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Abstract. For better utilization of the ground-based mi-

crowave radiometer, it is important to detect the cloud pres-

ence in the measured data. Here, we introduce a simple and

fast cloud detection algorithm by using the optical charac-

teristics of the clouds in the infrared atmospheric window

region. The new algorithm utilizes the brightness tempera-

ture (Tb) measured by an infrared radiometer installed on top

of a microwave radiometer. The two-step algorithm consists

of a spectral test followed by a temporal test. The measured

Tb is first compared with a predicted clear-sky Tb obtained

by an empirical formula as a function of surface air temper-

ature and water vapor pressure. For the temporal test, the

temporal variability of the measured Tb during one minute

compares with a dynamic threshold value, representing the

variability of clear-sky conditions. It is designated as cloud-

free data only when both the spectral and temporal tests con-

firm cloud-free data. Overall, most of the thick and uniform

clouds are successfully detected by the spectral test, while

the broken and fast-varying clouds are detected by the tem-

poral test. The algorithm is validated by comparison with the

collocated ceilometer data for six months, from January to

June 2013. The overall proportion of correctness is about

88.3 % and the probability of detection is 90.8 %, which are

comparable with or better than those of previous similar ap-

proaches. Two thirds of discrepancies occur when the new

algorithm detects clouds while the ceilometer does not, re-

sulting in different values of the probability of detection with

different cloud-base altitude, 93.8, 90.3, and 82.8 % for low,

mid, and high clouds, respectively. Finally, due to the char-

acteristics of the spectral range, the new algorithm is found

to be insensitive to the presence of inversion layers.

1 Introduction

Ground-based remote sensing instruments such as the mi-

crowave sounding radiometer for the acquisition of vertical

profiles of temperature and humidity have long been consid-

ered as candidates to replace conventional observations, of-

fering potential advantages in cost efficiency, temporal reso-

lution, and spatial coverage (Li et al., 1997; Solheim et al.,

1998; Löhnert and Maier, 2012). For better utilization of data

from these instruments, not only is the acquisition of accu-

rate and reliable measurement data critically important, but

also the characterizations of the measurement data. One of

the frequently used methods for characterizing the measured

brightness temperature (Tb) of a ground-based microwave

radiometer is to compare it with simulated theoretical val-

ues (Liljegren and Lesht, 1996; Cimini et al., 2003; Löhnert

and Maier, 2012). However, one condition which is neither

usually obtained, nor treated correctly either by observation

or simulation, and also introduces a significant uncertainty

in the theoretical simulation, is cloudy conditions. Usually,

the presence of clouds with even a small optical depth in-

creases downwelling radiation, and thus introduces signifi-

cant uncertainties in the comparison results, especially at the

higher frequency channels (Cadeddu and Turner, 2011).
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The presence of clouds also affects the retrieval accuracy

of the vertical profiles of temperature and humidity (Han and

Westwater, 1995; Hewison, 2007), cloud liquid water, and

precipitable water vapor (Solheim et al., 1998; Turner, 2007;

Löhnert et al., 2008). This is mainly due to the disparate

cloud effects on the downwelling radiance at the different

frequencies, being more prominent at the window bands than

at the absorption bands and decreasing with increasing fre-

quency. To mitigate this effect, multi-sensor approaches are

commonly used (Crewell and Löhnert, 2003; Turner, 2007;

Gaussiat et al., 2007), which take advantage of the differ-

ential optical response of clouds with additional instruments

such as the ceilometer and cloud radar (Han and Westwater,

1995; Gaussiat et al., 2007; Löhnert et al., 2008). However,

for a certain situation where the additional instruments are

not available or the collocation of the multi-sensor data is

difficult, there is no other choice than to use data from only

a single instrument. Further, when the additional instruments

have uncertainties in the calibration, the need for an indepen-

dent algorithm increases. Indeed, the microwave radiometer

used for the current study lacks additional instruments for

cloud detection for a large portion of the available data and

thus an independent algorithm is highly desired.

Here, we introduce an algorithm using the downwelling

radiance measured by the infrared radiometer (IRT), an op-

tional instrument installed on top of the microwave radiome-

ter (RPG, 2013), together with the surface air temperature

(Tsfc) and the surface water vapor pressure (e) data obtained

at 2 m above the ground. The possibility of cloud detection

using downwelling infrared radiation has long been demon-

strated either by using total irradiance (Brutsaert, 1975;

Marty and Philipona, 2000; Dürr and Philipona, 2004), nar-

row band radiance (Thurairajah and Shaw, 2005; Feister

et al., 2010; Brocard et al., 2011; Klebe et al., 2014), or

by multi-spectral radiance (Turner and Gero, 2011; Gero

and Turner, 2011). Regardless of approach, the background

physics for the cloud detection is that the atmospheric emis-

sivity in the infrared window regions is much smaller than

that of clouds. Thus, even with optically thin clouds, the

downwelling radiation could increase significantly and the

cloud detection could be relatively straightforward.

However, depending on the approach, there are certain

limitations and difficulties. For example, the total irradiance

approach is not capable of detecting the high clouds because

of the weak sensitivity in the total irradiance to the high

clouds (Ohmura, 2001; Dürr and Philipona, 2004). On the

other hand, this approach could falsely identify clear sky as

a cloudy sky when there is a strong inversion layer at the

lower atmosphere (Sutter et al., 2004). The thin cirrus prob-

lem in the total irradiance approach also occurs in the narrow

band approach, and thus Brocard et al. (2011) use the tem-

poral variability of the measured radiance to overcome this

limitation. Another issue with the narrow band approach is

that non-cloud features such as a thick aerosol or haze can

be falsely detected as a cloud. Thus, a dynamic threshold ap-

proach using auxiliary data has been applied for better cloud

detection (Thurairajah and Shaw, 2005). Even in the case of

multi-spectral radiance, thin high clouds with a humid atmo-

sphere are known to be difficult to correctly detect (Turner

and Gero, 2011).

