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Abstract. The top-of-atmosphere (TOA) radiative fluxes are

critical components to advancing our understanding of the

Earth’s radiative energy balance, radiative effects of clouds

and aerosols, and climate feedback. The Clouds and the

Earth’s Radiant Energy System (CERES) instruments pro-

vide broadband shortwave and longwave radiance measure-

ments. These radiances are converted to fluxes by using

scene-type-dependent angular distribution models (ADMs).

This paper describes the next-generation ADMs that are de-

veloped for Terra and Aqua using all available CERES rotat-

ing azimuth plane radiance measurements. Coincident cloud

and aerosol retrievals, and radiance measurements from the

Moderate Resolution Imaging Spectroradiometer (MODIS),

and meteorological parameters from Goddard Earth Observ-

ing System (GEOS) data assimilation version 5.4.1 are used

to define scene type. CERES radiance measurements are

stratified by scene type and by other parameters that are im-

portant for determining the anisotropy of the given scene

type. Anisotropic factors are then defined either for discrete

intervals of relevant parameters or as a continuous functions

of combined parameters, depending on the scene type. Sig-

nificant differences between the ADMs described in this pa-

per and the existing ADMs are over clear-sky scene types and

polar scene types. Over clear ocean, we developed a set of

shortwave (SW) ADMs that explicitly account for aerosols.

Over clear land, the SW ADMs are developed for every 1◦

latitude× 1◦ longitude region for every calendar month using

a kernel-based bidirectional reflectance model. Over clear

Antarctic scenes, SW ADMs are developed by accounting

the effects of sastrugi on anisotropy. Over sea ice, a sea-ice

brightness index is used to classify the scene type. Under

cloudy conditions over all surface types, the longwave (LW)

and window (WN) ADMs are developed by combining sur-

face and cloud-top temperature, surface and cloud emissiv-

ity, cloud fraction, and precipitable water. Compared to the

existing ADMs, the new ADMs change the monthly mean

instantaneous fluxes by up to 5 W m−2 on a regional scale of

1◦ latitude× 1◦ longitude, but the flux changes are less than

0.5 W m−2 on a global scale.

1 Introduction

The Clouds and the Earth’s Radiant Energy System (CERES)

project has been providing data products critical to advancing

our understanding of the effects of clouds and aerosols on ra-

diative energy within the Earth–atmosphere system. CERES

data are used by the science community to study the Earth’s

energy balance (e.g., Trenberth et al., 2009; Kato et al., 2011;

Loeb et al., 2012; Stephens et al., 2012), aerosol direct ra-

diative effects (e.g., Satheesh and Ramanathan, 2000; Zhang

et al., 2005; Loeb and Manalo-Smith, 2005; Su et al., 2013),

aerosol–cloud interactions (Loeb and Schuster, 2008; Quaas

et al., 2008; Su et al., 2010b), and to evaluate global general

circulation models (e.g., Pincus et al., 2008; Su et al., 2010a;

Wang and Su, 2013; Wild et al., 2013).

The CERES instrument consists of a three-channel broad-

band scanning radiometer (Wielicki et al., 1996). The scan-

ning radiometer measures radiances in shortwave (SW, 0.3–

5 µm), window (WN, 8–12 µm), and total (0.3–200 µm) chan-

nels at a spatial resolution of∼ 20 km at nadir. The longwave

(LW) component is derived as the difference between total

and SW channels. These measured radiances at a given Sun–

Earth–satellite geometry are converted to outgoing reflected
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solar and emitted thermal top-of-atmosphere (TOA) radia-

tive fluxes. To do so, we must account for the angular distri-

bution of the radiance field, which is scene type dependent.

Here scene type is a combination of variables (e.g., surface

type, cloud fraction, cloud optical depth, cloud phase, aerosol

optical depth, precipitable water, lapse rate) that we use to

group the data to develop distinct angular distribution mod-

els (ADMs). To facilitate the construction of ADMs, there

are pairs of identical CERES instruments on both Terra and

Aqua spacecrafts. At the beginning of these missions one of

the instruments on each spacecraft was always placed in a

rotating azimuth plane (RAP) scan mode. In this mode, the

instrument scans in elevation as it rotates in azimuth, thus ac-

quiring radiance measurements from a wide range of view-

ing combinations. To provide accurate scene type informa-

tion within CERES footprints, imager (Moderate Resolution

Imaging Spectroradiometer (MODIS) on Terra and Aqua)

cloud and aerosol retrievals are averaged over CERES foot-

prints by accounting for the CERES point spread function

(PSF; Smith, 1994) and are used for scene type classifica-

tion.

The first set of CERES ADMs was developed using

9 months of CERES and Visible Infrared Scanner (VIRS)

data from the Tropical Rainfall Measuring Mission (TRMM)

satellite (Loeb et al., 2003). This set of ADMs represents a

more improved anisotropy characterization than the ADMs

used for Earth Radiation Budget Experiment (ERBE), which

only provided anisotropy for 12 scene types (Smith et al.,

1986; Suttles et al., 1988). Because TRMM is in a 350 km

circular precessing orbit with a 35◦ inclination angle, CERES

TRMM sampled the full range of solar zenith angle over re-

gions between 38◦ S and 38◦ N every 46 days.

