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Abstract. We present 5 years of GOSAT XCH4 retrieved us-

ing the “proxy” approach. The Proxy XCH4 data are val-

idated against ground-based TCCON observations and are

found to be of high quality with a small bias of 4.8 ppb

(∼ 0.27 %) and a single-sounding precision of 13.4 ppb (∼

0.74 %). The station-to-station bias (a measure of the rela-

tive accuracy) is found to be 4.2 ppb. For the first time the

XCH4 / XCO2 ratio component of the Proxy retrieval is val-

idated (bias of 0.014 ppbppm−1 (∼ 0.30 %), single-sounding

precision of 0.033 ppbppm−1 (∼ 0.72 %)).

The uncertainty relating to the model XCO2 component

of the Proxy XCH4 is assessed through the use of an ensem-

ble of XCO2 models. While each individual XCO2 model

is found to agree well with the TCCON validation data

(r = 0.94–0.97), it is not possible to select one model as

the best from our comparisons. The median XCO2 value of

the ensemble has a smaller scatter against TCCON (a stan-

dard deviation of 0.92 ppm) than any of the individual mod-

els whilst maintaining a small bias (0.15 ppm). This model

median XCO2 is used to calculate the Proxy XCH4 with the

maximum deviation of the ensemble from the median used

as an estimate of the uncertainty.

We compare this uncertainty to the a posteriori retrieval

error (which is assumed to reduce with sqrt(N )) and find typ-

ically that the model XCO2 uncertainty becomes significant

during summer months when the a posteriori error is at its

lowest due to the increase in signal related to increased sum-

mertime reflected sunlight.

We assess the significance of these model and retrieval un-

certainties on flux inversion by comparing the GOSAT XCH4

against modelled XCH4 from TM5-4DVAR constrained by

NOAA surface observations (MACC reanalysis scenario S1-

NOAA). We find that for the majority of regions the differ-

ences are much larger than the estimated uncertainties. Our

findings show that useful information will be provided to the

inversions for the majority of regions in addition to that al-

ready provided by the assimilated surface measurements.
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1 Introduction

Atmospheric methane (CH4) contributes significantly to the

Earth’s radiative forcing budget (Myhre et al., 2013), mak-

ing it the second most important anthropogenic greenhouse

gas after carbon dioxide (CO2). The major sources of atmo-

spheric methane include wetland emission, rice production,

enteric fermentation (cattle), termites, biomass burning, fos-

sil fuel production, and waste (Bousquet et al., 2006). There

remains, however, a large degree of uncertainty on the mag-

nitude of these individual sources (Kirschke et al., 2013).

The lifetime of CH4 in the atmosphere is mainly controlled

by its reaction with the hydroxyl free radical (OH), resulting

in an atmospheric lifetime of approximately 9 years (Prather

et al., 2012). Given its long atmospheric lifetime, there is

a need for long-term global measurements to fully under-

stand how the atmospheric distribution of CH4 is evolving

with time. Indeed, recent unexpected variability in the at-

mospheric growth rate of methane has emphasised gaps in

our current understanding (Rigby et al., 2008; Dlugokencky

et al., 2009; Nisbet et al., 2014).

In order to begin to understand the spatio-temporal distri-

bution of atmospheric methane, regular global satellite ob-

servations of CH4 can be coupled with highly precise but ge-

ographically sparse surface concentration data. Through the

combination of both data sources, the large uncertainties re-

lated to the upscaling of surface concentration data can be

minimised whilst also obtaining information in remote re-

gions where surface measurements are not available.

Various studies have demonstrated the utility of such

space-borne measurements in determining the regional sur-

face fluxes of methane using data from the SCIAMACHY

(Bergamaschi et al., 2007, 2009, 2013; Houweling et al.,

2014) and Greenhouse gases Observing SATellite (GOSAT)

(Fraser et al., 2013; Cressot et al., 2014; Monteil et al., 2013;

Alexe et al., 2015) instruments.

The SCIAMACHY instrument operated onboard EN-

VISAT and provided a 9-year record (2003–2012) of global

methane total column observations (Schneising et al., 2011;

Frankenberg et al., 2011). The continuation of this time se-

ries of space-based observations was ensured by the launch

of the first dedicated greenhouse gas measuring satellite, the

Japanese GOSAT, in 2009 (Yokota et al., 2009). GOSAT pro-

vides global coverage with a 3-day repeat cycle and was de-

signed with the intention of characterising continental-scale

sources and sinks.

In a previous work (Parker et al., 2011) we presented the

first year of our global short-wave infrared (SWIR) mea-

surements of the dry-air column-averaged mole fraction of

CH4 (XCH4) from the GOSAT mission using the “proxy”

retrieval approach. This data product has subsequently been

developed (Buchwitz et al., 2013) and validated (Dils et al.,

2014) as part of the ESA Climate Change Initiative Green-

house Gas project and we now report an assessment of the

full 5-year data set for version 5.0 of the University of Le-

icester GOSAT Proxy XCH4 data product.

This work is motivated by the desire to better understand

the uncertainty characteristics of the Proxy XCH4 data for

use within flux inversion systems, especially relating to un-

certainties introduced by the model XCO2.

In Sect. 2 we describe the retrieval approach, including

details of the updates since the original version of the Uni-

versity of Leicester GOSAT Proxy XCH4 data (Parker et al.,

2011). In Sect. 3 we compare both the Proxy XCH4 and the

XCH4/XCO2 ratio against the ground-based validation data.

In Sect. 4 we assess the CO2 model component of the Proxy

XCH4 for the first time, with Sect. 5 then discussing the as-

sociated uncertainty of the final Proxy XCH4 product and

its utility in constraining surface fluxes within an inversion

framework. Finally, we conclude the paper in Sect. 6 and pro-

vide recommendations for data users.