Thus, the new algorithm utilizes both the spectral and

the temporal characteristics of the clouds captured by the

downwelling Tb at the relatively narrow band in the mid-

infrared region. For the spectral test, the measured Tb is

compared with the clear-sky Tb (Tbclr) which is dynami-

cally determined as a function of Tsfc and e. The empirical

formula for estimating Tbclr is prepared using the calcula-

tion of the radiative transfer model with the vertical profiles

of temperature and humidity provided by the reanalysis of

numerical weather prediction models. For the temporal test,

the short-term variability of the measured Tb is compared

with a threshold value which is also determined dynami-

cally as a function of the measured Tb itself. Thus the new

algorithm combines both temporal and spectral characteris-

tics used separately or independently in the previous stud-

ies, with the dynamically determined threshold values for

the separation of clear and cloudy sky. Section 2 introduces

the data used for the current study along with a brief intro-

duction of the instruments. In Sect. 3, we first introduce an

empirical formula to estimate the predicted Tbclr (hereafter

called TbP
clr) used for the spectral test, followed by an ap-

proach to derive the dynamical threshold value for the tem-

poral test. For the algorithm validation, we use the cloud de-

tection data from the collocated ceilometer, which provides

accurate cloud-base altitudes. The paper is summarized in

Sect. 4 with planned future work for further utilization of the

current work.

2 Data

2.1 Radiometer data

Downwelling infrared radiance is measured by an IRT

installed on top of a ground-based microwave sounding

radiometer at the Changwon Weather Station (35.17◦ N,

128.57◦ E; 37.15 m above sea level) of South Korea, which

has been operated by the Korea Meteorological Adminis-

tration (KMA) since April 2010. The microwave radiome-

ter is manufactured by Radiometer Physics GmbH and mea-

sures downwelling microwave radiation at seven frequencies

in the 22.235 GHz water vapor absorption band (K-band) and

at other seven frequencies in the 60 GHz oxygen absorption

band (V-band) (RPG, 2013). Using 14 frequency channels,

various atmospheric information with a high-temporal reso-

lution (2 or 3 min) are derived (Solheim et al., 1998; Li et

al., 1997). Recently, Won et al. (2009) also showed the pos-

sibility of deriving rainfall intensity from downwelling mi-

crowave radiances.
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Figure 1. The spectral response function of the infrared radiometer

installed on top of the ground-based microwave radiometer, at the

range of 9.4–11.8 µm (Morris, 2006). The estimated center wave-

length for the given spectral response function is about 10.6 µm.

On the other hand, the pyrometer IRT manufactured by

Heitronics (KT19.85) receives the sky radiance reflected by

a gold mirror (Edmund NT32-089). The reflected input radia-

tion passes through the optical lenses and is filtered to the de-

tector (Heitronics pyroelectric detector), which converts the

radiant flux to an electrical signal. The overall spectral re-

sponse function of IRT is determined from the spectral char-

acteristics of the mirror, lenses, filter, and detector, and is

shown in Fig. 1 (Morris, 2006). Although the spectral cover-

age spans from 9.4 to 11.8 µm, broad peak responses are con-

centrated between 10 to 11.5 µm, where it is characterized

by weak absorption of greenhouse gases, mainly water va-

por, and is away from the ozone and carbon dioxide absorp-

tion bands. The output signal is calibrated by the “chopped

radiation method”, utilizing frequent observations of the in-

ternal blackbody (having a pre-defined temperature) radia-

tion between the actual target observation (Morris, 2006).

The mechanical blades regularly interrupt incoming radiation

from the observation target to stream the blackbody radiation

into the detector. At millisecond chopping cycles, the cali-

bration accuracy is about 0.5 K for different temperature pre-

cisions depending on the target temperature (Morris, 2006).

The current version of IRT installed on the Changwon ra-

diometer records measurement data every 2–3 s as the bright-

ness temperature (hereafter called TbIRT), which is derived

by the blackbody calibration. The actual TbIRT in winter can

record below −70 ◦C, although the minimum TbIRT is set to

be −50 ◦C because the accuracy below −50 ◦C is not practi-

cal (RPG, 2013).

Figure 2 shows a few examples of the time series of TbIRT.

The time series shows the large variability of TbIRT embed-

ded within the slowly varying seasonal trend, in line with

the variation of atmospheric temperature and humidity. The

high-frequency variability is associated with the fast vary-

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

Figure 2. Time series of the measured brightness temperature of

infrared radiometer (TbIRT) for a period of one year (a), five days

during the summer (b), and winter time periods (c) obtained at the

Changwon Weather Station. The current version of IRT is set to

have a lower limit of detection at−50 ◦C, which is evident from the

data obtained during the winter period.

ing sky conditions, mostly caused by the clouds and water

vapor. The usefulness and limitations of the TbIRT data for

cloud detection are explained well by Fig. 2. For example,

when a cloud, even with a small optical depth, is present

www.atmos-meas-tech.net/8/553/2015/ Atmos. Meas. Tech., 8, 553–566, 2015



556 M.-H. Ahn et al.: A cloud detection algorithm using downwelling infrared radiance

within the IRT field of view (FOV), TbIRT increases signifi-

cantly from that of the background clear sky. Thus, it could

be fairly straightforward to detect the cloud presence (Thu-

rairajah and Shaw, 2005; Brocard et al., 2011) and even to

estimate the cloud-base altitude with high accuracy (Morris

et al., 2006). On the other hand, as the clear-sky TbIRT has

seasonal (clearly shown in Fig. 2a) and sometimes diurnal

variations (as shown in Fig. 2b and c), a fixed threshold for

the cloud detection will introduce the error. For this, an ob-

jective approach to determine the threshold value taking into

consideration the fast varying atmospheric conditions is re-

quired.