The second set of CERES ADMs was developed us-

ing 2 years of CERES and MODIS data on Terra (Loeb

et al., 2005). The same methodology is also applied to

CERES measurements on Aqua. The scene identification

used to develop these ADMs is based upon the cloud al-

gorithms described in Minnis et al. (2011). TOA fluxes in-

verted from these ADMs and cloud properties used for scene

identification are in the Edition 2 Single Scanner Footprint

TOA/Surface Fluxes and Clouds (Ed2SSF) product. The

overall bias in global monthly mean TOA flux from ADM

uncertainties is less than 0.2 W m−2 in the SW and 0.2–

0.4 W m−2 in the LW (Loeb et al., 2007). However, val-

idation studies also reveal that the uncertainties of fluxes

over snow/ice are larger than those over ocean/land, and un-

certainties of fluxes over clear ocean are dependent on the

MODIS fine-mode fraction (Loeb et al., 2007). These find-

ings led to this investigation to further improve the CERES

ADMs.

ADMs are scene type dependent; thus accuracy in scene

identification affects the characterization of anisotropy. The

CERES team has improved upon the cloud algorithms used

for Ed2SSF and recently delivered the improved cloud al-

gorithms for Edition 4 SSF (Ed4SSF). The improvements

in cloud algorithms include using regional mean boundary

apparent lapse rates developed using collocated CALIPSO

and MODIS data to determine low cloud-top height (Sun-

Mack et al., 2014); using a CO2-slicing method to retrieve

high cloud over low-lying clouds (Chang et al., 2010); us-

ing a rough ice crystal model (Yang et al., 2008) to improve

ice cloud retrieval; using the 1.24 µm channel for cloud opti-

cal depth retrieval over snow, and other changes as discussed

by Minnis et al. (2010). We utilize the improved cloud algo-

rithm (scene identification) and all available RAP data to de-

velop the improved next-generation CERES ADMs. This pa-

per documents the methodology used to develop ADMs for

the SW and LW (WN) channels over different scene types.

The accuracy of the TOA SW, LW, and WN fluxes derived

from these new ADMs will be assessed in a future publica-

tion.

2 Observations

CERES instruments on Terra and Aqua are flying with

MODIS instruments so that the higher-resolution imager

can provide cloud conditions for every CERES field of

view (FOV). The CERES/MODIS cloud algorithms retrieve

cloud fraction (f , in %), cloud optical depth, cloud phase

(liquid= 1, and ice= 2), cloud top and effective temper-

ature/pressure (among other variables) based on MODIS

pixel-level measurements. These pixel-level cloud properties

are spatially and temporally matched with the CERES FOV.

If the cloud top pressure within a CERES FOV is signifi-

cantly different, up to two non-overlapping cloud layers are

defined (Loeb et al., 2003). For each cloud layer, pixel-level

cloud properties are weighted by the CERES PSF to pro-

vide layer-mean cloud properties. Layer-mean cloud prop-

erties are then weighted by the layer cloud fractions to derive

the cloud properties over the CERES FOV.

Other pixel-level retrievals such as aerosol optical depth

and Ångström exponent from MODIS collection 5.1 (Hsu

et al., 2004; Remer et al., 2008; Levy et al., 2010) are also av-

eraged over the CERES footprints using the PSF. Similarly,

spectral radiances from MODIS observations are averaged

over CERES FOV weighted by the CERES PSF. These ra-

diances are used to develop clear ocean ADMs (Sect. 4.1.1),

clear land ADMs (Sect. 4.2.1), and sea ice ADMs (Sect. 4.5).

Surface elevation data are from digital elevation model

GTOPO30 and resampled at a resolution of 1/6◦ equal an-

gle grid box. The elevation variability (EV) for a given grid

box is calculated as the standard deviation of the elevations

of this grid box and the eight surrounding grid boxes. Mete-

orological fields are from the Global Modeling and Assim-

ilation Office’s Goddard Earth Observing System (GEOS)

version 5.4.1 data assimilation system for CERES. This ver-

sion provides consistent analysis over the entire CERES data

record period. Surface types are obtained from the Inter-

national Geosphere Biosphere Program (IGBP) global land
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cover data set. Fresh snow and sea ice surface types are

derived from a combination of the National Snow and Ice

Data Center (NSIDC) microwave snow/ice map and the Na-

tional Environmental Satellite, Data and Information Ser-

vice (NESDIS) snow/ice map. NESDIS uses imager data

to identify snow and sea ice and provide snow and sea ice

information near the coast, whereas NSIDC does not pro-

vide microwave retrievals within 50 km of the coast. Another

snow and ice data source is from the CERES team’s snow

and sea ice fraction over the clear portions of CERES foot-

prints using MODIS reflectances. The presence of snow and

sea ice is determined using thresholds of the reflectance at

1.6 and 0.65 µm, and the brightness temperature differences

at 3.7 and 11 µm (Minnis et al., 2008). Hereafter, we refer to

this snow and sea ice fraction as cloud mask snow/ice frac-

tion.

These cloud properties, aerosol properties, spectral radi-

ances, meteorological data, and CERES broadband radiances

are all included in the CERES Ed4SSF product. We use

all available RAP data on Terra (∼ 60 months) and Aqua

(∼ 32 months) to construct their individual ADMs over most

scene types. However, over certain scene types (i.e., SW over

permanent snow and sea ice, and LW over clear permanent

snow, fresh snow, and sea ice) when we do not have enough

samples from a single spacecraft, combined Terra and Aqua

ADMs are developed.

