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Abstract. Since 2004, atmospheric carbon dioxide (CO2)

is being measured at the High Altitude Research Station

Jungfraujoch by the division of Climate and Environmen-

tal Physics at the University of Bern (KUP) using a nondis-

persive infrared gas analyzer (NDIR) in combination with a

paramagnetic O2 analyzer. In January 2010, CO2 measure-

ments based on cavity ring-down spectroscopy (CRDS) as

part of the Swiss National Air Pollution Monitoring Net-

work were added by the Swiss Federal Laboratories for Ma-

terials Science and Technology (Empa). To ensure a smooth

transition – a prerequisite when merging two data sets, e.g.,

for trend determinations – the two measurement systems run

in parallel for several years. Such a long-term intercompari-

son also allows the identification of potential offsets between

the two data sets and the collection of information about the

compatibility of the two systems on different time scales.

A good agreement of the seasonality, short-term variations

and, to a lesser extent mainly due to the short common pe-

riod, trend calculations is observed. However, the compar-

ison reveals some issues related to the stability of the cal-

ibration gases of the KUP system and their assigned CO2

mole fraction. It is possible to adapt an improved calibration

strategy based on standard gas determinations, which leads

to better agreement between the two data sets. By exclud-

ing periods with technical problems and bad calibration gas

cylinders, the average hourly difference (CRDS – NDIR) of

the two systems is −0.03 ppm± 0.25 ppm. Although the dif-

ference of the two data sets is in line with the compatibility

goal of ±0.1 ppm of the World Meteorological Organization

(WMO), the standard deviation is still too high. A signifi-

cant part of this uncertainty originates from the necessity to

switch the KUP system frequently (every 12 min) for 6 min

from ambient air to a working gas in order to correct short-

term variations of the O2 measurement system. Allowing ad-

ditional time for signal stabilization after switching the sam-

ple, an effective data coverage of only one-sixth for the KUP

system is achieved while the Empa system has a nearly com-

plete data coverage. Additionally, different internal volumes

and flow rates may affect observed differences.

1 Introduction

Carbon dioxide (CO2) is an important greenhouse gas which

plays a major role for the radiative forcing of the atmo-

sphere and therefore contributes significantly to the green-

house effect (Arrhenius, 1896). Since natural as well as

anthropogenic processes alter the mole fraction of CO2 in

the atmosphere, it is important to survey the mole fraction

changes over a long time period to understand these pro-
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cesses and draw conclusions about the involved CO2 fluxes

(Ramonet et al., 2010; Schimel et al., 2001). Additionally,

in situ CO2 measurements can be used in modeling studies

as input parameters or to verify model output (Uglietti et al.,

2011; Chevallier et al., 2010; Peters et al., 2010). Therefore it

is crucial that the data sets are well calibrated and traced back

to a common reference scale and that the measurement sys-

tems demonstrate high precision and accuracy. This guaran-

tees minimal biases between different measurement sites and

laboratories and improves the compatibility of the data sets.

For CO2 measurements, the World Meteorological Organi-

zation (WMO) recommends a compatibility of ±0.1 ppm for

the northern hemisphere (WMO, 2011).

High-altitude observatories such as the High Alpine Re-

search Station Jungfraujoch (JFJ) are predestined to monitor

the background mole fraction of trace gases like CO2 because

they are mostly in the free troposphere.

That is why the division of Climate and Environmen-

tal Physics of the Physics Institute, University of Bern

(KUP) started measuring CO2 with a non-dispersive in-

frared (NDIR) gas analyzer (Sick Maihak, Germany, model

S710) embedded in a combined CO2 /O2 analyzing system

at JFJ in late 2004. At the beginning of 2010, a cavity ring-

down spectrometer (until July 2011 a Picarro Inc., USA,

model G1301, afterwards a Picarro Inc., USA, model G2401)

was installed by the Swiss Federal Laboratories for Mate-

rials Science and Technology (Empa) as part of the Swiss

National Air Pollution Monitoring Network (NABEL), en-

abling a long-term performance of CO2 measurements at

JFJ by Empa. To ensure that both records could be merged

smoothly, both systems ran in parallel for a significant pe-

riod, not only to detect potential biases but also to provide

information about the compatibility of the two different mea-

surement systems as had been done at other stations, e.g., at

Mauna Loa (Komhyr et al., 1989; Peterson et al., 1977). Be-

cause of the year-round manned infrastructure and excellent

accessibility by train, it was possible to test the compatibility

of the two systems in situ under real conditions at a back-

ground site featuring only limited atmospheric variation.

In this study we report the data of the KUP and the Empa

in situ CO2 measurement system from January 2010 until

December 2012.