2 University of Leicester GOSAT Proxy XCH4

retrieval updates

The University of Leicester GOSAT Proxy XCH4 re-

trieval utilises the Orbiting Carbon Observatory (OCO)

“full physics” retrieval algorithm, developed for the origi-

nal NASA OCO mission to retrieve XCO2 (dry-air column-

averaged mole fraction of CO2) from a simultaneous fit of

SWIR O2 and CO2 bands and has subsequently been modi-

fied to operate on GOSAT spectral data.

Full details of the OCO retrieval algorithm can be found in

O’Dell et al. (2012). In short, the retrieval algorithm utilises

an iterative retrieval scheme based on Bayesian optimal esti-

mation to estimate a set of atmospheric, surface, and instru-

ment parameters from the measured spectral radiances, re-

ferred to as the state vector. The state vector of our retrieval

consists of 20-level profiles for CH4 and CO2 volume mixing

ratios (vmr), profile scaling factors for H2O vmr, and temper-

ature, surface albedo, and spectral dispersion.

Rather than perform the “full physics” retrieval as typi-

cally used for CO2 (Connor et al., 2008; Boesch et al., 2011),

an alternative approach is possible for CH4, the so-called

“proxy” method. First used for the retrieval of XCH4 from

SCIAMACHY (Frankenberg et al., 2006), this approach uses

the fact that there exists CO2 and CH4 spectral signatures

located close together at around 1.6 µm and hence the ma-

jority of atmospheric scattering and instrument effects will

be similar between the two bands. The ratio of the retrieved

XCH4 / XCO2 should cancel modifications to the length of

the light path that are experienced due to scattering (Butz

et al., 2010), with the CO2 effectively acting as a “proxy”

for the unknown light-path enhancements. As CO2 is known

to vary much less than CH4, the final XCH4 product can be

obtained by multiplying this XCH4 / XCO2 ratio by a model

CO2 value, typically taken from a global chemistry transport

model (Eq. 1).
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ProxyXCH4
=
[XCH4]

[XCO2]
×ModelXCO2

(1)

The “proxy” retrieval approach has various advantages over

the full physics approach (Schepers et al., 2012). Because

there is no reliance on an explicit a priori knowledge of the

aerosol distribution, the proxy approach is more robust in the

presence of aerosols and also far less sensitive to instrumen-

tal issues or inconsistent radiometric calibration between the

spectral bands than is the case for the full physics approach.

Additionally, as moderate scattering from aerosols will be

cancelled out and still result in an accurate retrieval of XCH4,

the number of successful soundings for the proxy approach

is typically much higher than for the full physics approach

which requires far stricter post-filtering. This leads not only

to more soundings in general but also to more soundings over

regions where very little full physics data may be available,

such as in the tropics.

The main disadvantage with the proxy approach is that it

is reliant on an accurate, unbiased model XCO2 data set to

convert the XCH4 / XCO2 ratio back into an XCH4 quantity;

otherwise errors relating to the model XCO2 may be folded

into the final XCH4 result. Here we present assessments of

the different uncertainties to determine the importance of this

aspect of the Proxy XCH4 data.

We process the latest versions of the GOSAT Level 1B

files (version 161.160) acquired directly from the NIES

Large Volume Data Server and apply the recommended ra-

diometric calibration and radiometric degradation correction

as per Kuze et al. (2014).

For the spectroscopic inputs we use v4.2.0 of the OCO

line lists with CH4 taken from the Total Carbon Column Ob-

serving Network (TCCON) line lists (version “20120409”).

The a priori pressure, temperature, and water vapour is taken

from the ECMWF ERA-Interim data (Dee et al., 2011). For

the CO2 a priori we use the MACC-II CO2 inversion (v13r1)

and for the CH4 we use the MACC-II CH4 inversion (v10-

S1NOAA, using 2012 data for 2013) but here we adjust

the stratospheric methane using a specialised full chemistry

run (run ID 563) of the TOMCAT stratospheric chemistry

model from the University of Leeds (Chipperfield, 1999).

This TOMCAT model run has been validated against ACE-

FTS observations and was found to provide a more accurate

representation of the stratosphere.

The spectral noise is estimated from the standard devia-

tion of the out-of-band signal. Spectra over ocean or with

a signal-to-noise ratio (SNR) below 50 are removed. Cloud-

contaminated scenes are removed by the comparison of

a clear-sky surface pressure retrieval from the O2 A-band

to the ECMWF surface pressure for the relevant measure-

ment time and location. A scene is determined to be cloudy

when the retrieved surface pressure differs by more than

30 hPa from the estimated ECMWF surface pressure. This

relatively loose threshold is allowed as the proxy retrieval

approach remains relatively robust in the presence of near-

surface clouds. The average difference between our retrieved

surface pressure and ECMWF after filtering for cloud is ap-

proximately 3 hPa with a standard deviation of below 10 hPa,

with the offset from 0 hPa being attributed to spectroscopic

uncertainties in the O2 cross-sections. The Proxy XCH4 re-

trieval is performed for all scenes that are deemed to be suf-

ficiently cloud free.

After filtering for signal-to-noise, cloud, and data quality

we are left with 1 032 760 XCH4 retrievals over land between

April 2009 and December 2013. Figure 1 shows global maps

of the Proxy XCH4 for each season and compares it to the

MACC-II model XCH4 data. Both model and observation

show the XCH4 variability in time and space, in particular

with the large emissions of methane from wetland and rice

cultivation over India and S.E. Asia.

3 Validation of the Proxy XCH4 and XCH4/XCO2

ratio

This section presents the validation of the University of Le-

icester GOSAT Proxy XCH4 v5.0 data through comparison

to observations from the ground-based TCCON. In addition,

for the first time the XCH4 / XCO2 ratio itself, the core com-

ponent of the Proxy XCH4 data, is validated against the cor-

responding TCCON data.