The general strategy of constructing ADMs is to sort the

measured radiances into angular bins over different scene

types. Over a given scene type (j ), the measured radiances

are sorted into discrete angular bins. Averaged radiances in

all angular bins (Î ) are calculated and all radiances in the

upwelling directions are integrated to provide the ADM flux

(F̂ ). The ADM anisotropic factors (R) for scene type j are

calculated as

Rj (θ0,θ,φ)=
πÎj (θ0,θ,φ)

2π∫
0

π
2∫

0

Îj (θ0,θ,φ)cosθ sinθdθdφ

=
πÎj (θ0,θ,φ)

F̂j (θ0)
, (1)

where θ0 is the solar zenith angle, θ is the CERES view-

ing zenith angle, and φ is the relative azimuth angle between

CERES and the solar plane. For an observed radiance (Io)

under the same scene type, it is then converted to flux by us-

ing the anisotropic factor that we derived:

F (θ0)=
πIo (θ0,θ,φ)

Rj (θ0,θ,φ)
. (2)

Besides the sort into angular bin method for developing

ADMs, we also employ analytical functions when appropri-

ate to characterize the anisotropies over some scene types

(see Sects. 4 and 5).

3 Angular distribution model evaluation

ADMs are sets of anisotropic factors used to convert the ob-

served TOA radiances to fluxes. Because we do not know

the instantaneous radiance angular distributions for different

scene types, it is a challenging task to evaluate the ADMs

that we developed. To overcome this challenge, we design

an evaluation method by combining Eq. (1) with Eq. (2) to

rewrite the TOA flux as

F (θ0)=
Io (θ0,θ,φ)

Îj (θ0,θ,φ)
F̂j (θ0) . (3)

Note that the TOA flux is sensitive to the ratio of F̂j to Îj ,

which implies that it is more important to get the shape of

Îj correct rather than its magnitude. To facilitate the com-

parison between the shape of observed and ADM-predicted

radiances, we first normalize the observed and predicted ra-

diances with their own means for each 1◦ latitude× 1◦ lon-

gitude region. We then calculate the root-mean-square (rms)

error between the normalized predicted radiance and the nor-

malized observed radiance as

rms=

√√√√1

n

n∑
j=1

(
Îj

Î
−
I o
j

I o

)2

. (4)

The smaller the rms error, the closer the shape of the pre-

dicted radiance to the shape of the observed radiance, which

indicates the ADMs are more accurate. We use the rms error

for every scene type to assess the improvement of the new

ADMs we describe below. Note that this rms error is not the

same as the flux rms error.

4 Shortwave angular distribution models

4.1 Ocean

4.1.1 Clear sky

Over ocean, clear footprints are defined as having f < 0.1 %.

Previously, ADMs over clear ocean were developed as a

function of wind speed with an angular resolution of 2◦ in

θ0, θ , and φ. Aerosol effects on ADMs were not explicitly

considered; dependence on aerosol optical depth (AOD) is

accounted for by theoretical adjustment (Loeb et al., 2005).

Subsequent validation indicated that the TOA flux uncer-

tainty depends on the MODIS AOD and fine-mode fraction

(Loeb et al., 2007).

To improve the characterization of anisotropy over clear

ocean, we develop new clear ocean ADMs which explicitly

account for aerosols using the same angular resolution and

the same wind speed bins (0–2, 2–4, 4–6, 6–8, 8–10, and

> 10 m s−1). Over clear ocean, about 48 % of the CERES

cross-track measurements are taken when the sun glint an-

gles are less than 40◦ (glint region). The reflectance distri-

butions in the glint region differ sharply from those outside

www.atmos-meas-tech.net/8/611/2015/ Atmos. Meas. Tech., 8, 611–632, 2015



614 W. Su et al.: Next-generation angular distribution models

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Figure 1. Probability distributions of aerosol optical depth retrieved from Ed4SSF using Terra measure-
ments from 2000 to 2005 for θ0=34◦–36◦. (a) for glint angle >40◦, the AOD threshold values are 0.066
and 0.12 for coarse-mode-like aerosols and are 0.094 and 0.207 for fine-mode-like aerosols. (b) for glint
angle ≤40◦, the AOD threshold values are 0.056 and 0.124.
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Figure 1. Probability distributions of aerosol optical depth retrieved from Ed4SSF using Terra measurements from 2000 to 2005 for θ0= 34–

36◦. (a) For glint angle > 40◦, the AOD threshold values are 0.066 and 0.12 for coarse-mode-like aerosols and are 0.094 and 0.207 for

fine-mode-like aerosols. (b) For glint angle ≤ 40◦, the AOD threshold values are 0.056 and 0.124.

the glint region; we thus treat glint and non-glint regions

separately. For the non-glint region, we develop AOD- and

aerosol-type-dependent ADMs; for the glint region, we de-

velop AOD-dependent ADMs only.

Non-glint regions

For clear footprints with glint angles greater than 40◦, AOD

and fine-mode fraction are available from the MODIS team

(Remer et al., 2008). However, these retrievals are produced

using a cloud mask algorithm developed by Martins et al.