2 Methods

2.1 Sampling site

The High Altitude Research Station Jungfraujoch (JFJ) is

located 7◦59′20′′ E, 46◦32′53′′ N on the northern ridge of

the Swiss Alps. The station itself is on a mountain saddle

between the mountains Mönch (4099 m a.s.l.) and Jungfrau

(4158 m a.s.l), at an altitude of 3580 m a.s.l. and is accessible

by train the whole year round. Because of the high eleva-

tion, the station is above the planetary boundary layer most

of the time and receives predominantly air from the free tro-

posphere. It is therefore an ideal location to measure the at-

mospheric background air of continental Europe (Henne et

al., 2010; Zellweger et al., 2003; Baltensperger et al., 1997).

Nevertheless, the station is sometimes influenced by polluted

boundary layer air, especially during Föhn events (Zellweger

et al., 2003) or during hot summer days, when air from the

surrounding valley is thermally uplifted to JFJ (Zellweger

et al., 2000; Baltensperger et al., 1997). A comprehensive

in situ measurement program with more than 70 trace gases

and a large suite of aerosol properties is run continuously at

JFJ by an international consortium of research institutions.

JFJ is also one of the currently 29 Global Atmosphere Watch

(GAW) stations.

2.2 NDIR measurements (KUP)

The KUP CO2 measurements are based on a combined sys-

tem to monitor CO2 and O2 changes in the atmosphere. The

ambient air enters through a strongly ventilated (600 m3 h−1)

common inlet on the observatory’s roof to a manifold, which

serves many air detectors, where an aliquot is drawn to the

KUP system. The air is cryogenically dried to a dew point

of −90 ◦C (FC-100D21, FTS systems, USA). CO2 is mea-

sured by a NDIR spectrometer (Maihak S710) with a work-

ing range of 350 to 450 ppm and a frequency of 1 Hz; O2

is measured by a paramagnetic cell. To avoid influences

caused by ambient air temperature and density fluctuations,

the temperature as well as the pressure is stabilized. The box

with the pressure and flow control system is embedded in a

temperature-controlled box (45± 0.05 ◦C); the precision of

the pressure regulation is ±0.05 mbar and the measurement

cell of the NDIR analyzer is heated to 55± 0.05 ◦C. Mea-

surements are done in a cyclic sequence of 18 h: each gas is

measured for 6 min, with only the last 115 s of a 6 min period

used for mole fraction determination to allow for signal sta-

bilization after changing the sample source. At the beginning

of each sequence, the system is calibrated with two refer-

ence gases (high and low span). A working gas is measured

between two ambient air measurements to correct for short-

term variations. Therefore, an 18 h measurement sequence

looks as follows:

B−G−K−B−H−B−A−A−B−A−A−B−

. . .−A−A−B,

where B represents the working gas, G the high span

CO2/low span O2, K the low span CO2/high span O2, H the

target cylinder and A represents ambient air.

All measurements ending at a particular hour are used for

the calculation of hourly mean CO2 observations, which in

our case includes six ambient observation values per hour.

Cylinder measurements (see Table 1) with a known mole

fraction show a precision better than 0.04 ppm for 1 h analy-

sis. The precision is calculated as the square root of the sum
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Table 1. KUP calibration cylinders and their measured CO2 values on the NDIR and the CRDS system. These values were used to calculate

the second degree polynomial to correct the nonlinearity of the NDIR system (See also Fig. 9).

Cylinder Used before CO2 CO2 1CO2 1CO2 Pressure

number as Picarro Maihak (Picarro – Maihak) (Picarro – Maihak corrected) [bar]

[ppm] [ppm] [ppm] [ppm]

LK542510 G1 431.99± 0.02 431.74± 0.04 0.25 0.05 22.1

LK94521 K5 360.57± 0.07 359.96± 0.05 0.61 −0.06 23.8

LK570931 B20 438.01± 0.02 437.73± 0.04 0.28 −0.01 21.9

LK542204 B21 385.09± 0.02 384.87± 0.04 0.22 0.04 26.8

LK3137 B22 384.99± 0.02 387.71± 0.05 0.28 0.10 16.1

LK3077 B24 418.68± 0.08 418.78± 0.03 −0.06 −0.12 14.1

LK542469 B26 432.06± 0.03 431.87± 0.02 0.19 −0.01 23.7

LK564848 B27 448.40± 0.03 447.83± 0.02 0.57 0.08 22.7

LK570916 B29 437.66± 0.07 437.43± 0.05 0.23 −0.06 185

of the squared standard deviations of the individual measure-

ments. The CO2 values are reported on the WMO X2007

scale. In February 2011, the Maihak analyzer was replaced

with an identical Maihak device because of technical prob-

lems.

2.3 Cavity ring-down spectroscopy measurements

(Empa)

From late December 2009 until July 2011, Empa was

measuring CO2 with a commercially available wavelength-

scanned cavity ring-down spectrometer (Picarro Inc., USA;

G1301) coupled to a custom-built calibration/drying unit.