TCCON is a global network of ground-based high-

resolution Fourier transform spectrometers recording direct

solar spectra in the near-infrared spectral region (Wunch

et al., 2011a). The TCCON data are calibrated to World

Meteorological Organization (WMO) standards by calibra-

tion against aircraft measurements (Wunch et al., 2010). Al-

though it should be noted that this aircraft calibration does

not measure the whole column, the TCCON data are the stan-

dard against which current satellite observations of green-

house gases are validated (Cogan et al., 2012; Wunch et al.,

2011b; Dils et al., 2014).

To date, all previous validation of satellite greenhouse gas

observations against TCCON has used TCCON data that

were affected by instrumental biases relating to a laser sam-

pling error which resulted in an XCO2 error of approximately

0.26 % (1 ppm) (Messerschmidt et al., 2010). Although the

corresponding XCH4 error was not quantified, it is expected

that it would be of similar magnitude (i.e. 1 part in 400).

The latest, recently released, version of the TCCON data

(GGG2014) incorporates a correction for the laser sampling

errors and any remaining bias is expected to be small.

Figure 2 shows the GGG2014 TCCON XCH4 data and the

Proxy XCH4 plotted as time series for each TCCON site. The

mean GOSAT−TCCON difference, the standard deviation of

the GOSAT−TCCON difference, the correlation coefficient,

and the number of soundings are all provided for each site.

www.atmos-meas-tech.net/8/4785/2015/ Atmos. Meas. Tech., 8, 4785–4801, 2015
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Figure 1. Seasonal global maps of the University of Leicester GOSAT Proxy XCH4 (top) and the MACC-II (bottom) model XCH4 data

(v10-S1NOAA). Both model and observation show the XCH4 variability in time and space, in particular with the large emissions of methane

from wetland and rice cultivation over India and S.E. Asia. Note that GOSAT changed their pointing pattern in August 2010 from five

across-track points to three across-track points, resulting in a change in spatial coverage.

Figure 3 (top) shows the correlation between the

GGG2014 TCCON XCH4 data and the Proxy XCH4 val-

ues within ± 5◦ of each TCCON site and a temporal coin-

cidence of ± 2 h. It should also be noted that for all TCCON

comparisons, the difference inherent in the data due to using

different a priori has been compensated for (as discussed in

Rodgers (2000), by replacing the a priori used in the GOSAT

retrievals with the TCCON a priori after the retrieval has been

performed) which typically increases the GOSAT XCH4 data

by an average of between 0 and 5 ppb with the larger effect

seen at more northernly TCCON stations. We use all TCCON

sites where version GGG2014 has been processed at the time

Atmos. Meas. Tech., 8, 4785–4801, 2015 www.atmos-meas-tech.net/8/4785/2015/



R. J. Parker et al.: Assessing 5 years of GOSAT Proxy XCH4 data and associated uncertainties 4789

Figure 2. GGG2014 TCCON XCH4 data and the Proxy XCH4 plotted as time series for each TCCON site. The mean GOSAT−TCCON dif-

ference, the standard deviation of the GOSAT−TCCON difference, the correlation coefficient, and the number of soundings are all provided

for each site.

of writing that contain data during the GOSAT time period

(2009–2014). This results in 11 TCCON stations ranging

from Sodankylä, Finland, at 67.4◦ N to Lauder, New Zealand,

at 45.0◦ S. The correlation between the GOSAT and TCCON

data is reasonable/good across all sites, ranging from 0.54 at

Karlsruhe to 0.79 at Lauder with an overall correlation coeffi-

cient of 0.87 between 22 619 points. The overall bias is found

to be 4.8 ppb with an overall single measurement precision

of 13.4 ppb (ranging from 8.3 ppb at Darwin to 14.9 ppb at

Garmisch). The station-to-station bias, which is an indica-

tion of the relative accuracy, is calculated as the standard de-

viation of the individual site biases and is found to be just

4.2 ppb.

In addition to the validation of the Proxy XCH4 data,

we also present for the first time the validation of the

XCH4 / XCO2 ratio. This ratio is the quantity directly re-

trieved from the satellite measurement, is independent of

any model XCO2, and has recently itself been used directly

within a flux inversion study (Fraser et al., 2014). The cor-

relation coefficient across all stations is found to be 0.88

(ranging from 0.6 at Wollongong to 0.88 at Sodankylä) with

a mean bias of 0.014 ppbppm−1 and a single-sounding pre-

cision of 0.033 ppb ppm−1 (ranging from 0.20 ppbppm−1 at

Darwin to 0.037 ppbppm−1 at Garmisch). The statistics for

the XCH4 / XCO2 ratio are therefore comparable to those of

the Proxy XCH4 itself, suggesting that the majority of the

variation is from the satellite retrieval itself and not intro-

duced by the model XCO2. The next section investigates this

aspect in more detail.

4 Assessing the CO2 model ensemble component

In Sect. 3 the final Proxy XCH4 and the XCH4 / XCO2 com-

ponent were both validated against the TCCON data. In this

section we validate the remaining component of the proxy

product from Eq. (1), namely the model XCO2.

As discussed in Sect. 2, this update to the University of Le-

icester GOSAT Proxy XCH4 data uses an ensemble of model

XCO2 data to act as the model XCO2 component. We utilise

the XCO2 from three state-of-the-art global transport models

which all assimilate surface in situ measurements; GEOS-

Chem (University of Edinburgh – Feng et al., 2011, v1.50),

MACC-II (Chevallier et al., 2010, v14r1) and CarbonTracker

(NOAA – Peters et al., 2007, vCT2013B). These model runs

have assimilated similar surface measurements but not nec-

essarily from all of the same data sets or the same locations.