2.2 Temperature and humidity data

The best approach to take into account the varying atmo-

spheric conditions in the cloud detection would be an es-

timation of instantaneous Tbclr which is compared directly

with the measured Tb. However, as the necessary informa-

tion for the estimation, the vertical profiles of temperature

and humidity, are not available in most cases, TbP
clr is pre-

pared using other available data. Here, we utilize the real-

time Tsfc and e, along with an empirical formula. Although

the radiometer is equipped with temperature and humidity

sensors, the surface weather data obtained by an automatic

weather station (AWS) at the Changwon Weather Station are

used, mainly due to the malfunctioning of the humidity sen-

sor of the radiometer during the study period. The AWS data

are in the form of temperature and relative humidity (RH)

and are recorded every minute after the real-time collection,

quality control, and archival processes at the KMA headquar-

ters.

2.3 Theoretical clear-sky Tb

To prepare the empirical formula for TbP
clr, we use the theo-

retical Tbclr using a radiative transfer model (RTM) with the

input data of various atmospheric conditions. Here, the RTM

simulation is done by the Modtran 5.1.2 (Berk et al., 2011)

with the input vertical profiles of temperature and humidity

from high resolution reanalysis data using the KLAPS (Ko-

rea Local Analysis and Prediction System) which provides

hourly vertical profiles. The high resolution (1 cm−1) spec-

tral radiance from the RTM simulation is converted to the

simulated Tb through the convolution with the IRT spectral

response functions (Fig. 1) and then by the inverse of the

Planck function. A total of 8760 vertical profiles correspond-

ing to a one-year time period containing the atmospheric

variability of the four different seasons is utilized. One thing

to note here is that we assume that all profiles are cloud free

and thus we may include profiles that are from extremely wet

atmospheric conditions.

2.4 Validation data

For the algorithm validation, we use a lidar ceilometer CL31

(Vaisala, 2004) for the quantitative assessment along with

high-resolution satellite data for a qualitative comparison.

The ceilometer produces the cloud fraction from 0 to 8 de-

noting clear and overcast, respectively, and the cloud-base al-

titudes at three different layers (Vaisala, 2004). As the cloud

fraction is estimated using the accumulated data for a cer-

tain time period, here 20 min, it is not suitable for the cur-

rent study which requires an instantaneous estimate. Thus,

instead of the cloud fraction, we use an instantaneous cloud

presence derived by checking cloud-base altitudes, determin-

ing it as clear if all three cloud bases are recorded as 7.62 km

(a situation that represents clear conditions). Here, it should

be noted that the detection limit of 7.62 km is variable de-

pending on the atmospheric conditions such as lower atmo-

spheric turbidity, fog, and atmospheric density (Clothiaux et

al., 2000). The instrument is installed at a distance of 15 m,

southwest from the radiometer. The ceilometer data is avail-

able with a temporal resolution of one minute and the verti-

cal resolution of 10 m, although it is available only after 27

September 2012.

2.5 Pre-processing

For the algorithm development, we first derive one-minute-

averaged TbIRT and its standard deviation obtained from the

original data with 2–3 s resolution, providing enough data

points for a reliable statistic. The archived AWS data are in

the form of Tsfc RH which is converted to the surface air va-

por pressure e in mb using

e = 0.01×RH× es, (1)

where es is the saturation vapor pressure corresponding to

Tsfc. An empirical formula valid for −30 to 50 ◦C is used to

calculate es for the current study (Buck, 1981):

es = 6.1121exp

(
17.502× Tsfc

Tsfc+ 240.97

)
. (2)

Hourly vertical profiles of temperature and humidity from

the reanalysis data are provided in 5 km spatial resolution.

For the current study, we averaged the 4 nearest grid points

to the Changwon Weather Station and retrieved data from 1

January to 31 December 2012. The model vertical grids are

reformatted for use in the RTM simulation. For the algorithm

development, the one-minute data of AWS and IRT are aver-

aged for 30 min to match with the model reanalysis data. For

the validation, we use the minute data of IRT, AWS, and the

ceilometer from 1 January to 30 June 2013 when both the

ceilometer and radiometer data are available. The total num-

ber of data points is 237 963.
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Figure 3. Time series of the simulated Tb (black solid line) along

with Tsfc (the surface air temperature; black dotted line, both tem-

perature scales are on the left) and e (the surface water vapor pres-

sure; red dotted line with the scale on the right) from 1 January to 31

December 2012. Tsfc and e are the values at the lowest levels of the

vertical profiles of temperature and humidity used for the radiative

transfer calculations.

3 Algorithm

The new algorithm takes advantage of the optical and tem-

poral characteristics of clouds in downwelling infrared radia-

tion in the atmospheric window region. These characteristics

are utilized by the spectral and temporal tests of the mea-

sured TbIRT. For the spectral test, TbIRT is compared with

a predicted clear sky, TbP
clr, obtained from an empirical for-

mula, which is derived by two steps. For the temporal test,

the temporal variability of TbIRT during one minute is com-

pared with a threshold value, which varies with the atmo-

spheric conditions and is obtained by an empirically derived

formula. Detailed descriptions for the derivation of empirical

formula and threshold values for each test are given below.

3.1 Predicted clear-sky Tb (TbP
clr

)

Figure 3 shows time series of the simulated hourly down-

welling Tb with the reanalysis data (hereafter called

TbKLAPS) along with Tsfc and e. Figure 3 reveals several im-

portant characteristics of TbKLAPS, representing theoretical

Tbclr. Firstly, even though the cloud layer is not included in

the RTM simulation, TbKLAPS varies significantly with dif-

ferent atmospheric conditions, similar to the actual TbIRT.

The value can be as cold as −110 ◦C during the cold and

dry winter period, while it can rise to −10 ◦C during the

summer period, resulting in about a 100 ◦C difference be-

tween the two extremes. A significant variation of TbKLAPS

is also evident even during a short time period within the

same season, especially during the cold season. For exam-

ple, TbKLAPS varies by more than 40 ◦C during mid January,

mainly due to the sudden changes in e along with Tsfc.