Initially, the sample air from the manifold was dried prior

to analysis by means of a Nafion dryer to a dew point of

<−30 ◦C. Along with CO2, the instrument also measured

CH4 and H2O at the same sample frequency of approxi-

mately 0.5 Hz. The H2O measurements allowed for correc-

tion of the CO2 mole fraction in case of interferences (i.e., di-

lution and pressure broadening) due to potential water mois-

ture in the system. From August 2010 on, the Nafion dryer

was short cut, no water vapor removal was used and CO2 dry

air mole fractions were determined after application of an

empirical humidity correction. The empirically determined

water vapor corrections for CRDS analyzers do not signif-

icantly change over time and are very similar for different

analyzers. According to Rella et al. (2013), the error in the

reported dry air CO2 mole fractions when using different cor-

rection coefficients is< 0.1 ppm, up to a H2O volume mixing

ratio of 2.5 Vol-%. 2.5 Vol-% of H2O at JFJ refers to a dew

point of more than 14 ◦C, a value that was never reached at

JFJ. The error can be further reduced when using the dedi-

cated correction coefficients for the respective analyzer and

doing repeated water vapor interference measurements, as is

the case here.

After a system breakdown due to a faulty electronic board

in July 2011, the G1301 analyzer was replaced in Septem-

ber 2011 by the newer G2401 model (Picarro Inc., USA) that

is also capable of monitoring CO mole fractions. Since then,

the sample gas has been dried again for the beneficial effects

with respect to the precision of the CO analysis.

Calibrations are performed every 46 h with two calibra-

tion gases (high and low span). In addition, a target gas is

analyzed every 15 h to detect potential shorter-term instru-

ment sensitivity changes. The mole fractions of the calibra-

tion gases are determined by the World Calibration Center

for CH4, CO2, CO and O3 at Empa (Table 3). Measurements

of used KUP standard cylinders at JFJ show a precision bet-

ter than 0.04 ppm for the 15 min analysis (Table 1). Similar to

the KUP, CO2 mole fractions are also reported on the WMO

X2007 scale.

2.4 Calibration gases

The gas used to calibrate the KUP measurements is com-

pressed outside air filled in steel cylinders delivered by

Carbagas (Switzerland). Normally, each gas cylinder is first

delivered to our laboratory at the University of Bern and mea-

sured for its CO2 mole fraction and δO2 /N2 and δAr /N2

values by mass spectrometry and a combined Licor 7000

NDIR and Oxzilla (Sable Systems, USA) system (CO2 and

O2). The measured values are calibrated with a subset of

three standards from the WMO/GAW Central Calibration

Laboratory (CCL) run by the National Oceanic and Atmo-

sphere Administration (NOAA, Boulder, USA) and are used

as assigned values of the KUP system at JFJ (see Table 2).

The cylinders are shipped to JFJ and stored in the basement

until their usage as calibration gases. A maintained stock of

calibration gases at JFJ is necessary because the KUP system

has to be calibrated frequently for O2 measurements (Uglietti

et al., 2008) and has a rather high gas consumption of up to

150 mL per minute.

The calibration gases used by Empa consist of com-

pressed dry natural air in aluminium cylinders filled by them-

selves with a modified oil-free compressor (Rix Industries,

USA). The mole fractions of the gases are determined by
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Table 2. List of calibration gas cylinders used by the NDIR system in the period from 2010 to 2012: K, G, H and B correspond to the usage

as low span, high span, target and working gas, respectively. The gases were measured at the University of Bern and calibrated with a suite

of NOAA standard cylinders.

Cylinder Used as From To Assigned CO2[ppm]

number WMO X2007

LK94521 K5 10.03.2009 31.12.2010 360.31± 0.50

LK541816 K6 31.12.2010 06.11.2012 380.77± 0.25

LK542332 K7 06.11.2012 now 384.41± 0.07

LK542217 G2 23.07.2009 now 429.02± 0.25

LK542119 B23 11.12.2009 27.04.2010 379.90± 0.25

LK542171 H1 08.09.2010 now 440.16± 0.25

LK3077 B24 27.04.2010 07.09.2010 416.60± 0.10

LK541869 B25 07.09.2010 09.02.2011 416.79± 0.10

LK542469 B26 09.02.2011 17.06.2011 431.76± 0.25

LK564848 B27 17.06.2011 19.10.2011 448.04± 0.25

LK557112 B28 19.10.2011 23.2.2012 425.35± 0.05

LK570916 B29 23.02.2012 03.07.2012 437.55± 0.10

LK564850 B30 03.07.2012 05.10.2012 395.62± 0.01

LK542463 B31 5.10.2012 23.01.2013 390.34± 0.05

Table 3. List of calibration gas cylinders used for the CRDS system in the period from 2010 to 2012 as measured at the Empa laboratory.