The models also have different spatial resolutions and differ-

ent temporal coverage (GEOS-Chem: 2009–2011, 5◦× 4◦;

CarbonTracker: 2009–2012, 3◦× 2◦; MACC-II: 2009–2012,

3.75◦× 1.89◦). Where the model does not cover the full

GOSAT time period studied here, the data from the previ-

ous year are used and adjusted by the NOAA annual growth

rate.

The main concern with using modelled XCO2 data for the

proxy method is that the additional uncertainty added to the

final proxy data product is difficult to determine. Where the

model XCO2 data are constrained by surface data there can

be a high degree of confidence that the model data are close

to representing the true value of CO2; however, it is away

from such regions where there is a possibility of adding ad-

ditional biases into the Proxy XCH4 data. The TCCON sta-

tions are mostly in regions that are also well constrained by

surface in situ measurements and hence the model CO2 data

should be well constrained, at least at the surface level, and

it is therefore expected to reasonably reproduce the TCCON

column data. Figure 4 confirms that this is the case. As the

model XCO2 is used as a component in the proxy retrievals,

the models are treated as “pseudo-measurements” and vali-

dated in the same way as the satellite data in order to maintain

consistency with the satellite validation. The model XCO2

data sampled at each GOSAT measurement point within± 2◦

of each TCCON station are found to agree well with the

www.atmos-meas-tech.net/8/4785/2015/ Atmos. Meas. Tech., 8, 4785–4801, 2015
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Figure 3. Correlation plot of the Proxy XCH4 (top) and the XCH4/XCO2 ratio (bottom) data against TCCON ground-based FTS data at

11 TCCON sites. The overall bias, standard deviation (single-sounding precision), correlation coefficient, and total number of soundings are

provided. Note that the Lauder TCCON station upgraded the instrument from a Bruker 120 to a Bruker 125 in February 2010 and these two

data sets are displayed separately.

Figure 4. Correlation plot of the model XCO2 data for GEOS-Chem, MACC-II, CarbonTracker, and the ensemble median against TCCON

ground-based FTS data at 11 TCCON sites. The overall bias, standard deviation (single-measurement precision), correlation coefficient, and

total number of soundings are provided separately.

Atmos. Meas. Tech., 8, 4785–4801, 2015 www.atmos-meas-tech.net/8/4785/2015/
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TCCON data, with the correlation coefficients ranging from

0.94 (GEOS-Chem) to 0.97 (MACC-II and CarbonTracker).

Similarly the precision and bias to TCCON are both found

to be small (ranging from 0.97 to 1.3 and 0.07 to 0.27 ppm

respectively). The relative accuracies (the standard deviation

of the individual site biases) are similar at around 0.5 ppm,

with CarbonTracker and GEOS-Chem performing slightly

better than MACC-II. Another metric to assess the models

is how often they provide the median value of the ensem-

ble. CarbonTracker (41 %) and MACC-II (36 %) tend to pro-

vide the median value more often than GEOS-Chem (22 %)

but this can vary per site with the contribution from MACC-

II as low as 27 % at Darwin (and CarbonTracker at 60 %)

and conversely as high as 44 % at Wollongong (with Carbon-

Tracker only 21 %). This provides further indication that no

one model can be determined to be the “best”.

For a more detailed analysis of the performance of the dif-

ferent XCO2 models please see Table A1 in Appendix A. In

short, none of the models are found to consistently be su-

perior over the other models. GEOS-Chem typically has the

highest scatter against TCCON but also has the smallest bias

at 5 out of 12 of the sites. MACC-II has the smallest bias at

seven sites but the highest bias at four of the sites. Carbon-

Tracker has the highest bias at seven of the sites but also has

the smallest scatter at eight of the sites. Whilst the absolute

bias in the calculated median XCO2 is typically not quite as

small as the best of the individual models, the scatter in the

median is better than (or the same as) the best scatter from

any of the individual models at every site except Lauder_120

(where the time series is the shortest) and even there it is only

worse than the best model by less than 0.1 ppm.

The above has demonstrated that it is not a simple deci-

sion to determine which model most accurately represents

the true atmosphere, even in locations where all of the mod-

els have been constrained by (often the same) surface mea-

surements and high-quality validation data are available. In

more remote regions where we neither have validation data

nor surface measurements to constrain the models, this in-

consistency between the models becomes more pronounced.

It is this uncertainty in model XCO2 in regions away from the

available validation data that we attempt to address through

the use of the XCO2 model ensemble. Each of the three

XCO2 models are sampled at every GOSAT time and lo-

cation and convolved with the scene-specific GOSAT aver-

aging kernels. The median value of the three model values

is used as the model XCO2 in calculating the final Proxy

XCH4. However, we also define the uncertainty on this me-

dian XCO2 as the maximum of the absolute differences of

each individual model to the median value.

We have already demonstrated that the models all well

reproduce the validation data at TCCON sites without any

one model identified as being better than the others from

our comparisons. Where the models all agree well with each

other away from the validation sites, the assumption is that

the models are accurately representing the true atmosphere.