On the other hand, the variations of TbKLAPS, Tsfc, and e

are well correlated. Although the amplitudes are quite differ-

ent, the three time series vary with the same phase. Although

it is not shown, it is also true that the differences between

TbKLAPS and Tsfc correlate well with e and the correlation

further improves when e is divided by Tsfc. Consequently,

similar to the previous studies (Brutsaert, 1975; Idso, 1981;

Marty and Philipona, 2000; Dürr and Philipona, 2004; Zhnag

et al., 2007; Long and Turner, 2008; Carmona et al., 2014),

an empirical formula which relates the downwelling infrared

radiation to the surface weather data can be derived. Depend-

ing on the spectral range and variable of interest, such as the

radiance measured in the narrow window region vs. the irra-

diance representing the integrated flux in the whole infrared

region, a slightly different formula (such as those given by

Idso, 1981, Liu et al., 2013) is required.

Thus, with the several different types of the scatter plot be-

tween the different variables, such as shown in Fig. 4, which

shows the relationship between TbKLAPS / Tsfc and e / Tsfc,

several different formulas including linear, logarithmic, and

quadratic relationships, have been tested. Based on the cor-

relation characteristics and error statistics (the first two mo-

ments) for each tested variable and formula, a quadratic rela-

tion between the logarithm of TbKLAPS / Tsfc and e / Tsfc was

found to best fit the data:

log

(
TbKLAPS

Tsfc

)
= a0+ a1

(
e

Tsfc

)
+ a2

(
e

Tsfc

)2

, (3)

where a0, a1, and a2 are the empirical coefficients. With the

derived coefficients, the best fit TbE
KLAPS is given as

TbE
KLAPS = Tsfc exp

(
−0.5422+ 6.727×

(
e

Tsfc

)
(4)

−26.53×

(
e

Tsfc

)2
)
.

The overall performance of TbE
KLAPS is tested by compari-

son with the collocated TbKLAPS, as shown in Fig. 5. The

scatter plot shows that most of the data are well aligned to

the one-to-one line, although there are a few outliers. The

accuracy estimated by the difference between TbE
KLAPS and

TbKLAPS is estimated to be about 6.3 K (one standard devi-

ation) with a correlation coefficient of 0.98. The difference

between TbE
KLAPS and TbKLAPS shows no significant varia-

tion with independent variables such as TbKLAPS, Tsfc and e,

or time. Here, it should be noted that the uncertainty and the

correlation coefficient represent the fitting accuracy of the

Eq. (4), not the accuracy of TbP
clr. Nevertheless, the uncer-

tainty is fairly small compared to the Tb change due to the

cloud presence (demonstrated in Fig. 7 and also by Gero and

Turner, 2011 and Turner, 2007).

To correctly use TbE
KLAPS for cloud detection, a rela-

tionship between the theoretical TbKLAPS and the measured

TbIRT should be established. This is important because the

two Tbs could be different, either due to the overall uncer-

tainty in the calculation of TbKLAPS or due to the uncertainty
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Figure 4. Simulated relationship between the ratios of brightness

temperature to the surface air temperature (TbKLAPS/Tsfc) and the

ratio of water vapor pressure to the surface air temperature (e/Tsfc).

The number of data points is 8760 (hourly data for one year).

The TbKLAPS/Tsfc value increases rapidly with the increase of

e/Tsfc due to the increased contribution of surface air in the down-

welling radiation. When the e/Tsfc value reaches about 0.09, the

TbKLAPS/Tsfc value does not vary significantly because the wave-

length region is the atmospheric window region (contribution from

upper air is always there).

associated with the instrument calibration. For comparison

with the hourly theoretical data, the high resolution TbIRT

data are degraded by taking a half-hour averaged value; the

results are shown in Fig. 6. As shown in Fig. 6a, the relation-

ship shows a large spread and irregular distribution. How-

ever, it seems that all the points fall into three different groups

– two groups with heavily packed-points and one group with

widely scattered points in between the two groups. A close

inspection of these points leads to the conclusion that the dif-

ferent groups correspond to the different sky conditions. The

upper group represents overcast conditions with an apprecia-

ble addition to the downwelling radiances, while the lower

group is for the clear sky where the measured and estimated

Tbs are similar. The widespread points in between represent

broken or fast-varying cloud conditions and the measured Tb

vary with the degree of cloud contamination.

Thus, to establish a relationship between TbKLAPS and the

measured TbIRT, we select only data points with a small tem-

poral variability (see Sect. 3.2 for details). Figure 6b shows

the two resultant groups, without most of the points in be-

tween them, clearly separated from each other. The slopes

between TbIRT and TbKLAPS for cloudy and clear conditions

are different and the difference represents the differential

cloud effects on the downwelling radiance. As the cloud ef-

fect on the downwelling radiance is more prominent for the

cold and dry atmosphere (Morris, 2006; also see Fig. 7), the

difference between the cloudy and clear radiance increases

with decreasing TbIRT. Another interesting relation between

the TbIRT and TbKLAPS is that they are not linear (seemingly

Figure 5. Scatter diagram for the estimated clear-sky Tb (TbE
KLAPS

)

obtained using the surface air temperature and water vapor pressure

vs. the clear-sky Tb by the radiative transfer calculation (red line is

the one-to-one line). The root mean square difference is 6.3 K and

the correlation coefficient is 0.98.

quadratic) and the slope is not one, even for clear-sky con-

ditions. It is interesting to note that the variability of TbIRT

increases at the lower TbIRT, which is thought to be related

to the uncertainties in the absolute calibration of IRT. For ex-

ample, an imperfect reflector (possibly due to degradation)

and its uncertainty will give a larger uncertainty at lower

TbIRT. For a quantitative assessment, further investigation is

required, but this is beyond the scope of the current study.