Cylinder Used as From To Assigned CO2[ppm]

number WMO X2007

D621867 (E062) Cal. gas 1 18.12.2010 now 394.11± 0.03

CA06290 (E063) Cal. gas 2 18.12.2010 now 429.72± 0.02

CB555583 Target 18.12.2010 now 426.04± 0.04

the World Calibration Center for CH4, CO2, CO and O3 at

Empa through comparison with a suite of standards from the

WMO/GAW CCL (see Table 3). After measuring the calibra-

tion gases, the cylinders are shipped to JFJ.

Lists of the calibration gases used by both systems during

the period of intercomparison are included in Tables 2 and 3.

3 Results

3.1 Comparison of the two data sets

The CO2 measurements of both systems for the period 2010–

2012 are shown in Fig. 1. In general, the two data sets show

a good agreement. There are two longer gaps in the CRDS

record from 11 June to 16 September 2011 and 5 to 18 Jan-

uary 2012. The first gap was caused by technical problems

of the Picarro, which was replaced by a new four-channel

model. In January 2012 a hard-disk failure was responsible

for the roughly 2-week break. The NDIR data set shows four

longer gaps from 31 January to 16 February 2011, 21 to

28 December 2011, 14 to 25 April 2012 and 7 to 24 Octo-

ber 2012. The reason for these gaps in the NDIR data set was

technical issues with the Maihak analyzer, eventually lead-

ing to a replacement of the analyzer with an identical one.

Furthermore, a power failure was responsible for the failure

of a gas flow controller and, in April and October 2012, the

dysfunction of the gas drying system. Throughout the record,

small gaps are also present due to system crashes, failures in

the regulation of the gas flows, etc. The remaining hourly

mean values, where we have overlap of both systems (20 460

common hours), are in good agreement. The data sets show

a similar seasonality as well as peaks caused by pollution

events (e.g., advection of air masses from the Po basin in

Italy or from northeastern Europe).

The average seasonality of the monthly mean values, span-

ning 36 months, is 10.01± 0.33 ppm and 10.05± 0.37 ppm

for the CRDS and the NDIR data set, respectively. Due to

missing data, one monthly value in each data set has to

be interpolated. For the complete data sets, the CRDS data

show an annual increase of 1.89± 0.01 ppm year−1, whereas

the NDIR data show a slope of 1.69± 0.01 ppm year−1; the

uncertainties correspond to the error of the linear increase

fitted to the data. Selecting only data points where both

systems have overlapping data points, the difference in the

slopes decreases slightly as documented by values of the

annual increase of CO2 of 1.91 ppm year−1 (CRDS) and

1.72 ppm year−1 (NDIR). A correlation plot of the CRDS

data set against the NDIR data set reveals a very high

correlation with a slope of 0.991 ppm ppm−1, an intercept
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Figure 1. CO2 measurements at JFJ of the CRDS system (red points) and the NDIR system (blue points) against time. The values represent

the hourly averages of the two measurement systems.

3.662 ppm and a R2 of 0.9909 (Fig. 2, grey points). It can

be seen in Fig. 3 (grey points) that the differences of the two

data sets are very stable over the 3-year period of the com-

parison. The average of the difference between the CRDS

data set and the NDIR data set is 0.04± 0.40 ppm (Fig. 3,

grey points); negative and positive differences equal out to

almost zero. During periods of rapid CO2 changes, the stan-

dard deviation of the differences is larger than during stable

periods and significantly exceeds the precision of both in-

struments. This point can be emphasized by zooming in to

higher-resolution data (115 s averages). For this exercise, the

high-resolution CRDS data are aggregated to 115 s averages

corresponding to the averaging intervals of the NDIR system.

It can be clearly seen that the difference becomes noisier with

fast changes (e.g., during the late afternoon in Figs. 4 and 5)

and decreases again with more stable conditions (e.g., during

the nighttime in Figs. 4 and 5).

The behavior of short-term variations is different for both

systems as shown by a change of statistical characteristics

when discarding values for which the change rate is above

a certain threshold (Table 4). These changes are most prob-

ably due to different volumes and gas flow resulting in dif-

ferent residence times and leading to dispersion effects. For

example, the NDIR system uses a water trap with a large

volume, potentially dampening the CO2 signal despite the

higher flow rate compared to the rather small Nafion dryer

of the CRDS system. The cutoff criteria of the change rate

is set to 0.75 ppm h−1 and values with a higher change rate

are discarded. Below 0.75 ppm h−1 there is still an improve-

ment of the agreement, but the loss in data points is too

high. Additionally, the standard error starts to increase again

below a change rate of 0.75 ppm h−1 because many data

points are omitted by this criteria. By setting the threshold to

0.75 ppm h−1, roughly 20 % of the common data points are

omitted. The correlation between the remaining data for both

systems gets slightly closer to the ideal 1 : 1 function with a

slope of 0.996 ppm ppm−1, an intercept of 1.5696 ppm and

a R2 of 0.9924 (Fig. 3, black points). Also, the differences

between the CRDS and the NDIR data set are smaller; con-

sidering only the data points of the more stable conditions

(Fig. 3, black points), the average of the difference remains

almost 0, namely 0.05 ppm± 0.32 ppm.