Where the models disagree with each other, we do not know

which model is correct in the absence of further validation

data and in some cases the discrepancy between models can

be very large (i.e. > 4 ppm). In such cases where no val-

idation is possible, the best estimate of the uncertainty in

the model XCO2 data is obtained by examining the dif-

ference of the model data around the median value. Fig-

ure 5 shows global maps of this estimated model uncertainty

for each season. There are clear spatial/temporal patterns in

the distribution of this model uncertainty. During March–

May (boreal “spring”), there is a large uncertainty (> 2 ppm)

over India and the African regions typically associated with

biomass burning. There is also a moderate level of uncer-

tainty (> 1 ppm) over Europe, South America, and for the

latter years over North America and Australia. For the sum-

mer months (June–August) it is the Eurasian region, extend-

ing from the Ural mountains eastwards through Siberia and

northern China, where the model uncertainty is largest at

over 2 ppm. This is to be expected as in the Northern Hemi-

sphere it is the period of greatest photosynthetic activity and

the model sensitivity to the underlying mechanisms is likely

to be largest. During boreal autumn (September–November),

the uncertainty in the Northern Hemisphere is vastly re-

duced again, with India being the major region of uncertainty

along with South America and regions of biomass burning in

Africa. Winter is similar to autumn, with all three models in

very good agreement with each other in the Northern Hemi-

sphere, with only S.E. Asia showing a moderate level of un-

certainty. In the Southern Hemisphere, again South America

and southern Africa show moderate uncertainty which ap-

pears to be linked to emissions from biomass burning.

This section has shown that the estimated uncertainty of

the model XCO2 can vary greatly in time and space. When

considering the implication of this uncertainty on flux in-

versions of the Proxy XCH4 data, the relative importance of

the different uncertainties must be considered. The following

section investigates the distribution of the model XCO2 un-

certainty and judges its relative importance against the a pos-

teriori error from the retrieval itself. Finally, both of these

uncertainties are assessed against the difference to modelled

XCH4 already constrained by surface observations to deter-

mine the utility of the satellite data despite the presence of

these uncertainties.

5 Assessing the relative uncertainties

In order to assess the importance of the uncertainty of the

model XCO2, we bin the three model fields into 4◦× 5◦ grid

boxes over 8-day time steps and calculate the maximum dif-

ference of the three-model ensemble from the median value

to use as an estimate of the uncertainty in the model values.

We convert this uncertainty in model XCO2 into an uncer-

tainty in XCH4 by multiplying each point by its respective

retrieved XCH4 / XCO2 amount. We also calculate the av-

www.atmos-meas-tech.net/8/4785/2015/ Atmos. Meas. Tech., 8, 4785–4801, 2015
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Figure 5. Seasonal maps of the model difference, defined as the maximum absolute difference of the three-model ensemble from the median.

All individual soundings have been averaged into 2◦× 2◦ grid boxes over each season. The largest uncertainties occur in regions where the

CO2 variability is expected to be highest and the models are unconstrained by surface measurements.

Figure 6. The Transcom regions over which the 4◦× 5◦ gridded

data are then averaged in Fig. 7.

erage a posteriori error for the same data. Unlike the more

systematic XCO2 model uncertainty, the a posteriori error

should be close to random and hence reduce approximately

with the square root of the number of soundings being aver-

aged. If the error does not reduce as much, the model XCO2

component would then contribute even less to the total, lead-

ing to this assumption being a “worst case” scenario for the

effect of the model XCO2 uncertainty. These 4◦× 5◦ grid

boxes are then themselves averaged over the Transcom re-

gions (Gurney et al., 2002) as defined in Fig. 6.

In Fig. 7, the red line shows the mean of the Proxy XCH4

random (a posteriori) error from each 4◦× 5◦ box averaged

over each Transcom region with the green line representing

the estimated uncertainty related to the model XCO2. The

majority of regions exhibit a similar trend over time. The

a posteriori error peaks in the winter months when the SNR

of the measurement is at its lowest and is at a minimum dur-

ing the summer months when the SNR is at a maximum. This

seasonal effect is more pronounced at higher latitudes which

experience a greater degree of variability of sunlight through-

out the year. Conversely, the XCO2 model uncertainty fol-

lows biospheric activity with the uncertainty largest during

the summer months when the XCO2 variability is at a maxi-

mum and reduces to a minimum in the winter months when

biospheric activity is lower. This leads to the situation where

the a posteriori error dominates the model uncertainty in win-

ter months but during summer months the model uncertainty

can be comparable to, or even exceed, the a posteriori error.

Taking the North America Temperate region as an example,

during winter the a posteriori error can reach up to 8 ppb with

the error from the model XCO2 significantly lower with val-

ues less than 2 ppb. In contrast, during the summer months,

the a posteriori error reduces to around 5 ppb but the error

for the model XCO2 increases to 5 ppb, meaning that both

become significant components of the overall uncertainty.
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We have shown that the uncertainty related to the XCO2

model can, particularly in the Northern Hemisphere during

summer months, be of comparable magnitude to the a poste-

riori retrieval error. However, that in itself does not preclude

the data from adding useful information to a CH4 flux inver-

sion.

The MACC-II model XCH4 (v10-S1NOAA) data have as-

similated NOAA surface measurements at background sites

and hence are well constrained in the remote atmosphere

(Bergamaschi et al., 2013). Here we calculate the differ-

ence between the MACC XCH4 model field and the GOSAT

Proxy XCH4 data for each GOSAT measurement (referred to

from here as 1XCH4). We then aggregate these differences

in the same way as the model XCO2 uncertainties. Note that

the MACC XCH4 model data are currently only available

until the end of 2012. As some inversion systems will per-

form a simple (e.g. latitudinal) bias correction, the calculated

retrieval a posteriori and model XCO2 uncertainties can po-

tentially be much lower than the 1XCH4 value but still not

provide information to the inversion. For this reason, it is

also important to consider both the mean (µ1XCH4
) and the

standard deviation (σ1XCH4
) of the 1XCH4. To determine

whether the GOSAT data are capable of providing informa-

tion to the inversion, we compare the a posteriori and model

XCO2 uncertainties to the µ1XCH4
and σ1XCH4 values as

shown in Fig. 7, with the seasonal averages for all of these

values presented in Table A2.

It should be noted here that the absolute values are not nec-

essarily quantitatively comparable when taking into account

how an inversion system will use the two different quantities.