(2002), which is different from the cloud mask algorithm

used by the CERES cloud group. Thus, not every clear

CERES FOV has a MODIS aerosol retrieval (about 8.3 % of

the clear CERES footprints do not have valid MODIS aerosol

retrievals). To ensure self-consistency, we develop an aerosol

retrieval algorithm using PSF-weighted mean MODIS radi-

ances over clear CERES footprints. This algorithm retrieves

AOD based upon five-band lookup tables (LUTs) calculated

using maritime tropical and urban aerosol models from Hess

et al. (1998). These two aerosol models are used to represent

coarse-mode-like and fine-mode-like aerosols. The LUTs are

calculated for 29 AOD values ranging from 0 to 2, and for

six wind speeds (midpoints of the wind speed bins). The five

MODIS bands used for aerosol retrieval are 0.47, 0.55, 0.66,

0.87, and 1.24 µm on Terra (2.13 µm on Aqua). For a given

clear CERES footprint, the AOD for each aerosol model is

first retrieved by minimizing the error (ε), which is defined

as

εc =

5∑
i=1

(
ρobs
i − ρ

LUT
i

(
AODc, |u|

)
ρobs
i + 0.01

)2

,

εf =

5∑
i=1

(
ρobs
i − ρ

LUT
i

(
AODf, |u|

)
ρobs
i + 0.01

)2

, (5)

where ρobs
i is the MODIS observed reflectance for the

ith band, and ρLUT
i is the LUT reflectance calculated for dif-

ferent AOD and wind speed (|u|). For the coarse-mode-like

LUT, AODc yields the smallest error εc; while for the fine-

mode-like LUT, AODf yields the smallest error εf. If εc<εf,

then the aerosols of this footprint are coarse-mode-like with

optical depth of AODc; otherwise they are fine-mode-like

aerosols with optical depth of AODf. Our AOD retrievals ex-

hibit very similar global distributions as those from MODIS,

but are higher than MODIS AOD (not shown). For every

θ0 bin, the distributions of fine- and coarse-mode AODs

are calculated. We then divide the AODs into three groups

by using AOD percentiles: less than 33 % is the low-AOD

bin, between 33 and 66 % is the mid-AOD bin, and greater

than 66 % is the high-AOD bin. Figure 1a shows an exam-

ple of fine- and coarse-mode AOD distributions for θ0= 34–

36◦, where the 33 and 66 % AODs are 0.094 and 0.207 for

fine-mode aerosols and 0.066 and 0.120 for coarse-model

aerosols. The percentile classification approach we adopted

here to construct ADMs relaxes the requirement on absolute

aerosol retrieval accuracy.

For each angular bin, the observed radiances are first

sorted by wind speed, then separated by aerosol type and

within each type further separated into three AOD per-

centiles. Thus, it is possible to construct a total number of 36

(6 wind speeds, 2 aerosol types, and 3 AOD bins) ADMs

over non-glint clear oceans if the observations cover all vari-

able space. For each case, the radiances are integrated in all

upwelling directions to derive the ADM fluxes, and the miss-

ing angular bins are filled with radiative transfer calculations

using the same fine- and coarse-mode aerosol models men-

tioned above. The anisotropic factors are then derived fol-

lowing Eq. (1).

Glint regions

Aerosol retrievals over glint regions are difficult because of

the rapid changes in reflectance and wave-slope distribu-

tion around the specular point. Thus, we expect large un-

certainties in aerosol retrieval over glint region and do not

think we can discriminate aerosol types. We adopt the same

retrieval method as for non-glint region but only use one

Atmos. Meas. Tech., 8, 611–632, 2015 www.atmos-meas-tech.net/8/611/2015/
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Figure 2. RMS error between normalized measured radiances and normalized ADM predicted radiances,
(a) using ADMs from Loeb et al. (2005), and (b) using the new ADMs. All clear-sky footprints from
Terra RAP measurements in 2002 were used.

.

39

Figure 2. The rms error between normalized measured radiances and normalized ADM-predicted radiances, (a) using ADMs from Loeb

et al. (2005), and (b) using the new ADMs. All clear-sky footprints from Terra RAP measurements in 2002 were used.

aerosol type (maritime tropical) and stratify the AOD dis-

tributions in each θ0 bin into three percentile bins (0–33, 33–

66, and 66–100 %). Figure 1b shows the AOD distribution

for θ0= 34–36◦ bin retrieved within the glint region. Radi-

ances taken with AOD< 0.056 are classified as the low-AOD

bin, radiances taken with 0.056≤AOD< 0.124 are classified

as the mid-AOD bin, and radiances taken with AOD≥ 0.124

are classified as the high-AOD bin. We then construct ADMs

for these three AOD bins. However, reflectances over glint

regions do not always monotonically increase with AOD, re-

sulting in ambiguous retrievals. This often happens at small

glint angles where specular reflectances are large. At small

AOD the aerosol scattering reduces the specular reflectance

from the ocean surface; then as AOD becomes large enough,

the reflectance from aerosol layers starts to increase with in-

creasing AOD. About 9 % of the glint footprints produce am-

biguous AOD retrievals (two AOD solutions). For these foot-

prints, we construct ADMs without accounting for aerosols

but rely on the theoretical adjustment as in Loeb et al. (2005).

When a FOV is in close proximity to the specular reflection

direction, we also perform a glint check by calculating the

variability of the clear ocean anisotropy:

σR = (1− f − fice)σRclr
, (6)

where f and fice are the fraction of the FOV covered by

cloud and sea ice, and σRclr
is the standard deviation of clear

ocean R in the angular bins adjacent to the observation an-

gle. If σRclr
≥ 0.05 for a given FOV, the ADM flux (F̂ ) corre-

sponding to the FOV’s scene type is used.