However, there are problematic features worth mention-

ing. By replacing the working gas B26 with B27 and B28

with B29, small shifts occur that are most likely caused by

an inaccurate assignment of the CO2 values of the work-

ing gases (Fig. 3). By excluding the periods of the cylin-

ders B27 and B29, 11 038 common data points remain; the

average of the differences, however, stays almost the same,

namely −0.03 ppm but with a reduced standard deviation of

0.25 ppm.

In late 2010, the difference between the two data sets

increased significantly because of technical issues (see

Sect. 3.1). After replacing the analyzer, the difference was

again very small and stable (Fig. 3). Furthermore, with the

exchange of the Picarro in summer 2011, a small jump in the

difference between the two systems occurred (Fig. 3). Since

the replacement happened during a single working gas period

of the NDIR system (B27), the offset was probably caused by

the change of the Picarro analyzer.

3.2 Drift of calibration gases and their corrections

In the case of regular periodic calibrations, the pressure of a

calibration gas cylinder decreases relatively linear over its

lifetime. Because steel cylinders show pressure-dependent

adsorption and desorption effects of gases such as CO2 or

H2O (Langmuir, 1918), CO2 continuously desorbs from the

cylinder walls and increases the CO2 mole fraction of the cal-

ibration gas during its usage. To avoid a large drift of the CO2

mole fraction in calibration gases, Keeling et al. (1998) rec-

ommends using calibration gas cylinders only to a remaining
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Figure 2. The hourly averages of the CRDS CO2 measurements versus the hourly averages of the NDIR CO2 measurements (grey points) and

the CRDS CO2 measurements versus the hourly averages of the NDIR CO2 measurements without periods of rapid mole fraction changes

(black points) over the whole period of comparison. The dashed diagonal represents the ideal 1 : 1 agreement. Considering all data points,

the R2 is 0.9909 with a slope of 0.9908 ppm ppm−1 and an intercept of 3.6623 ppm. Excluding periods with rapid mole fraction changes, the

agreement of the two data sets is slightly better with a R2 of 0.9924, a slope of 0.9961 ppm ppm−1 and an intercept 1.5696 ppm.

Figure 3. The difference of the CRDS – NDIR CO2 measurements of all common hourly data points (grey points) and only during stable

periods with a CO2 change of less than 0.75 ppm h−1 (black points) against time. The green bars represent changes of the working gases

of the NDIR system with the green number indicating the according cylinder and the red bars indicate the changes of the low span with the

according number, also in red. The high span was not replaced throughout the entire period.

pressure of 25 to 30 bar. The adsorption of CO2 to the cylin-

der wall can be calculated according to Langmuir (Langmuir,

1918) and corrected for by the formula:

WGcorr (t)=WGmeas (t)−

(
a · b ·p0

b ·p0+ 1
−
a · b ·p(t)

b ·p(t)+ 1

)
, (1)

where WGmeas corresponds to the measured CO2 value of the

working gas [ppm], a and b are constants (related to the Avo-

gadro constant, the number of elementary spaces of the sur-

face, the molecular mass and the temperature), p0 is the start

pressure and p(t) is the pressure at the time of the measure-

ment. This enrichment of CO2 is more pronounced at lower

pressures compared to high pressures, as seen in Eq. (1). For

example, at 100 bar cylinder pressure the correction is only

about 0.05 ppm, whereas at 30 bar it is already up to 0.3 ppm

(with a = 5 715 797 and b = 568 897, a and b values were

derived from measurements of cylinder B23). In steel cylin-

ders, present water vapor would cause an even more pro-

nounced desorption effect. However, all cylinders used here

contain dry gas. In Leuenberger et al. (2014), an in-depth dis-

cussion of this adsorption/desorption influence of gases on

steel and aluminium cylinders is presented, based on dedi-

cated experimental results in our laboratory as well as in a

climate chamber.

In April 2010 the working gas tank B23 ran completely

empty due to a faulty pressure reader and therefore showed

such an enrichment effect. Hence the CO2 values of the

NDIR calibrated with the uncorrected working gas are under-

Atmos. Meas. Tech., 8, 57–68, 2015 www.atmos-meas-tech.net/8/57/2015/



M. F. Schibig et al.: Comparison of continuous in situ CO2 observations at Jungfraujoch 63

Figure 4. Time series of 115 s averaged CO2 mole fractions measured with CRDS (red) and NDIR (blue) at JFJ (left-hand y axis scale) and

the difference between the two systems against time (grey points) (right-hand y axis scale) for 1 week in June 2010.