The a posteriori error of the retrieved XCH4 is an indication

of the weighting that the inversion will give to an observa-

tion over the a priori, with a smaller value indicating that the

inversion will “trust” the observation more. The 1XCH4 is

an indication of how much the inversion needs to adjust the

fluxes in order to match the observation. However, if the es-

timated uncertainties are significantly less than the µ1XCH4

and σ1XCH4
values it is expected that the observations should

provide value to the inversion. It should also be noted that

this bias term (µ1XCH4
) may also reflect systematic biases in

the XCH4 model due to, for example, errors in the vertical

model profile whilst the sigma term (σ1XCH4
) may also re-

late to subgrid-scale variations which are unresolved at the

model resolution.

For the North American Boreal region, both the µ1XCH4

and σ1XCH4
values are very similar in terms of phase and

magnitude to the a posteriori uncertainty with the σ1XCH4

ranging from an average of 9.6 ppb in summer to 14.5 ppb in

winter compared to the a posteriori uncertainty that ranges

from 6.6 ppb in summer to 10.8 ppb in winter. This suggests

that regardless of the contribution to the uncertainty from

the XCO2 model, it would be difficult for the satellite data

to inform the inversion any further than the in situ data al-

ready do. However, this is not the case for the North Ameri-

can Temperate region where the µ1XCH4
(7.4–11.6 ppb) and

σ1XCH4
(8.4–10.0 ppb) are far larger than the total uncer-

tainty (6.0–6.9 ppb) for much of the year. Both South Amer-

ican regions exhibit more complicated behaviour with far

less of an apparent seasonality in the µ1XCH4
. Instead, for

most years µ1XCH4
is much higher than the uncertainties

(which themselves do not exhibit much seasonality in these

regions). However, the year 2010 seems to be an anomalous

year where the µ1XCH4
data are much more in agreement

and in this year the difference is of comparable magnitude

to the uncertainties with values between 4 and 8 ppb. The

σ1XCH4
does exhibit more seasonality than the µ1XCH4

and

is again considerably higher than the estimated uncertainties

(7–20 ppb vs. 5–6 ppb). In combination, this suggests that the

GOSAT observations over South America should add consid-

erable information to the inversion.

For Northern Africa, both the a posteriori error and the

uncertainty related to the XCO2 model are small due to the

high SNR over the Sahara and the low CO2 variability re-

spectively (with seasonal average values ranging from 3.3

to 3.6 ppb for the a posteriori error and from 2.8 to 4.6 ppb

for the model XCO2 error). In contrast, the µ1XCH4
(7.2–

12.3 ppb) and σ1XCH4
(4.9–8.4 ppb) values over this region

are relatively large with a high degree of temporal variabil-

ity, suggesting that the satellite data should add consider-

able value in constraining the inversion over this region. One

complication is that GOSAT operates in a “medium gain”

mode over the desert and hence may exhibit different in-

strumental biases over such regions but, due to the proxy

method, any such differences in instrumental biases that re-

late to light-path modification should be minimised. South-

ern Africa shows similar behaviour with the total uncertainty

being low (seasonal averages of 5.1–7.3 ppb) compared to

the much larger µ1XCH4
(12.6–19.8 ppb) and σ1XCH4

(5.7–

10.7 ppb) values, again indicating that considerable value is

present in the satellite data.

The Eurasian Boreal region behaves similarly to the North

American Boreal region. The µ1XCH4
and σ1XCH4

is of sim-

ilar phase and magnitude to the retrieval a posteriori er-

ror, suggesting little information will be added to any inver-

sion over this region beyond what is available from the in

situ measurements. In contrast, the µ1XCH4
values over the

Eurasian Temperate region show a large variability with the

differences in winter months much larger than the total un-

certainty (9.9 ppb vs. 5.8 ppb), while in summer months the

magnitudes become much more similar (5.5 ppb vs. 7.3 ppb).

Interestingly, the σ1XCH4
values appear to be of similar mag-

nitude (5–20 ppb) but directly out of phase with the µ1XCH4

values. Even during summer months when the a posteriori

(4.3 ppb) and model XCO2 (5.8 ppb) uncertainties are com-

parable to the µ1XCH4
(5.5 ppb), the high variability in the

1XCH4 values, as indicated by σ1XCH4
values of up to

20 ppb (and a summertime mean value of 15.0 ppb), suggests

that the observations are capable of providing useful infor-

mation to the inversion.
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Figure 7. Time series for each Transcom region showing the a posteriori retrieval error (red), the estimated uncertainty from the model XCO2

(green), and the mean (navy) and standard deviation (purple) of the difference between the GOSAT and MACC-II XCH4. The a posteriori

error is assumed to be a random error and hence reduces with the square root of the number of measurements whilst the XCO2 model

uncertainty is expected to be a systematic error and hence does not reduce.

The Tropical Asian region, which encompasses parts of In-

dia, China, and Indonesia, typically has low values for both

the a posteriori (5.6–6.9 ppb) and XCO2 model (4.4–6.0 ppb)

uncertainties, with neither exhibiting much seasonal variabil-

ity. The µ1XCH4
and σ1XCH4

values however are much more

variable (8.9–11.7 and 9.0–16.8 ppb) and generally much

higher than the uncertainties, suggesting that useful informa-

tion from the satellite data is present.

The European Transcom region has uncertainties in the

satellite data (seasonal averages of 7.6–10.0 ppb) that are of

comparable magnitude to the µ1XCH4
values (8.1–10.7 ppb),

especially when considering the combination of the a pos-

teriori and model XCO2 uncertainties. However, the stan-

dard deviation of the µ1XCH4
values is highly variable (8.7–

13.2 ppb) which suggests that there is scope for the observa-

tional data to aid in constraining the European XCH4 fluxes.