The aerosol-dependent ADMs characterize the clear ocean

anisotropy more accurately than the ADMs developed by

Loeb et al. (2005). Figure 2 shows the rms error between

normalized measured radiances and ADM-predicted radi-

ances (Eq. 4) using all clear-sky measurements of 2002 from

CERES Terra RAP measurements. The global area-weighted

mean rms error is 9.2 % using the aerosol-dependent ADMs,

whereas it is 10.9 % using ADMs from Loeb et al. (2005).

Significant improvements are noted over coastal regions

where large amounts of dust and pollution are expected.

4.1.2 Cloudy sky

Over cloudy ocean, we adopt the same method as Loeb et al.

(2005) to construct ADMs using an analytical function that

relates CERES radiances and cloud properties retrieved from

MODIS. Under cloudy conditions, the magnitude of CERES

radiance in a given angular bin is most sensitive to cloud frac-

tion (f , in %), cloud optical depth (̃τ ), and effective cloud

phase (ECP) over the non-glint regions (glint angle > 20◦)

or over glint regions with sufficiently thick clouds and/or

extensive cloud coverage (ln(f τ̃ )> 6). Over the glint re-

gions with ln(f τ̃ )< 6, ADMs are constructed using mean

radiances for 6 wind speed bins (same as clear ocean) and

four ln(f τ̃ ) bins (< 3.5, 3.5–4.5, 4.5–5.5, 5.5–6). Figure 3

shows the relationship between CERES-measured SW ra-

diance and ln(f τ̃ ) for liquid clouds in the angular bin of

θ0= 44–46◦, θ = 18–20◦, φ= 88–90◦ and for ice clouds in

the angular bin of θ0= 54–56◦, θ = 14–16◦, φ= 176–178◦

using CERES RAP measurements on Terra. The instanta-

neous radiances are separated into five equal sample number

bins based upon f . The minimum and maximum cloud frac-

tions for each bin are listed in the legend. The mean radiances

for each 0.02 interval of ln(f τ̃ ) are shown as black dots. We

then fit the mean radiances with a five-parameter sigmoidal

function:

I = I0+
a[

1+ e−(x−x0)/b
]c , (7)

where x0, I0, a, b, and c are coefficients of the sig-

moidal fit, and x= ln(f τ̃ ). The sigmoidal fits over cloudy

ocean are derived with an angular resolution of 2◦ in θ0,

θ , φ and separately for liquid (1.00≤ECP< 1.01), mixed

(1.01≤ECP≤ 1.75), and ice (1.75<ECP≤ 2.00) clouds.

The relative rms error between the mean radiances and the

fitted radiances is 3.0 % for the water cloud case and 3.4 %

for the ice cloud case. Figure 4 shows the cumulative prob-

ability distribution of the relative rms errors between mean

radiances and fitted radiances for all angular bins with θ0 be-

tween 10 and 80◦ for liquid, mixed, and ice clouds. There

are 86.6, 74.6, and 67.7 % of the angular bins with relative

rms errors less than 5 %, and 98.4, 95.3, and 89.3 % of the an-

gular bins with relative rms errors less than 10 % for liquid,

www.atmos-meas-tech.net/8/611/2015/ Atmos. Meas. Tech., 8, 611–632, 2015
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Figure 3. Relationship between SW radiances and ln(f τ̃) over ocean using CERES Terra measurements.
(a) for liquid cloud in the angular bin of θ0=44◦-46◦, θ=18◦-20◦, and φ=88◦-90◦ and (b) for ice cloud
in the angular bin of θ0=54◦-56◦, θ=14◦-16◦, and φ=176◦-178◦. Colored dots are instantaneous SW
radiances, black dots are mean SW radiances calculated for each 0.02 intervals of ln(f τ̃). Black lines are
the sigmoidal fits.
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Figure 3. Relationship between SW radiances and ln(f τ̃ ) over ocean using CERES Terra measurements. (a) for liquid cloud in the angular

bin of θ0= 44–46◦, θ = 18–20◦, and φ= 88–90◦ and (b) for ice cloud in the angular bin of θ0= 54–56◦, θ = 14–16◦, and φ= 176–178◦.

Colored dots are instantaneous SW radiances; black dots are mean SW radiances calculated for each 0.02 intervals of ln(f τ̃ ). Black lines

are the sigmoidal fits.
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Figure 4. Cumulative distributions of the relative RMS errors for the sigmoidal fits over cloudy ocean
using CERES Terra measurements
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Figure 4. Cumulative distributions of the relative rms errors for the

sigmoidal fits over cloudy ocean using CERES Terra measurements.

mixed, and ice clouds. The mean relative rms errors for all

these angles are 3.0, 4.1, and 4.9 % for liquid, mixed, and ice

clouds, which are smaller than those (between 5 and 10 %)

derived by Loeb et al. (2005). The reduction in relative rms

errors is mostly due to the improved cloud algorithms which

provide more reliable f , τ̃ , and cloud phase retrievals.

The TOA ADM flux in each ln(f τ̃ ) interval is obtained

by integrating SW radiances inferred from the sigmoidal

fits in all upwelling directions. Anisotropic factors for dif-

ferent ln(f τ̃ ) values are derived for each angular bin fol-

lowing Eq. (1). Figure 5 shows the anisotropy factors at

θ0= 44–46◦ in the principal plane for liquid clouds with

three ln(f τ̃ ) values and for different cloud phases with

ln(f τ̃ )= 6. Anisotropy depends on the magnitude of ln(f τ̃ )

and cloud phase. The liquid and mixed clouds exhibit well-

defined peaks in anisotropy due to cloud glory and rainbow

features, while ice clouds exhibit peaks in anisotropy in the

specular reflectance direction. Cloudy scenes tend to be more

isotropic as ln(f τ̃ ) increases and as clouds change from liq-

uid to ice phase.