With the limitations of the uncertainties introduced above,

the relationship between TbKLAPS and the measured TbIRT

for clear-sky conditions is established using the lower por-

tions of the data points in Fig. 6b. In order to do that, a sim-

ple threshold is applied to Fig. 6b and the remaining data

points are best fitted by a quadratic formula. As TbKLAPS is

obtained by assuming clear-sky conditions, the resulting re-

lationship between TbKLAPS and TbIRT can be considered as

the relationship between TbP
clr and TbE

KLAPS. Thus, the empir-

ical formula for the predicted clear-sky brightness tempera-

ture, TbP
clr, to be used for clear-sky detection, is given by

Tbclr
P
= 4.39+ 0.865×TbKLAPS

E
+ 0.0032× (TbKLAPS

E)2, (5)

where the fitting uncertainty is estimated to be 3.13 ◦C.

3.2 Temporal variability

A small variation of the cloud parameters, such as the cloud

optical depth, the cloud fraction, and the cloud-base temper-

ature, can introduce a significant variation in the measured

TbIRT. For example, as shown in Fig. 7, even with the same

cloud-base altitude and composition, the measured Tb dif-

fers as much as 30 K due to the different atmospheric condi-

tions. Thus the downwelling radiance in cloudy conditions

has much larger spatial and temporal variability than that

of clear-sky conditions (Brocard et al., 2011). However, it

Atmos. Meas. Tech., 8, 553–566, 2015 www.atmos-meas-tech.net/8/553/2015/
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(a)

(b)

Figure 6. The relationship between the simulated clear-sky Tb

(TbKLAPS) and the measured TbIRT for all conditions for one year

(a), and selected cases with the TbIRT values having a small tempo-

ral variation (b), representing overcast and clear-sky conditions (see

text for details). The red line represents the one-to-one line.

should be noted that when a uniform cloud, such as a thick

stratus or fog, is present, the variations are much smaller.

As the ground-based IRT represents only one space dimen-

sion, i.e., the vertical space, temporal variability is used to

check for both spatial and temporal variabilities. To derive

a threshold value for the variability check, we first need an

optimal time span to derive the temporal variability. Here,

we choose one minute for three reasons: first, validation data

(the ceilometer data) and auxiliary surface weather data (the

AWS data) are available every minute; second, the number

of available TbIRT data points for one minute is about 25 to

30, which provides enough statistical confidence in obtain-

ing reliable temporal variability information; and lastly, high

temporal resolution data is to be maintained as much as pos-

sible.

Figure 7. The simulated cloud effects to the downwelling radiance

(brightness temperature difference between cloud and clear cases)

as a function of the different cloud altitudes with different atmo-

spheric profiles. Used cloud type is altocumulus given in Modtran

5.2 with the thickness of 600 m. The high resolution spectral data

are convolved with the spectral response function to give the band

averaged contribution value and brightness temperature.

Figure 8 shows the time series of the averaged TbIRT over

one minute and its standard deviation (σ1 min) for 48 h for

the summer, fall, and winter seasons. Indeed, the temporal

variability (σ1 min) clearly indicates cloud presence, showing

a larger σ1 min for cloudy conditions, which are also char-

acterized by the highly variable and relatively warm TbIRT.

On the other hand, seemingly clear periods with a uniform

and relatively cold TbIRT are characterized by much smaller

σ1 min. From careful inspection of other time periods (that are

not shown in Fig. 8), we conclude that temporal variability

can be used for cloud discrimination, as suggested by others

(Morris et al., 2006; Dürr and Philipona; 2004; Brocard et

al., 2011). However, we also found that the threshold value

which separates the cloudy sky from the clear sky should be

carefully selected. In particular, when we compare the σ1 min

for clear-sky conditions among the three different seasons, its

variability and magnitude depend significantly on the season.

As can be seen in Fig. 8, σ1 min for the clear data during the

summer (such as 4 August) shows a smaller and less variable

distribution compared with that during the winter (such as 6

November).

Thus, to check any seasonal dependence of σ1 min for clear-

sky conditions, the variability of σ1 min during one year is

investigated. To select enough data but also ensure that only

the clear-sky data are selected, we estimate an hourly average

of σ1 min and its standard deviation (σ1 h) and then select data

with a small σ1 h. Figure 9 shows the relationship between the

hourly average of σ1 min as a function of the hourly averaged

TbIRT for the cases with a σ1 h value of less than 0.03 (this

value is empirically selected, although the resulting coeffi-

cients in Eq. (6) are not very sensitive to the threshold value
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(a)

(b)

(c)

Figure 8. Time series of one-minute averaged TbIRT (black solid

line, reference scale on the left) and its standard deviation (red cross,

reference scale on the right) for 48 h during the summer (a), the fall

(b) and the winter (c) periods. Time duration with relatively cold

and homogeneous TbIRT is well represented by the relatively small

and stable value of the standard deviation.

used). The hourly averaged σ1 min decreases with increasing

TbIRT, consistent with Fig. 8, which shows a smaller σ1 min

for the summer period (a higher TbIRT) and vice versa. Thus,

the seasonal dependence of the σ1 min is mainly due to varia-

tions of the measured TbIRT. One of plausible causes of this

Figure 9. The relationship between the hourly averaged standard

deviation and the hourly averaged TbIRT. The red crosses are the

relationship representing the best fit quadratic equation.

dependence is the difference in instrument precision (or noise

performance), which is reported to be 1.1 and 0.45 K at 223

and 293 K, respectively (Morris, 2006).

Based on Fig. 9, the relationship between TbIRT and the

σ1 min for clear sky (σE
clr) could be best fit with a quadratic

formula

σE
clr = 0.087− 7.68× 10−3

×TbIRT+ 1.08× 10−5
×TbIRT

2. (6)

Here, the TbIRT is the one-minute averaged value in Celsius

and the fitting uncertainty with the hourly averaged variabil-

ity is about 0.008 ◦C.