Finally, the Australian Transcom region shows very small

uncertainties in the satellite data. The uncertainty associated

with the model XCO2 is comparable to the a posteriori error

during the Australian spring months but even in those cir-

cumstances, the µ1XCH4
values are far larger (11.4 ppb vs.

4.7 ppb), demonstrating that the satellite data are capable of

providing some information to the inversion over Australia,

although this may be limited in its ability to provide spe-

cific information on Australian sources as the σ1XCH4
val-

ues over this region are similar to the estimated uncertainties

with seasonal averages of 4.5–5.2 ppb compared to the total

uncertainty values of 4.1–5.0 ppb.

6 Summary and conclusions

We present details of the update to the University of Leicester

GOSAT Proxy XCH4 v5.0 data set with 5 years of GOSAT

data now processed. The data are validated against the latest

ground-based TCCON data and found to agree well with on

average a small bias of 4.8 ppb (∼ 0.27 %), a single-sounding

precision of 13.4 ppb (∼ 0.74 %), and a relative accuracy of

4.2 ppb. For the first time the XCH4 / XCO2 ratio component

of the proxy retrieval is validated and also found to agree well

with TCCON with a bias of 0.014 ppbppm−1 (∼ 0.3 %) and

a single-sounding precision of 0.033 ppbppm−1 (∼ 0.72 %).

A major unknown uncertainty in previous Proxy XCH4

products was the uncertainty associated with the model

XCO2. In this work we validate three separate state-of-the-

art chemistry transport models against the TCCON data and

find that although the models can differ greatly (> 4 ppm)

away from the TCCON stations, at the validation locations it

is difficult to distinguish which model performs better from

our comparisons. We therefore decide to use the median of

the three models to act as the model XCO2 in the calcula-

tion of the Proxy XCH4 and use the maximum difference

to the median as a measure of the uncertainty in the model

XCO2. This model uncertainty is found to vary greatly in

time and space but is typically largest over regions associated

with biomass burning such as central Africa and in particu-

lar over the Eurasian regions during summer months where

large uptake in CO2 leads to large differences between the

models.
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In order to assess the relative importance of these uncer-

tainties, we compare this model XCO2 uncertainty to the

a posteriori retrieval error over the different Transcom re-

gions and find typically that where there is seasonality in the

uncertainties, it is typically directly out of phase between the

two, resulting in the model XCO2 uncertainty becoming sig-

nificant during summer months where the a posteriori error is

at its lowest. This relates to the fact that more sunlight leads

to a reduction in the a posteriori uncertainty (by virtue of

providing a greater signal in the SWIR) and at the same time

is associated with an increase in photosynthesis and, hence,

more potential for differences in the model XCO2.

We assess the significance of these uncertainties on any

flux inversion by comparing the mean and standard deviation

of the GOSAT−MACC differences (µ1XCH4
and σ1XCH4

) to

the estimated uncertainties. We find that for the majority of

regions the mean and standard deviation of the 1XCH4 val-

ues are much larger than the estimated uncertainties, even

taking into account the uncertainty related to the model

XCO2. Our findings show that useful information will be

provided to the inversions for the majority of regions, with

the exceptions being the boreal regions (North American Bo-

real and Eurasian Boreal) where the uncertainty is of a simi-

lar magnitude to the µ1XCH4
and σ1XCH4

values. It is impor-

tant to note that the MACC data are already constrained by

NOAA background sites.

One final consideration for users of the Proxy XCH4 data

who are performing atmospheric inversions is that, should

they have their own XCO2 model which they believe is con-

sistent with their XCH4 model, it may be beneficial to only

take the GOSAT XCH4 / XCO2 ratio and apply their own

model XCO2 (with appropriate averaging kernels) in order to

minimise transport model errors between the different mod-

els. Alternatively the XCH4 / XCO2 ratio can also be in-

verted directly as shown in Fraser et al. (2014) and Pandey

et al. (2015).
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Appendix A: Data sets

The GOSAT Proxy XCH4 data used in this publication

are freely available from http://www.leos.le.ac.uk/GHG/

ghg_cci/CRDP/data_2/ESACCI/GHG/GOSAT/CH4_GOS_

OCPR/5.1/ upon request of a password. An updated version

of this data set is now available (version 6.0) covering

2009–2014. Additionally, these data now contain both the

raw XCH4 and XCO2 values as well as the uncertainty

associated with the model XCO2.

The TCCON XCH4 and XCO2 data used in this publi-

cation are publicly available from http://tccon.ornl.gov. The

following data have been used: Sodankylä (Kivi et al., 2014),

Bialystok (Deutscher et al., 2014), Karlsruhe (Hase et al.,

2014), Orleans (Warneke et al., 2014), Garmisch (Sussmann

and Rettinger, 2014), Park Falls (Wennberg et al., 2014a),

Lamont (Wennberg et al., 2014b), Saga (Kawakami et al.,

2014), Darwin (Griffith et al., 2014a), Wollongong (Grif-

fith et al., 2014b), Lauder120 (Sherlock et al., 2014a), and

Lauder125 (Sherlock et al., 2014b).
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Table A1. Table showing the comparison statistics between each XCO2 model (sampled as per the GOSAT measurements) within ± 2◦ of

each TCCON site against the TCCON validation data. The difference (model−TCCON), the standard deviation of the difference, and the

correlation coefficient are all provided as is the total number of measurements for each site, N , and the percentage “share” of the median

for each model, %. For each of the three models, GEOS-Chem, MACC-II, and CarbonTracker, the best (bold) and worst (italic) value for

each metric is highlighted. For the ensemble median data, all values which are better than the best individual model value are highlighted

in bold-italic. The lower panel provides overall statistics across all sites. These include the relative accuracy (the standard deviation of the

individual site biases), the overall precision (the standard deviation of the GOSAT−TCCON differences), and the overall share that each

model contributes to the median ensemble.

