it implies well-

constrained random and systematic components. Though

stratification by relevant circumstances (e.g. over desert, high

aerosol loading) indicates that the error depends on the state

observed, a simple expression cannot usefully communicate

the distribution of error in any particular measurement. Only

pixel-level estimates provide an uncertainty consistent with

its widely accepted definition and the presentation of ensem-

bles, already used in the calculation of these envelopes, can

better represent the distribution of errors not quantified in

that estimate.

4.2 Internal validation

Internal validation is a less frequently discussed means to as-

sess the precision and consistency of measurements.

4.2.1 Self consistency

Repeated observations of an unchanged target should sample

the distribution of error, such that a histogram of the observa-

tions should be Gaussian with a standard deviation equivalent

to the uncertainty. An opportunity for this type of repeated

observation is rare with satellite instruments. More common

is the sampling of the same point in successive orbits (often

near the poles), assembling pairs of measurements of simi-

lar (if not identical) atmospheric states (e.g. Lambert et al.,

1996). If the first observation is x1 with uncertainty σ1 and

the second x2 with σ2, then a histogram of

1=
x1− x2√
σ 2

1 + σ
2
2

(19)

should have a mean of zero and a standard deviation of unity.

The covariance of simultaneously retrieved quantities can be

considered by evaluating Eq. (10) instead.

Atmospheric variation may increase the observed variabil-

ity so a larger standard deviation is not questionable. A vari-

ance less than one usually indicates an underestimation of

the uncertainty. Significant departure from a Gaussian distri-

bution is indicative of unidentified systematic errors. If the

variable is expected to be homogeneous across a region, all

observations there can be used to validate the uncertainty di-

rectly, as the variance of the observations should be greater

than the average of the uncertainties.

4.2.2 Against other algorithms

Using different forward model assumptions, statistical tech-

niques, and/or filtering methods can produce results that may

be consistent with themselves and external validation but not

with each other. Differences between retrievals, in the ab-

sence of external validation data or a programming error, in-

dicate variations in the state within the unconstrained state

space. They form an ensemble that illuminates where the for-

mulation of the problem is most relevant, highlighting where

future research could be concentrated to represent the obser-

vations more carefully (Holzer-Popp et al., 2013). Belief that

one representation is “better” than others independent of ex-

ternal validation is an expression of a priori knowledge. Such

knowledge can be very useful in identifying “unknown un-

knowns” in a retrieval, but it is important to appreciate that

any constraint not made by the data is an expression of a pri-

ori data, be it as formal as knowing that surface temperatures

are generally within 40 degrees of 10 ◦C or as simple as be-

lieving surface pressure should not vary across a land–sea

boundary.

5 Communication with users

Confidence in data is communicated to users through uncer-

tainty estimates and quality assurance statements. The quan-

tification of uncertainty illustrates how new data relate to

the existing body of knowledge, but there is also the user’s

qualitative sense of the “worth” of data. To what extent does

it constrain the variables they are investigating? When and

where are the data most robust and when and where do they

effectively convey no information? What do they quantify

that was not already known? The aims of the user frame

these questions. A detailed case study requires reliable un-

certainty estimates to incorporate varied measurements and

understand the limitations of the information provided but it
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Table 2. Example of an error budget.

Uncertainty Uncertainty Bias Sensitivity Random Systematic

Term Uncertainty Uncertainty

Measurement

elements

y1

... σy1 δy1

∂x1
∂y1

∂x1
∂y1
σy1

∂x1
∂y1
δy1

Parameter

elements

b1

... σb1
δb1

∂x1
∂b1

∂x1
∂b1
σb1

∂x1
∂b1
δb1

Total Add above values Add above values

Uncertainty in quadrature

is impractical for a 20-year model climatology to consider a

single measurement, its uncertainty even more so.

Further, the “unknown unknowns” affecting satellite re-

mote sensing data are not completely indescribable. Informa-

tion such as “results are often unreliable over deserts” is still

important to users, even if the uncertainty cannot be quan-

tified. A dialogue with users is important in improving the

understanding of data and receiving feedback on those data

for future improvement.

5.1 Error budget

The aim of an error budget is to classify the contributions to

the uncertainty by their source. At its simplest this may be in

the form of a table, as suggested in Table 2. The total uncer-

tainty estimated in this way can be compared with that found

through validation activities. Discrepancy between the two

can potentially indicate that an error source has been over-

looked.

5.2 Quality assurance

Quality assurance (or flagging) is a qualitative judgement

of the performance of a retrieval and the suitability of that

technique for processing the data. This complements the un-

certainty, whose calculation assumes that the forward model

is appropriate to the observed circumstances. Statistical dis-

tributions are unsuited to show when an algorithm fails to

converge, converges to an unphysical state, encounters in-

comprehensible data, or observes circumstances beyond the

ability of its model to describe. Provided it is described in

the language of a statement of confidence, quality assurance

provides useful information.