Figure 5. Time series of 115 s averaged CO2 mole fractions measured with CRDS (red) and NDIR (blue) at JFJ (left-hand y axis scale) and

the difference between the two systems against time (grey points) (right-hand y axis scale) for 1 week in March 2011.

estimated compared to the CRDS measurements. By recalcu-

lating measurements of the working gas using only the low

and the high span (Fig. 6, black points), it is possible to ap-

proximate the evolution of the working gas CO2 enrichment

(Fig. 6, grey points) and correct for it (Fig. 7). The NDIR

data are in much better agreement with the CRDS measure-

ments after applying this correction. Comparing the uncor-

rected values of the B23 period to the corrected period, the

R2 of the NDIR values against the CRDS values increases

from 0.89 to 0.99 (Fig. 8). The remaining working gases

cylinders are recalculated in the same manner. Most of them

show similar behavior as B23, even when they are replaced

at a remaining pressure of around 25 bar. The only difference

is the intensity of the enrichment, which is weaker than with

B23 because they did not run completely empty. Note that

for B23 we use time instead of pressure as the dependent

variable because the pressure reader did not work properly

during this period. Although not preferred, this is possible

because the pressure decreased linearly long-term.

3.3 Polynomial correction of the NDIR Maihak

measurements

NDIR spectrometers are nonlinear in response and hence re-

quire a correction of the data – generally of the polynomial

form. Ideally, the analyzer response function is implemented

by the producer, mostly for a restricted mole fraction range.

This is also the case for the Maihak system. The Maihak mea-

surements at JFJ are done in differential mode; thus the ref-

erence cell is always flushed with gas of known CO2 mole

fraction and compared to the cell with the sample. To set the

polynomial function to overcome the nonlinearity of the de-

vice, the mole fraction of the reference gas has to be entered

into the analyzer’s system.
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Table 4. The statistics of different cutoff criteria of rapid CO2 mole fraction changes and their influence on the number of points remaining,

the average of the hourly differences of the NDIR and the CRDS system, the standard deviation of the differences and the according standard

errors. The differences between the cutoff criteria are most probably caused by different volumes and flow rates of the systems and small time

lags in the time stamps. The measurement precision of each system is about 10 times better than the standard deviation of the differences.

Cutoff criteria Number of Average of Standard Standard

[ppm h−1] points differences [ppm] deviation [ppm] error [ppm]

All 19779 0.038 0.401 0.0028

< 2 19260 0.044 0.363 0.0026

< 1 17474 0.049 0.336 0.0025

< 0.75 16094 0.053 0.322 0.0025

< 0.5 13602 0.056 0.312 0.0027

< 0.25 8666 0.060 0.295 0.0032

Figure 6. The CO2 values of the calibration gas cylinder B23 calculated by using only the low and the high span cylinders against time

(black points) and the calculated best fit function according to Langmuir (grey points) with a= 5 715 797 and b= 568 897. The CO2 values

increase with time (corresponding to decreasing pressure). The best fit function was used to correct the measured working gas CO2 values

of the NDIR system.

In fall 2011, 11 used calibration gas cylinders of the KUP

system were measured with the CRDS system and remea-

sured with the NDIR system. The remeasuring of these cylin-

ders reveals that the polynomial function of the Maihak is in-

sufficient. The second order polynomial of the difference be-

tween CRDS (Empa) – NDIR (KUP) as a function of CRDS

(Empa) yields a R2 of 0.86. A very similar polynomial de-

pendence is found between the assigned values of NDIR

(KUP) and the assigned values according to Table 2 when

discarding two cylinders with low remaining pressure (Ta-

ble 1). We prefer the first polynomial because the cylinders

might have already faced desorption effects due to chang-

ing pressure between the assignment measurement in Bern

(> 2 years before) and the remeasurement at JFJ, whereas

the comparison with the CRDS took place within a few days.

Since the cavity ring-down technique is linear in the consid-

ered mole fraction range, the factors of the polynomial are

used to correct the measurement values of the NDIR system,

removing this dependence completely (Fig. 9 and Table 1).

The correction is only applied to the data measured by the

NDIR analyzer actually in use at JFJ. The data of the first

NDIR analyzer, which had to be replaced in the beginning of

2011 due to technical problems, remain unaltered since the

working points of the two NDIR instruments are different.