2◦× 2◦

Coincident criteria GEOS-Chem MACC-II CarbonTracker Ensemble median

TCCON Site N Diff (ppm) SD (ppm) r % Diff (ppm) SD (ppm) r % Diff (ppm) SD (ppm) r % Diff (ppm) SD (ppm) r

Sodankylä 584 1.1 1.1 0.97 20 0.9 0.9 0.98 37 1.2 0.9 0.99 42 1.1 0.8 0.99

Bialystok 1429 0.6 1.5 0.95 25 0.4 1.1 0.97 33 0.6 1.0 0.98 44 0.6 1.0 0.97

Karlsruhe 1569 −0.2 1.4 0.92 22 −0.6 1.1 0.95 33 −0.4 1.1 0.95 45 −0.4 1.1 0.95

Orleans 1650 0.3 1.2 0.95 22 0.3 0.9 0.98 33 0.4 0.9 0.97 46 0.3 0.8 0.98

Garmisch 1527 0.8 1.3 0.93 22 0.6 1.3 0.94 34 0.8 1.2 0.95 43 0.7 1.1 0.95

Park Falls 2434 0.4 1.1 0.97 23 0.1 1.0 0.98 38 0.5 1.0 0.98 40 0.3 0.9 0.98

Lamont 7464 −0.2 1.6 0.92 20 −0.1 0.9 0.98 39 0.0 0.9 0.98 41 −0.1 0.9 0.98

Saga 379 −0.6 1.1 0.93 27 −1.0 0.9 0.95 33 −0.3 0.9 0.95 40 −0.6 0.9 0.96

Darwin 2491 0.0 0.8 0.97 12 0.5 0.7 0.97 27 0.4 0.6 0.98 60 0.3 0.6 0.98

Wollongong 2601 −0.1 0.8 0.96 36 −0.1 0.8 0.96 44 0.2 0.9 0.95 21 0.0 0.8 0.96

Lauder_120 124 −0.1 0.9 0.82 27 −0.3 0.7 0.86 44 −0.2 0.8 0.84 29 −0.2 0.8 0.84

Lauder_125 368 0.3 0.4 0.99 30 0.2 0.3 0.99 40 0.4 0.4 0.99 30 0.3 0.3 0.99

Statistics for all sites

Relative accuracy (ppm) 0.48 0.53 0.47 0.48

Overall precision (ppm) 1.3 0.97 0.96 0.92

Total median share (%) 22 36 41

Table A2. Table showing the seasonal averages of the data plotted in Fig. 7 for each of the Transcom regions. The retrieved a posteriori error,

the uncertainty related to the model XCO2, their combined total, and the mean and standard deviation of the GOSAT−MACC difference are

all provided for each season and for each Transcom region.

Region Season A posteriori Model Total µ1XCH4
σ1XCH4

Region Season A posteriori Model Total µ1XCH4
σ1XCH4

(ppb) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb)

North America spring 7.4 2.2 7.8 6.3 13.0 Eurasian spring 7.1 3.2 8.0 4.5 13.1

boreal summer 6.6 4.9 8.3 2.9 9.6 boreal summer 6.3 7.0 9.5 4.4 9.9

autumn 10.0 2.8 10.5 6.2 11.4 autumn 9.0 3.1 9.6 5.4 11.1

winter 10.8 2.3 11.1 11.5 14.5 winter 9.9 2.5 10.3 5.7 13.9

North America spring 5.1 3.0 6.0 11.2 9.2 Eurasian spring 4.4 3.5 5.7 11.7 9.7

temperate summer 4.6 4.7 6.6 7.4 8.6 temperate summer 4.3 5.8 7.3 5.5 15.0

autumn 5.3 3.1 6.3 7.7 8.4 autumn 4.4 4.1 6.2 6.5 10.2

winter 6.5 2.4 6.9 11.6 10.0 winter 5.2 2.6 5.8 9.9 9.6

South America spring 6.4 4.3 7.8 8.6 11.2 Tropical Asia spring 6.0 6.0 8.5 8.9 12.2

tropical summer 5.3 4.3 6.9 10.8 8.6 summer 6.9 5.0 8.7 10.9 16.1

autumn 5.8 5.2 7.9 10.7 12.6 autumn 6.2 6.0 8.7 11.7 16.8

winter 6.5 4.1 7.8 7.4 15.5 winter 5.6 4.4 7.2 10.9 9.0

South America spring 4.7 3.7 6.1 6.0 10.7 Australia spring 3.9 2.5 4.7 11.4 4.7

temperate summer 4.3 3.4 5.5 9.1 7.4 summer 3.7 1.8 4.1 11.7 4.5

autumn 4.2 3.7 5.7 9.1 9.7 autumn 3.7 2.1 4.3 13.9 5.2

winter 4.7 3.8 6.1 7.2 13.5 winter 4.2 2.5 5.0 15.0 5.2

Northern Africa spring 3.6 3.6 5.2 8.8 7.3 Europe spring 6.7 3.5 7.6 9.2 12.1

summer 3.6 4.6 5.9 7.2 7.4 summer 5.9 5.3 8.0 10.7 8.7

autumn 3.4 3.5 4.9 12.3 8.4 autumn 7.5 3.0 8.2 8.1 8.9

winter 3.3 2.8 4.3 8.0 4.9 winter 9.4 3.1 10.0 9.3 13.2

Southern Africa spring 4.7 4.6 6.7 15.5 9.9

summer 3.7 3.4 5.1 12.6 5.7

autumn 4.8 3.7 6.1 13.5 9.8

winter 5.4 4.8 7.3 19.8 10.7
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