The difficulty is that a simple flag is a coarse means of

communication. For example, MODIS Collection 5 aerosol

products provided a data quality flag of value 0, 1, 2, or

3 to describe increasing confidence in the retrieval method

(Sect. 2.5, Remer et al., 2006). This is widely used as a sim-

ple filter, rejecting data below some level. The level selected

varies widely and it neglects, for example, that all low mag-

nitude retrievals have confidence 1 due to the small signal.

This will bias analyses to circumstances ideal for the chosen

formulation, which are not necessarily representative of the

environment (Sect. 3.4.2).

However, such filtering is a logical response to this presen-

tation of information. A more useful scheme would provide

multiple separate flags (e.g. presence of cloud, challenging

surface conditions, failure to converge, etc.) in a bit mask.

When these are properly documented they allow an attentive

user to evaluate the impact of using data degraded by a spe-

cific feature, and the disinterested user may be inspired to

consider, if only briefly, the most appropriate flags for their

purposes.

5.3 Distinction between maturity and uncertainty

Satellite remote sensing data have existed for several

decades, but the retrieved geophysical quantities evolve as

additional auxiliary data become available and new scientific

problems appear. For example, AVHRR measurements from

1978 are still reprocessed for climate studies (Stengel et al.,

2013; Heidinger et al., 2014). Figure 5 outlines the interlink-

ing cycles of algorithm and operational development. Fig-

ure 7 illustrates how the repeated refinement and validation

of data is a fundamental expression of the scientific method

in data analysis. The cycle describes the ongoing conver-

sation through which measurements and algorithms are im-

proved in response to their use until a consensus is built that

either:

1. the data set sufficiently addresses the needs of its users;

or

2. the maximal amount of information has been extracted

from the measurement and additional information is re-

quired to meet the needs of users.

The progress of a data set from initial conception to the

achievement of one of these goals is known as its maturity.

Bates and Barkstrom (2006) and Bates and Privette (2012)

have outlined the system maturity matrix as a standardised

metric to quantify the maturity of a product, briefly sum-

marised in Table 3. It provides a means to track the develop-

ment of an algorithm and data set from initial concept to an

www.atmos-meas-tech.net/8/4699/2015/ Atmos. Meas. Tech., 8, 4699–4718, 2015
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Instrument Description
Description of the instrument and its principles of 
operation.

Validation
Characterisation of the retrieved geophysical quantities 
over observation space.  
A description of the uncertainty as a function of state 
and its stability over time.

Application
Use of geophysical results to characterise or describe 
the state of the atmosphere or processes within it.

Calibration
Prelaunch characterisation of instrument radiometric 
response referenced to international standard.

Post launch evaluation of instrument performance 
against onboard reference and/or vicarious targets.

Pr
e-

L
au

nc
h

Po
st

-L
au

nc
h

Algorithm Description
Description of how measurements are converted into 
geophysical quantities.
Quantification of the uncertainty budget. 
Evaluation of theoretical performance for reference 
atmospheric states.

Algorithm Development Cycle

Figure 7. The sequence of scientific output needed to underpin satellite observations. The instrument, calibration, and algorithm descriptions

may be contained in one or more publications. Significant iterations of the retrieval algorithm are usually described in a new publication.

Table 3. Levels of system maturity, as defined in Bates and Barkstrom (2006).

Level 1 Initial research Results are based on environmental data records or a research satellite

mission. Time series is short (usually less than 10 years). Validation is

not yet complete.

Level 2 Managed development Initial validation complete with peer-reviewed journal paper(s)

published, etc.

Level 3 Validated Continuous validation for greater than 10 years. Data from multiple

investigators with understood differences in results. Provisionally used

in assessments and societal benefit areas with positive impact

demonstrated.

Level 4 Certified validated

(a preponderance of

the evidence)

Full provenance demonstrated; fully compliant with national and

international standards; regularly used for identified societal benefit

areas.

Level 5 Benchmark (beyond a

reasonable doubt)

Variable critical to defining long-term climate change that is observed

on the global scale. A measurement that is tied to irrefutable standards,

usually with a broad laboratory base. Observation strategy designed to

reveal systematic errors through independent crosschecks, open

inspection, and continuous interrogation. Limited number of carefully

selected observables, with highly confined objectives defining

(a) climate forcings, (b) climate response.

operational setting, highlighting areas of a project that could

benefit from additional resources to achieve increased im-

pact. The CORE-CLIMAX project (Coordinating Earth ob-

servation data validation for re-analysis for climate services)

has adapted and implemented such a scheme to rate the suit-

ability of current data products for use as a Climate Data

Record (CDR), introduced in Table 4. These matrices con-

centrate on goal 1 above, specifically the ability for “end-

users to realize the strengths and weaknesses of the dataset”

(Work Package 2, 2013).
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Table 4. Excerpts of the system maturity matrix defined by Work Package 2 (2013), available at http://www.coreclimax.eu/sites/coreclimax.

itc.nl/files/documents/Deliverables/WP_Reports/Deliverable-D222-CORECLIMAX-Maturity_Matrix.xlsx.