There is also no possibility to correct the data of the older

NDIR analyzer properly, because at the time there were no

comparable measurements with a nearly linear measurement

system. However, values in the center of this span, where

most of the ambient CO2 mole fractions were measured,

should not have been affected strongly; roughly 75 % of all

NDIR values are affected less than 0.1 ppm by the polyno-

mial correction. The accuracy of the standard measurements

is calculated as the square root of the sum of squared trueness

and squared precision (Menditto et al., 2007) and estimated

to be 0.08 ppm over the working range from 350 to 450 ppm

based on the CRDS – NDIR comparison including both in-

strumental uncertainties.
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Figure 7. Time series of the CO2 mole fractions determined with CRDS (red points) and NDIR (uncorrected in grey, after correction in

black). The desorption-corrected NDIR CO2 values show a much better agreement with the CRDS CO2 values than the uncorrected, which

are severely underestimated towards the end of the B23 period. After replacement of the working gas cylinder B23 with B24, the uncorrected

NDIR CO2 values show a much better agreement with the CRDS CO2 values.

Figure 8. Correlation of ambient CO2 mole fraction measured by CRDS versus the uncorrected CO2 mole fraction of the NDIR instrument

(grey points) and the desorption-corrected CO2 NDIR mole fractions (black points), respectively during the period of the working gas

cylinder B23. The diagonal represents the ideal 1 : 1 agreement. Due to the CO2 enrichment in the working gas cylinder B23 the uncorrected

KUP values seem to be much lower than the Empa values. By applying the correction, the values of the two systems are in a much better

agreement.

4 Discussion

Long periods of overlapping measurements are helpful for

assessing the compatibility of different analyzers. In this

study we analyze two different data sets which were mea-

sured at the same station over 3 years (the simultaneous

measurements are still ongoing) to determine the compatibil-

ity and quantify differences and biases. The compatibility is

challenging since the Empa used the cavity ring-down tech-

nique (Picarro Inc.) and the KUP a non-dispersive infrared

spectrometer (Maihak) to measure the CO2 mole fraction of

the air. Also, the calibration procedure, given the two tech-

niques used, is different and therefore has to be investigated.

The seasonality based on monthly measured averages

(10.01± 0.33 ppm and 10.05± 0.37 ppm for the CRDS and

the NDIR data set) between the two data sets agree nicely

and are also in good agreement with the results of flask

measurements done at JFJ (10.54± 0.18 ppm) (van der

Laan-Luijkx et al., 2013). The trend calculation (1.89 and

1.69 ppm year−1) for the complete and common data periods

deviates by 0.2 ppm year−1. In the first half of this compar-

ison, the difference of CRDS – NDIR is negative, indicat-

ing that the NDIR values are higher than the CRDS values.

In the second half the differences are mainly positive, espe-

cially during the periods with the working gases B27 and

B29. Additionally, changing the CRDS instrument caused a
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Figure 9. The difference between the Picarro (CRDS) – Maihak (NDIR) CO2 values as a function of the CRDS values of old KUP calibra-

tion cylinders. The data show a polynomial dependency (grey diamonds); by correcting the data points with the according second degree

polynomial (black line), the difference between the two systems varies slightly around zero (black triangles). The vertical error bars represent

the combined standard deviation of both systems whereas the horizontal error bars represent only the standard deviation of the CRDS system.

Because of the scale, the horizontal error bars are not visible.

small offset. This offset, together with the imperfectly as-

signed working gases, results in a slope of 0.2 ppm year−1

for the differences and a slope difference of the same amount

between the two CO2 records. The annual CO2 increase of

the CRDS data set is in good agreement with the average

global CO2 trend of 1.97 ppm year−1 for 2003–2012 (Tans,

2014), whereas the NDIR trend is a bit too low. Nevertheless,

it is important to mention that for proper trend analysis the

period of 3 years is too short. The CO2 trend of the whole

NDIR data set from the end of 2004 until the end of 2013

is 1.99 ppm year−1, which is in much better agreement with

the global trend of the same period of 2.03 ppm year−1 (Tans,

2014).

Despite the fact that it is common knowledge to use

well-assigned standard cylinder values for accurate measure-

ments, we find larger offsets for two calibration cylinders,

namely B27 and B29 used by the NDIR system. Therefore

the calculated CO2 values of the NDIR data set are a bit too

low for these two periods. This effect would have been un-

detected without the comparison measurements, at least for

the B27 cylinder: the offset is only around 0.2 ppm, which

is quite small compared to a seasonality of roughly 10 ppm

and even more so compared to the daily variations in extreme

cases of up to 25 ppm. Experiences of ongoing international

comparisons of traveling cylinders highlight similar issues

(Zellweger et al., 2011). Therefore, a thorough check of as-

signed values of calibration and working cylinders is crucial.