4.2 Land

4.2.1 Clear sky

Over land, clear footprints are defined as having f < 0.1 %.

Loeb et al. (2005) used a eight-parameter fit from Ahmad and

Deering (1992) to characterize the bidirectional reflectance

distribution function (BRDF) over clear land/desert. How-

ever, a kernel-based bidirectional model has proven to be

effective in modeling the surface BRDF (Lucht et al.,

2000; Chopping et al., 2008). Here we adopt the reciprocal

RossThick–LiSparse model (Ross–Li; Roujean et al., 1992;

Li and Strahler, 1992) to develop the reflectance over clear

land/desert:

ρ (µ0,µ,φ)= k0+k1 ·B1 (µ0,µ,φ)+k2 ·B2 (µ0,µ,φ) . (8)

The first term quantifies the isotropic contribution to BRDF;

the second term estimates the directional reflectance of a flat

surface with randomly distributed and oriented protrusions;

and the third term approximates the radiative transfer within

a vegetation canopy, modified by Maignan et al. (2004) to

account for the hot spot effect.

We derive the kernel weights (k0, k1, k2) using CERES

clear-sky RAP measurements for every 1◦ latitude by 1◦ lon-

gitude region for each calendar month to quantify the TOA

BRDF. The measured radiance in each CERES FOV is con-

verted to a reflectance as

ρ (θ0,θ,φ)=
πI (θ0,θ,φ)

µ0E0

(1+ ese)
2, (9)

where µ0= cos θ0, E0 is the TOA solar incoming flux

(1361 W m−2), and (1+ ese) is the Earth–Sun distance in as-

tronomical units. To account for the effects of solar zenith

angle, vegetation coverage, and surface roughness on BRDF,

the weights are derived separately for different intervals

of µ0 (0.2), TOA normalized difference vegetation index

(NDVI, 0.1), and for two categories of elevation variabil-

ity (EV) over rough terrain. A 1◦× 1◦ region is regarded
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Figure 5. CERES SW anisotropic factors over ocean in the principal plane for (a) liquid clouds with different ln(f τ̃ ) values, (b) clouds of

different phases with ln(f τ̃ )= 6. Anisotropic factors are derived for θ0= 44–46◦ based upon 60 months of CERES Terra measurements.

Figure 6. CERES SW anisotropic factors in the principal plane for a region centered at 6.5◦ S and −59.5◦W for (a) July and (b) September

for θ0= 24◦ for all available NDVI bins. Anisotropic factors are derived based upon 60 months of CERES Terra measurements over clear

CERES footprints.

as rough terrain if its median EV is greater than 25 m,

and this region is then separated into two groups using the

median EV. The TOA NDVI over clear land/desert/fresh-

snow CERES FOV is determined using PSF-weighted mean

MODIS 0.64 µm (Ĩ0.64) and 0.86 µm (Ĩ0.86) radiances:

NDVI=
Ĩ0.86− Ĩ0.64

Ĩ0.86+ Ĩ0.64

. (10)

The TOA NDVI is used to separate subregions within a

1◦× 1◦ region that have different surface characteristics (sur-

face type or vegetation coverage) and/or different aerosol

properties. Note that the TOA NDVI is not corrected for at-

mospheric effect; hence it tends to decrease as aerosol optical

depth increases as the aerosols are more effective scatters at

0.64 µm than at 0.86 µm.

To construct ADMs from the BRDF fits, albedos for each

µ0 interval in which the BRDF fit was derived are calculated

by directly integrating the BRDFs. Next, a fit from Rahman

et al. (1993) is used to account for the albedo dependence

on solar zenith angle in each µ0 interval. The instantaneous

anisotropic factor at a given location is derived from the ratio

of reflectance to albedo for a combination ofµ0, TOA NDVI,

and EV.

Figure 6 shows the clear-sky anisotropic factors derived

from the Ross–Li model for a 1◦× 1◦ region in the Amazon

(6–7◦ S, 59–60◦W) for July and September, the dry season

for this location. The TOA NDVI ranges from 0.49 to 0.79

for July, but it is much lower (from 0.34 to 0.64) for Septem-

ber. The anisotropic factors are more isotropic as TOA NDVI

decreases and the hot spots become less prominent. Because

this region has a weak seasonality in phenology (Bradley

et al., 2011), the sharp decline in TOA NDVI from July to

September can not be explained solely by changes in vegeta-

tion. However, biomass burning reaches its peak in Septem-

ber and the aerosol optical depth is 3–4 times larger than

that of July (Bevan et al., 2009), which leads to the decrease

in NDVI. Figure 6 demonstrates that using NDVI to strat-

ify the CERES measurements can provide distinctly different

ADMs under different aerosol conditions, as NDVI contains

combined spectral information of land surface and aerosols.