Category Maturity 1–2 Maturity 3–4 Maturity 5–6

Software readiness Conceptual development Portable and numerically reproducible

code with draft user manual

Turnkey system fully

compliant with coding standards

Metadata None Standardised formatting sufficient to

use and understand data and trace data

heritage

Regularly updated metadata, fully com-

pliant with international standards

User

documentation

Limited scientific

description of the

methodology available

from PI

Published methodology with product

descriptions and validation exercises

available from PI

Publications outlining product updates

and comprehensive validation (includ-

ing uncertainty information)

Uncertainty

characterisation

None Quantitative estimates of uncertainty

provided using standard nomenclature

and procedures to establish SI traceabil-

ity

Data provider has participated in multi-

ple international assessments, incorpo-

rated feedback into the product devel-

opment cycle, and quantified temporal

and spatial error covariances

Public access

and feedback

Restricted availability

through PI

Version-controlled, documented com-

puter codes available through PI

Source code available to public with ca-

pability for continuous data provisions

Usage None Product use cited in literature; societal

and economic benefits discussed

Product and its applications have be-

come the reference in multiple research

fields with demonstrated influence on

policy making

The appropriate presentation of data with thorough docu-

mentation and metadata produced using a publicly available,

consistently realised computer code is a desirable aim. Such

features should be included in any algorithm from inception

to minimise simple mistakes and the misunderstanding of

data by users. However, the presence of such features does

not address the scientific quality or importance of the data.

The proposed metric simply counts the citations the data

have received, disregarding the variety of applications and

their impact upon scientific understanding. Participation in

international data assessments works towards this aim, but

only when there are multiple means of observing or evaluat-

ing a measurand. These are not available for many environ-

mental variables, and they should not be considered imma-

ture if they make the best use of the information available

(goal 2).

It is important that an inexperienced user should not mis-

interpret data with a high maturity index as being more accu-

rate or suited to a particular study. A mature data set is one

which is near the end of its development cycle in that it is

agreed to be fit for purpose by the scientific community. This

must not be confused with a data set that fully constrains the

measurand.

With specific regard to the evaluation of uncertainty:

– As discussed in Sect. 3.1, SI traceability is not possible

for a satellite instrument in the traditional meaning of

that phrase. The environmental science community as a

whole must develop ground-based, traceable standards

for satellite instruments, such as well-characterised and

monitored surfaces. The current metric penalises prod-

ucts that have no such standard to reference.

– The spatial covariance of error in a product can only

be quantified through validation against spatially dis-

tributed, independent data. Satellite remote sensing is

used for many environmental products because they are

impractical to measure from the ground. In such cases

it is not possible to assess covariance errors indepen-

dently. Ensemble techniques may be useful there.

– A distinction must be made between internal and exter-

nal validation activities. An international assessment of

multiple, independent products from different measure-

ment techniques that quantify equivalent measurands

represents the external validation of a mature research

area. An internal validation of differing algorithms from

the same sensor evaluates the relative properties of the

algorithms, not their suitability for quantifying the mea-

surand.

Monitoring the progress of algorithm development must

be done in a manner which encourages researchers to fol-

low the fundamental scientific method (Fig. 7) whereby the

interpretation of geophysical properties or processes is un-

derpinned by a description of instrument calibration, the re-

trieval algorithm, and product validation. Maturity is an ex-
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pression of confidence, not uncertainty, and should use ap-

propriate language.

6 Conclusions

An appreciation of the range of values consistent with a mea-

surement is necessary to apply and to contextualise data.

Three qualities were identified by the Guide to Uncertainty

in Measurement (Working Group 1, 2008) as necessary for

an expression of uncertainty to be useful:

– universality: all manners of observation can apply the

techniques to calculate their uncertainty;

– internal consistency: the calculation of uncertainty re-

quires no information beyond that used in the analysis;

– transferability: the uncertainty must be of use to a data

user.

This paper classifies errors affecting satellite remote sensing

data with five groups:

– measurement: intrinsic variability in the observation;

– parameter: errors propagated from auxiliary data;

– approximation: explicit simplifications in the formula-

tion of the forward model;

– system: differences between the chosen description of

the environment and reality;

– resolution: variability at scales smaller than that ob-

served.

In the terminology of Thorne et al. (2005), the first two result

in parametric errors and the remainder in structural errors.