3.3 Overall flow chart

With the spectral and temporal characteristics described in

the previous sections, the overall flow for the detection algo-

rithm is schematically summarized in Fig. 10. The algorithm

applies to data for every minute just after a collection of one

minute’s worth of IRT data and surface weather data. For the

spectral test, TbP
clr is prepared by using Tsfc and e from the

AWS using Eq. (4), followed by Eq. (5). If the difference be-

tween TbIRT and TbP
clr is larger than the threshold value, it is

considered to be cloud contaminated. For the temporal test,

one-minute IRT data are averaged to give the averaged TbIRT

and σ1 min. The measured σ1 min is then compared with σE
clr

obtained by Eq. (6). If the difference is larger than the thresh-

old value, it is considered to be cloudy data. Finally, the data

are determined as cloud-free only when both the spectral and

temporal tests identify the measured TbIRT as clear-sky data.

Here, the final question about the algorithm is “how do we

choose the threshold values?” For the spectral test, the uncer-

tainty associated with the TbP
clr preparation could be used as

the criterion. It is estimated by the combination of the uncer-

tainties in the derivation of TbE
KLAPS (Eq. 4; considered the

random uncertainty) and in the connection between TbP
clr and
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Figure 10. Flow chart of the cloud detection algorithm using the

measured TbIRT along with the Tsfc and e from the automatic

weather station for every minute. The estimated clear-sky Tb (TbP
clr
)

and temporal variability (σE
clr
) are obtained by the Eqs. (5) and (6),

respectively. The threshold values of εS (for spectral test) and εT

(for temporal test) are set to 14 and 0.18 K, respectively.

TbE
KLAPS (Eq. 5; considered the systematic uncertainty). As

the two processes are considered as independent, the overall

uncertainty (one standard level) in the determination of TbP
clr

is estimated to be
√

6.32
+ 3.132

= 7.0 K. Thus, for the spec-

tral test, we apply twice the standard deviation value as the

threshold based on two factors: the cloudy data show much

higher TbIRT than the clear data and the cases giving the less

prominent signal could be filtered out by the temporal test.

On the other hand, the uncertainty associated with the tempo-

ral variability is relatively straightforward, which is obtained

from the fitting process. As the estimated variability is fairly

small, about 0.06 K (0.008×
√

60), we use 0.18 K (3×1−σ )

as our threshold value.

3.4 Validation

Figure 11 shows the original time series of TbIRT, TbP
clr, and

σ1 min, and the algorithm results. The time period is selected

to present the characteristics of the algorithm when cloud de-

tection is more problematic due to increased clear-sky TbIRT.

Overall, TbP
clr is in good agreement with the clear-sky TbIRT,

which corresponds to the data measured between 15:10 to

about 16:10 UTC (clear sky is confirmed by other observa-

tion data such as ceilometer and satellite images, not shown).

In the current case, TbP
clr is slightly cooler than the clear-sky

TbIRT by about 7 K, which is much smaller than the threshold

value used for the clear-sky detection. In addition, the tempo-

ral variability is in good agreement with the overall feature of

TbIRT, i.e., it increases with increasing TbIRT. The detection

results are also as expected. For example, as can be seen for

the time period from 17:40 to 18:30 UTC, the data are deter-

mined as cloud contaminated by both spectral and temporal

tests, while the data from about 18:30 to 19:00 UTC are de-

Figure 11. Time series of TbIRT (black solid line) along with the

predicted clear-sky Tb (TbP
clr

; red dashed line) and σ1 min (red solid

line; for clarity, value −15 ◦C is added to the original value), for

about 3 h of 27 June 2013. Symbols blue ∗ and red � denote data

points classified as cloudy data determined by the spectral test and

temporal test, respectively. Data points with both ∗ and � are the

points detected as cloudy by both tests.

termined as cloudy by the spectral test alone. On the other

hand, during a few occasions such as at around 16:20 UTC

and the time period between 16:50 and 17:30 UTC, the cloud

presence is detected by temporal variability only (except a

few occasions when both tests detect). Thus, most thick and

uniform clouds are identified by the spectral test, while the

highly variable broken clouds are mostly identified by the

temporal test. On the other hand, the edges of the advancing

thick clouds are detected by both the spectral and temporal

tests, as exemplified by the time period between 17:40 and

18:30 UTC.

For an objective validation, the collocated ceilometer data

from 1 January to 30 June 2013 are directly compared with

the IRT results, with the consideration of several factors for

a direct comparison. For example, the two instruments are

not looking at the exact same target at the same time. This is

due to two factors. First of all, the IRT field of view is much

larger than that of the ceilometer, 1.0 vs. 0.064◦, which im-

plies a greater possibility of cloud contamination. Secondly,

the two instruments are not located exactly at the same lo-

cation, the distance between the ceilometer and the IRT is

about 15 m. Thus, the two causes introduce a target-offset

issue which will be important for fast-moving clouds with

broken-sky conditions. Another important characteristic that

should be kept in mind is that there is a well known detection

limit of the ceilometer. The current version of the CL-31 has

the known limit of 7.62 km. Thus, for high clouds it would be

quite normal for the IRT to detect clouds while the ceilometer

would not. An example case will be given later.

The comparison results are summarized in the contin-

gency table (Table 1) which is prepared with the total

of 237 963 pairs of 1 min IRT and ceilometer data. The
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Table 1. Contingency table for cloud detection by the infrared py-

rometer (IRT) and ceilometer. The estimated proportion of correct-

ness is 88.3 % and the probability of detection is 90.8 %.

Ceilometer result

Cloud Clear

IRT result

Cloud Hit False alarm

(82 772) (19 551)

Clear Misses Correct negative

(8373) (127 267)

estimated detection accuracy (ratio of the hit and the correc-

tive negative to the total case) is 88.3 %, which is quite com-

parable with or better than results from other similar infrared

instrumentations. For example, Feister et al. (2010) showed

that cloud detection from a sky scanner coincides with the re-

sult from a whole sky imager for about 90 % of cases. They

also showed that the comparison is better for low clouds than

for high clouds (92.2 vs. 85 % accuracy) and attributed the

difference to the difference in the detection method. On the

other hand, a better validation parameter might be the prob-

ability of detection (POD) in view of the limitation that the

ceilometer has. From Table 1, the estimated POD for all cases

is 90.8 %, which is much better than a previous result (Sutter

et al., 2004). They compared the results derived from infrared

irradiance along with the surface temperature and humidity

to the synoptic observation and found 80 % of the probabil-

ity of detection. As attributed by the authors, the misses are

mainly due to the presence of strong inversions, thin high

clouds, and dry haze which are not significant sources of er-

ror for current approach.