The Ross–Li model produces a more accurate character-

ization of anisotropy when compared to the model used by

Loeb et al. (2005). Figure 7a and b show the rms error be-

tween the normalized measured radiances and the normal-

ized predicted radiances (Eq. 4) from the two versions of

ADMs using all clear-sky measurements of July 2002 from

CERES Terra RAP mode. The mean rms error using the

ADMs from Loeb et al. (2005) is 7.0 %, and it is reduced

to 5.7 % using the new ADMs. Significant improvements are

noted over high-latitude regions. Table 1 lists the mean rms

error for January, April, July, and October for 2002 CERES

Terra and 2004 CERES Aqua. The new ADMs reduce the
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618 W. Su et al.: Next-generation angular distribution models

Table 1. The rms error (%) between normalized measured radiances and ADM-predicted radiances over clear-sky land. Two versions of

CERES ADMs are used (Loeb and New). The new ADM results are stratified into two populations by using the median aerosol optical depth

(AODm) of each 1◦ by 1◦ region.

Terra 2002 Aqua 2004

ADMs Loeb New New New Loeb New New New

AOD all all <AODm >AODm all all <AODm >AODm

Jan 6.7 6.6 5.8 5.8 7.2 5.6 6.5 6.5

Apr 6.4 5.7 5.3 5.4 6.8 6.0 5.8 5.7

Jul 7.0 5.7 5.0 5.2 7.1 5.8 5.3 5.3

Oct 6.8 6.0 5.4 5.5 7.5 6.4 6.0 5.9
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Figure 7. RMS error between normalized measured radiances and normalized ADM predicted radiances
for clear-sky land, (a) using ADMs from Loeb et al. (2005), (b) using the new ADMs, (c) using the new
ADMs only for footprints with AODs less than the median AOD, and (d) using the new ADMs only for
footprints with AODs greater than the median AOD.
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Figure 7. The rms error between normalized measured radiances and normalized ADM-predicted radiances for clear-sky land, (a) using

ADMs from Loeb et al. (2005), (b) using the new ADMs, (c) using the new ADMs only for footprints with AODs less than the median AOD,

and (d) using the new ADMs only for footprints with AODs greater than the median AOD.

clear-sky rms error for all seasons and large reductions occur

in boreal summer and fall.

To investigate if the rms error depends on aerosol loading

and type, we stratify the data in each 1◦× 1◦ region into two

populations by using the median AOD of the region. For a

given footprint, if AOD from the MODIS dark target retrieval

(Levy et al., 2010) is not available we use that from the Deep

Blue retrieval (Hsu et al., 2004). Note that MODIS aerosol

retrievals are not available for every clear CERES footprint

because different cloud mask algorithms were used. These

footprints are not used in calculating the rms errors for the

two aerosol populations. The rms errors for the population

with AOD less than and greater than the median are shown in

Fig. 7c and d, and they are almost identical. Over northwest-

ern Africa, the median AOD exceeds 0.5 (not shown) and is

predominantly dust aerosols. Over eastern China, the median

AOD exceeds 0.5 and is predominantly polluted aerosols.

Over Australia, the median AOD is less than 0.1. Although

these regions have very different aerosol loadings and are of

different types, the rms errors over these regions do not vary

with aerosols. Table 1 also lists the rms errors for these two

aerosol populations and they differ by less than 0.2 %.

4.2.2 Cloudy sky

Over cloudy land/desert, we adopt the same methodology

as Loeb et al. (2005), which we briefly review here. The

anisotropy over cloudy land/desert depends not only on cloud

properties but also on the underlying surface type, especially

for thin and broken cloud conditions. A similar approach as

clouds over ocean (Sect. 4.1.2) is used to develop the ana-

lytical ADMs over cloudy land/desert by accounting for the

contribution from the surface. The observed radiance is split

into four terms:

I (µ0,µ,φ)= (1− f )
µ0E0

π
ρclr (µ0,µ,φ)+ f I

cld (µ0,µ,φ)

+ f
µ0E0

π

[
ρclr (µ0,µ,φ)e

−π
µ0 e

−π
µ

+αclr t
cld (̃τ ,µ0) t

cld (̃τ ,µ)

1−αclrαcld(̃τ )

]
, (11)

where the first and second terms represent reflection from

the cloud-free and cloudy areas, and the third and fourth

terms correspond to scattering by the surface and atmosphere

transmitted through the clouds. Here ρclr is the clear-sky
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Figure 8. Cumulative distributions of the relative RMS errors for the sigmoidal fits over cloudy land
using CERES Terra measurements
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Figure 8. Cumulative distributions of the relative rms errors for the

sigmoidal fits over cloudy land using CERES Terra measurements.

BRDF and αclr is the clear-sky spherical albedo (Thomas and

Stamnes, 1999), and they are derived from 1◦× 1◦ BRDF

fits (Sect. 4.2.1); I cld is the radiance from the cloudy layer;

αcld is the cloudy-sky spherical albedo and tcld is the diffuse

transmittance of the cloud. The lookup tables of αcld and tcld

are generated using the broadband Langley Fu–Liou radia-

tive transfer model (Fu and Liou, 1993; Rose et al., 2013).

Cloudy area contribution (f I cld) is derived from Eq. (11).

The mean f I cld is calculated for each 0.04 interval of

ln(f τ̃ ) and the relationship between them is quantified us-

ing sigmoidal fit (Eq. 7) separately for liquid, mixed, and

ice clouds. An angular resolution of 5◦ in θ0, θ , and φ is

used for clouds over land/desert. Figure 8 shows the cumu-

lative probability distribution of the relative rms errors be-

tween mean f I cld and fitted radiances for all angular bins

with θ0 between 10 and 80◦ for liquid, mixed, and ice clouds.