Measurement and parameter errors are generally well rep-

resented by the traditional propagation of random perturba-

tions. These are useful but only describe one aspect of the

uncertainty – the “unknowns” that are known and quantifi-

able. Approximation and system errors represent the inability

of the analysis to describe the environment observed and are

the dominant source of error in most passive satellite remote

sensing data (as it is not possible to constrain the complex be-

haviour of the environment with a few TOA radiances). Data

producers are aware of these additional “unknowns”, such as

the representation of the surface’s bi-directional reflectance,

but cannot quantify them in the manner required for tradi-

tional error propagation (i.e. they are known, unquantifiable

unknowns). Even well-constrained analyses will be affected

by system errors resulting from quality control, cloud fil-

tering being the most common. Resolution errors describe

the disconnect between what occurs in nature and the means

by which it is observed, primarily resulting from the instru-

ment’s sampling.

The difficulty with the last three categories of error is that

they can be highly non-linear – their magnitude and nature

depend upon the state observed and the ability of the for-

ward model to describe it. Propagation of errors assumes

that the equations used are accurate and that errors affect

them linearly. Uncertainties currently reported with satellite

remote sensing data neither represent the actual (non-linear)

distribution of errors nor the full range of information known

about the errors.

This can be addressed in various ways. Firstly, uncertainty

estimates in satellite remote sensing data must be presented

at pixel level. Pervasive quantifications misrepresent the de-

pendence of error upon state and rely on external informa-

tion. While pixel-level estimates will not represent the impact

of unquantified unknowns, it is important that uncertainty be

presented in a context that represents the data producer’s con-

fidence in and understanding of their data.

Ensemble techniques can be used to represent unquantifi-

able unknowns. The under-constrained nature of many satel-

lite observations means that multiple realisations of a data

set that are consistent with measurements can be derived by

using conflicting descriptions of the environment, such as

assumptions of particle microphysical properties or differ-

ing calibration coefficients. In the absence of a priori con-

straints, each of these realisations is feasible and should be

presented together. This is common practice in the climate

modelling community, and the satellite remote sensing com-

munity should capitalise on user’s experience to improve

communication of the uncertainty in products.

The manner in which a measurand is defined affects both

the sources of error that must be considered (e.g. resolution

errors) and the manner in which the data must be compared

with other measurements. In an under-constrained problem,

it is often not possible to report a value that is uniquely con-

strained by those conditions (i.e. the state vector elements do

not form a basis of the observed conditions). This can result

in the retrieved value being sensitive to multiple features of

the environment, as quantified by the averaging kernel. When

comparing data sets, it is important to ensure that equivalent

quantities are being compared or biases will be observed that

are a function of the system definition rather than an error

in the retrieval. The necessary transforms were outlined in

Rodgers and Connor (2003).

As not all errors can be quantified, there is also qualitative

information necessary to appreciate the applicability of data

and, as a data set evolves, it is important to assess both the

degree to which it represents a scientific advancement and to

which it satisfies the needs of its users. This information can

be conveyed through product user guides, validation studies,

quality assurance flags, and/or measures of a retrieval sys-

tem’s maturity. It is both important that this information is

readily available to users and that it is communicated in the

language of a statement of confidence. Continuous interac-

tion with users will be necessary to improve these reports to
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ensure they communicate the desired information. Of partic-

ular importance are the following:

– an error budget outlining the quantified sources of error;

– a description of the available quality control information

and its physical meaning to enable users to apply it in

an educated fashion;

– known weaknesses of the data that are not represented

by the uncertainty.

This paper concentrated on passive remote sensing, but

the clear communication of uncertainty to users is still im-

portant in active remote sensing. The different definitions of

active and passive measurands must be appreciated if they

are to be compared. Active data are generally better con-

strained than passive and are often analysed with analyti-

cal equations, where approximations and system choices are

substantially less important but still present (for example, the

Ångström coefficient, the lidar ratio, and multiple scattering).

These errors are minimised, in part, by selecting measur-

ands closely aligned with the measurement (e.g. backscatter,

extinction, reflectivity, depolarisation). Approximation and

system errors can become important when calculating more

poorly constrained, physical parameters such as particle size

or number. Resolution errors are more obvious with active

sensing due to their narrow swath.

Evaluating the quality of an algorithm using existing met-

rics limits the ability of the satellite remote sensing commu-

nity to communicate their understanding of the uncertainties

in their products to users in an efficient or effective manner.

Without that dialogue, users cannot appropriately use data

and cannot feedback to data producers to improve it. The

hope is that by representing uncertainties in satellite remote

sensing data through ensembles, understanding of the limita-

tions of the data will increase, highlighting areas for future

research. Through continual communication among the en-

tire scientific community, unknown unknowns can become

known and, eventually, make the use of ensembles unneces-

sary as understanding of the environment converges upon the

truth.
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