Also, as shown in Table 1, more than 2 / 3 of the discrepan-

cies (misses and false alarms) are due to false alarms. A close

inspection of the comparison results reveals two representa-

tive types of discrepancies, as shown in Fig. 12: one type is

due to highly variable sky conditions along with the instru-

ment configuration, and another type is due to the presence

of high clouds. Figure 12a shows the time series of TbIRT

(2 October 2012) and the cloud-base altitude (for the lowest

cloud) obtained from the ceilometer showing the different

comparison results. In this specific case, there seems to be

a time lag between the ceilometer measurement and the IRT

measurement (IRT leading the ceilometer by one minute).

For example, at about 04:02 UTC (red triangle), the TbIRT

time series (and the standard deviation, not shown) indicates

cloudy conditions, while the cloud-base altitude is estimated

to be 7.62 km (clear conditions), resulting in the false alarm.

On the other hand, at about 04:40 UTC when the TbIRT time

series clearly indicates clear-sky conditions, the cloud-base

altitude is estimated to be about 2 km, resulting in the misses.

Thus, during the time period given by the two cases, all data

seems to be shifted by one minute. This kind of discrepancy

(a)

(b)

Figure 12. Two representative cases for characterization of the com-

parison of cloud detection and cloud-base altitude (red crosses) be-

tween IRT and ceilometer. The red symbols indicate the discrepancy

cases (stars and triangles represent misses and false alarms, respec-

tively). On the other hand, the black stars and triangles represent the

successful cases. Panel (a) represents the highly variable sky condi-

tions on 2 October 2012 and (b) exemplifies the uniform high-cloud

conditions obtained on 28 March 2013.

between the two instruments could be generated by the afore-

mentioned differences such as the differences in field of view

and the distance between the two instruments.

The second representative type exemplified by Fig. 12b

is for the case when high clouds are present. This is the

main cause of the relatively large number of false alarms

and is due mainly to the detection limit of the ceilometer.

To make sure that this is indeed the case, we check high

resolution satellite images obtained by COMS (communica-

tion, oceanography, and meteorological satellite), as shown

in Fig. 13. In comparison with Fig. 12b, the satellite im-

ages confirm our understanding of the characteristics of the

IRT and ceilometer measurements. First of all, during the

time period between about 05:00 and 09:30 UTC, except for

the short period between about 07:50 and 08:20 UTC, the
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07:30 UTC 

 

06:00 UTC 

 

08:15 UTC 

 

06:30 UTC 

 

09:15 UTC 

 

Figure 13. False color composite image (using visible, infrared

window, and water vapor images) for the time used in the closer

comparison of the IRT and the ceilometer. The time sequence im-

ages clearly show the approaching high clouds and a glimpse of

thickening clouds over the observation station (located around the

center of the red circle).

ceilometer reports no appreciable clouds other than two short

periods of high clouds, while the satellite images and IRT

show clear signs of a significant amount of cloud. For ex-

ample, at 06:00 UTC when high clouds begin to cover the

site, the composite image shows a white/gray patch (inter-

preted as cold and high clouds based on the visible and water

vapor images) over the site, which is detected at IRT with

the increase of the measured TbIRT (about 5 ◦C, which re-

sults in cloud detection by the temporal variability). More

clearly, at 07:30 UTC, the site is clearly covered with clouds

and the measured TbIRT shows an appreciably higher value

(about 15 ◦C) compared to the −36 ◦C of the clear-sky value

recorded a few hours earlier. On the other hand, from 08:00

to 08:18 UTC, the ceilometer detects high clouds as low as

about 6.5 km, as confirmed by the IRT and the satellite im-

age. Although it is not definite, the satellite image taken at

08:15 UTC shows slightly more whitish cloud, which is lo-

cated over the site, implying increased thickness and low-

ered cloud altitude, which are also detected by the ceilome-

ter. After 09:15 UTC, all three data sets report no appreciable

amount of cloud.

Through comparison with the satellite images, it seems

that the IRT measurement is more effective than the ceilome-

ter for high-cloud detection. To make sure that the quanti-

tative validation results are indeed altitude-dependent, the

probability of detection is estimated based on the different

cloud-base altitude of the ceilometer. For low clouds (base al-

titude from 0 to 3 km), the probability of detection is 93.8 %

(59 187/(59 187+3897)), while it reduces to 90.3 % for mid

clouds (base altitude ranging 3 km to 5 m), and is further re-

duced to 82.8 % for high clouds (base altitude higher than

5 km). This altitude dependence is quite similar to the previ-

ous study by Feister et al. (2010).

Finally, the algorithm performance is checked for the cases

of strong thermal inversion. The cases are found from the

vertical profiles of temperature and humidity, obtained by

rawinsonde launched at the Changwon station. As the raw-

insonde is launched for research purposes, data availability

is not regular or continuous. Nevertheless, we could identify

cases with a strong inversion and could select cases that were

free from cloud influence. Figure 14 shows such a case with a

skew-T log-P diagram on 6 March 2013, along with the time

series of TbIRT similar to that in Fig. 11 and satellite images

taken around the time of radiosonde observation. From the

ceilometer data, satellite images, and synoptic observation

(not shown), there is no significant cloud presence near the

site. Similarly, the TbIRT time series clearly indicates a clear

sky during the radiosonde observation period with a few oc-

casional cloud presences, probably due to the effect of clouds

that had passed north of the observation station, as shown in

the satellite images. Although the measured TbIRT increases

slightly after around 00:00 UTC, it is not significant and the

value is quite close to TbP
clr. Thus, overall, the new algorithm

is not sensitive to the strong inversion layer, even near the

ground. This is mainly due to the spectral range that the IRT

uses, as anticipated from the results of the theoretical radia-

tive transfer calculation.