Another problem concerning the calibration cylinders is

their CO2 mole fraction. Ideally the low span is lowest in

CO2 mole fraction, the working gas intermediate, preferably

close to the expected value of the specimen, and the high

span accordingly highest. However, in some periods (e.g.,

B26, B27, B29) the CO2 mole fraction of the working gas

is higher than, or very close to, the CO2 mole fraction of the

high span (e.g., B28) and therefore not ideal for calibrating

the measurements with a very high accuracy. However, be-

cause of logistic problems these cylinders have to be used as

working gases.

Also, the stability of the CO2 mole fraction in the calibra-

tion cylinders is very important. Adsorption/desorption ef-

fects occur when the pressure of steel cylinders drops under

20 to 30 bar (2 to 3 MPa) (Keeling et al., 1998), leading to an

enrichment of CO2 in the cylinder and therefore a CO2 value

different from the assigned. Hence, cylinders should not be

used until they are empty. A recalculation of the working gas

cylinders with a two-point calibration using the low and the

high span show that the effect already starts at roughly 80 to

90 bar (8 to 9 MPa) and has to be corrected for. This finding

is supported by Leuenberger et al. (2014). At higher pres-

sures the effects are still very small, but with decreasing pres-

sure the difference between the measured CO2 mole fraction

of the calibration gas and the assigned value increases, thus

leading to a decrease in the accuracy of the calculated CO2

values.

By applying the corrections mentioned above (see

Sects. 3.2 and 3.3), discarding two periods of badly assigned

working gases (B27 and B29) and excluding periods of fast

CO2 changes, the average difference of the hourly values

decreases to −0.03 ppm± 0.25 ppm. Whereas the average

value of almost zero is very good, the standard deviation is

still high in comparison to the WMO goal of 0.1 ppm and the

precision of each individual system, which is roughly five

times better. The rather high standard deviation is probably

caused by differing averaging intervals of the hourly values

and dispersion of the air parcels in the two systems due to

different volumes and flow rates of the air.

Both systems obtain the outside air from the same air in-

let at Sphinx observatory at JFJ, but the air is led to the two
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systems by separate tubing. Due to different flow rates and

volumes of the two systems, the origin of an air parcel mea-

sured at a certain time is not necessarily exactly the same.

For example, the volume of the NDIR drying unit leads to

a residence time of 3 minutes, significantly longer than for

the CRDS system. Therefore, NDIR system records slightly

dampened ambient signals. Furthermore, it is possible that

the according air parcels are shifted a little bit, thereby lead-

ing to small differences of the CO2 values of the two sys-

tems. This could be the reason for the larger observed differ-

ences between the two data sets during fast CO2 mole frac-

tion changes of the outside air.

Overall, the CO2 mole fraction measured by the two sys-

tems shows the same pattern not only during stable peri-

ods but also during extreme events and even in the high-

resolution data. Most of the noisier periods can be traced

to specific technical problems, whereas systematic shifts are

most probably caused by badly assigned calibration gases or

drifts of the CO2 mole fraction in the cylinders due to ad-

sorption/desorption effects. While it is possible to correct for

the pressure-dependent drifts of the calibration gases mathe-

matically, it is harder to correct for the shifts caused by badly

assigned calibration gases since there are not a lot of inde-

pendent comparison measurements that can be used for cor-

rection.

5 Conclusions

The CO2 data sets of two different CO2 measurement sys-

tems, a nondispersive infrared analyzer and a cavity ring-

down spectrometer, running parallel at the High Altitude Re-

search Station JFJ are compared. The evaluation of the two

CO2 records from the NDIR system of the KUP to the CRDS

system of the Empa shows that the two systems are gener-

ally in good agreement, not only long-term but also down to

the 1 Hz scale despite the fundamentally different measure-

ment principles and gas handling systems. Therefore the two

data sets can be used to complement each other. However,

the comparison also reveals (i) adsorption/desorption effects

in the calibration gas steel cylinders used by NDIR system,

(ii) insufficient nonlinearity correction of the NDIR analyzer

and (iii) periods of small biases because of badly assigned

calibration gas cylinders. Adsorption effects can be corrected

for by monolayer adsorption equation (Langmuir, 1918).

Nonlinearity of the NDIR analyzer is constrained with a sec-

ond order polynomial, resulting in better agreement between

the two data sets, in particular for values strongly deviating

from the average. More research in adsorption/desorption ef-

fects of calibration gas cylinders has been done at the KUP

and is reported in Leuenberger et al. (2014).

Finally, we like to emphasize that using steel cylinders is

not adequate for high-precision trace gas determinations due

to gas adsorption/desorption. Therefore, we conclude that

all laboratories using steel cylinders for calibration purposes

should switch to calibration gases stored in aluminium cylin-

ders to minimize gas composition changes and allow an im-

proved assignment of the cylinder.

It is helpful to continue this comparison exercise for an-

other couple of years to show that once aluminium cylinders

are in use for both systems, the compatibility will improve

further.
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