4 Summary

The detection of the cloud signal in the measured down-

welling radiance of a ground-based microwave radiometer is

an important task for characterization of the measured radi-

ance and for further utilization of the radiance data. Here,

we introduce a simple algorithm to detect cloud presence

in the field of view of a ground-based microwave sound-

ing radiometer, which could be used for real-time appli-

cations. The algorithm requires the measured downwelling

radiance obtained from an infrared pyrometer installed on

www.atmos-meas-tech.net/8/553/2015/ Atmos. Meas. Tech., 8, 553–566, 2015



564 M.-H. Ahn et al.: A cloud detection algorithm using downwelling infrared radiance

(c) 2013. 03. 05. 23:45 UTC (d) 2013. 03. 06. 00:00 UTC

(c) 2013. 03. 05. 23:45 UTC (d) 2013. 03. 06. 00:00 UTC

(a)

(b)

Figure 14. Vertical profiles of temperature (black solid line) and

dew point temperature (black dashed line) on 6 March 2013 (a)

showing a strong inversion layer from the ground to about 950 hpa,

time series of TbIRT (black solid line), predicted clear-sky Tb (red

dashed line), σ1 min (red solid line; for clarity, value −25 ◦C has

been added to the original value), and cloud-base altitude (+; scale

is on the right) from the ceilometer (b), and color composite satel-

lite images for 23:45 UTC on 5 March 2013 (c) and 00:00 UTC on

6 March 2013 (d), showing passing of the cloud edge through the

north of observation station.

top of the radiometer, along with real-time surface weather

data including surface air temperature and humidity data.

The necessary empirical formulas and relationship among

the variables and threshold values for the tests are obtained

from the combination of theoretical simulation and observa-

tion data obtained over a year.

The algorithm is based on the spectral and temporal char-

acteristics of the cloud signal in the downwelling infrared

radiation measured. As the clear-sky downwelling radiance

at the atmospheric window region is so small, the cloud sig-

nal from most clouds are easily discernible. However, as the

background clear-sky radiance varies significantly with the

atmospheric temperature and humidity, a measure to account

for the variation has been developed. Here, we use the the-

oretically calculated downwelling radiance along with the

surface air temperature and water vapor pressure to derive

an empirical relationship between these variables. With one

year’s worth of data, the fitting accuracy between the ex-

pected and calculated clear-sky brightness temperatures is

about 6.3 K, which is quite small compared to the typical

cloud signal in the measured radiance. The theoretically esti-

mated brightness temperature is further compared with actual

measurement to check any discrepancies between the two

and ultimately to derive an empirical formula to account for

the difference with a high confidence level. For the second

test, the temporal variability of the measured downwelling

radiance is tested (as the radiometer views only one direc-

tion, the spatial variability is reflected in the temporal vari-

ability). To derive the temporal variability corresponding to

the background uniform scenes such as a clear sky or uni-

form overcast cloud, the hourly averaged temporal variabil-

ity is used. From the hourly averaged data, we found that

the background temporal variability varies with the measured

brightness temperature and derived an empirical formula re-

lating the two variables. The two-step algorithm applies to

the one-minute averaged brightness temperature with appro-

priate threshold values. The measured data are determined to

be free only when both steps identify the data as clear data.

The algorithm performance is validated against collocated

ceilometer data producing three cloud-base altitudes every

minute along with the high resolution satellite data. Over-

all, the accuracy determined by the proportion of correctness

(probability of detection) is about 89 % (90.8 %), which is

comparable with or better than previous studies. Among the

discrepancies (IRT results are not the same as the ceilometer

results), 2 / 3 of them are caused by over-detection of clouds

by the IRT. By a closer inspection of the IRT and ceilometer

data with high resolution satellite images, the over-detection

could be represented by two cases. One case is due to highly

variable cloud conditions, caused by the different measure-

ment methods and the distance between the two instruments.

The other occurred when the altitude of the cloud was be-

yond the detection limit of the ceilometer, while the cloud

signal was strong enough to be detected by the IRT, as ver-

ified by high resolution satellite data. On the other hand,

among 1 / 3 of the discrepancies caused by under-detection

of clouds by the IRT, a large portion is due to the limited

lower boundary of the dynamic range,−50 ◦C, of the current

version of IRT. To make sure that the IRT measurement is
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not affected by the inversion layer, we also check the avail-

able rawinsonde profiles and demonstrate the insensitivity of

the new algorithm to the presence of inversion layers.

Overall, the new cloud detection algorithm performs well

even with only a limited amount of information available.

The results are comparable with the lidar ceilometer and in-

dicate the possibility of better performance for certain sit-

uations. This is achieved mainly by the application of the

predicted clear-sky Tb which takes into account of location-

specific relationship between surface weather data and Tb,

and by the application of sensor-specific criteria for the tem-

poral variability of the clear-sky Tb. The other reason for the

improvement is the bandwidth of the current IRT, narrower

than other broadband instruments, which amplifies the cloud

signal over atmospheric signals such as those due to inver-

sion, water vapor or haze. However, it still has room for im-

provement in areas such as the prediction of clear-sky radi-

ance and refinement of the threshold value of the temporal

test. With better theoretical clear-sky radiance, we may im-

prove the estimates of the cloud-base altitude. Also, as in-

dicated in the comparison between theoretical and measured

radiances, a detailed investigation of the calibration accuracy

of the IRT is necessary, paying particular attention to any

degradation or variation of the reflectivity of the reflector.

Furthermore, there seems to be considerable room for im-

provement by extending the dynamic range of the IRT toward

the cooler temperature, especially for the colder clouds. Fi-

nally, clear-sky radiance data could be used for further char-

acterization of the microwave radiometer.
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