There are 71.2, 72.0, and 65.8 % of the angular bins with

relative rms errors less than 5, and 93.0, 92.1, and 88.6 %

of the angular bins with relative rms errors less than 10 %

for liquid, mixed, and ice clouds. The mean relative rms er-

rors for all these angles are 4.4, 4.5, and 5.4 % for the three

cloud phases, which are slightly larger than the rms errors

over cloudy ocean.

The TOA ADM flux is computed by integrating Eq. (11)

in all upwelling directions for each ln(f τ̃ ) interval using SW

radiances inferred from the sigmoidal fits for cloudy area

and BRDF fits for clear area. Anisotropic factors for differ-

ent ln(f τ̃ ) values are derived for each angular bin following

Eq. (1). Figure 9 shows the anisotropic factors in the princi-

pal plane for θ0= 40–45◦ for liquid clouds with three ln(f τ̃ )

values and for different cloud phases with ln(f τ̃ )=6. Cloudy

scenes tend to be more isotropic as ln(f τ̃ ) increases and as

clouds change from liquid to ice phase.

4.3 Fresh snow

4.3.1 Clear sky

Over fresh snow, clear sky is defined as footprints with

f < 1 %. Previously clear-sky fresh-snow ADMs were devel-

oped for discrete intervals of snow fractions (from the cloud

mask). Because the anisotropy of fresh snow is also affected

by the underlying surface type, we adopt the method that we

used for clear land to account for the effect of surface type

on fresh-snow anisotropy. The clear land method can be ex-

tended to fresh snow because we derive the kernel weights

for each 0.1 NDVI interval. For NDVI values around 0.1, it

is likely there is snow on the ground (Hall et al., 2002). Fur-

thermore, recent airborne measurements also indicate that the

Ross–Li BRDF model is suitable over snow surfaces (Lya-

pustin et al., 2010).

Figure 10 shows the anisotropic factor in the principal

plane for grid box centered at 49.5◦ N and −119.5◦W de-

rived using all clear footprints from January measurements

on Terra. There are two NDVI bins. The surface types that

correspond to the low and high NDVI bins are fresh snow

and evergreen needleleaf forest, respectively. The anisotropic

factor for the snow-covered surface is more isotropic than

snow-free surface.

4.3.2 Cloudy sky

The cloudy-sky fresh-snow ADMs are derived for dis-

crete intervals of cloud fraction and snow fraction (Loeb

et al., 2005; Kato and Loeb, 2005). For overcast conditions

(f > 99 %), the ADMs are derived separately for bright and

dark surfaces and for thin (̃τ ≤ 10) and thick (̃τ > 10) clouds.

A CERES FOV is determined to be bright or dark by compar-

ing to the monthly climatological fresh-snow map. The snow

map is calculated as follows: (1) determine mean MODIS

0.64 µm near-nadir (θ < 25◦) reflectances as a function of so-

lar zenith angle using all clear fresh-snow CERES FOVs;

(2) within a 1◦ latitude× 1◦ longitude region, if the MODIS

radiances of more than 50 % of CERES FOVs are greater

than the mean radiances, this region is classified as bright.

Otherwise, this region is classified as dark. The same method

is also used to classify sea ice and permanent snow into bright

and dark categories by Loeb et al. (2005) and Kato and Loeb

(2005).

4.4 Permanent snow

4.4.1 Clear sky

Over permanent snow, footprints with f < 0.1% are de-

fined as clear. Loeb et al. (2005) divided clear permanent

snow footprints into dark and bright categories using the

same method outlined in Sect. 4.3.2 and built corresponding

ADMs. However, the surface conditions are very different

between Antarctica and Greenland. The snow surface over

Antarctica is covered by sastrugi because of the strong and

consistent katabatic wind flow there. Sastrugi are dune-like

features that are generally aligned parallel to the prevailing

wind direction. They can be over a meter high (Warren et al.,

1998) and thus have significant effect on snow surface BRDF

www.atmos-meas-tech.net/8/611/2015/ Atmos. Meas. Tech., 8, 611–632, 2015
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Figure 9. CERES SW anisotropic factors over land in the principal plane for (a) liquid clouds with
different ln(f τ̃) values, (b) clouds of different phases with ln(f τ̃)=6. Anisotropic factors are derived for
θ0=40◦-45◦ based upon 60 months of CERES Terra measurements.
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Figure 9. CERES SW anisotropic factors over land in the principal plane for (a) liquid clouds with different ln(f τ̃ ) values, (b) clouds of

different phases with ln(f τ̃ )= 6. Anisotropic factors are derived for θ0= 40–45◦ based upon 60 months of CERES Terra measurements.
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Figure 9. CERES SW anisotropic factors over land in the principal plane for (a) liquid clouds with
different ln(f τ̃) values, (b) clouds of different phases with ln(f τ̃)=6. Anisotropic factors are derived for
θ0=40◦-45◦ based upon 60 months of CERES Terra measurements.

46

Figure 10. CERES clear-sky SW anisotropic factors in the principal plane for a region centered at 49.5◦ N and −119.5◦W for January for

θ0= 70◦ for all available NDVI bins. The IGBP surface type for NDVI between 0.1 and 0.2 is fresh snow and the IGBP surface type for NDVI

between 0.2 and 0.3 is evergreen needleleaf forest. Anisotropic factors are derived based upon 60 months of CERES Terra measurements

over clear CERES footprints.
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Figure 11. Mean TOA albedo and standard deviation as a function of solar azimuth angle using clear
footprints in a south pole region (88◦S-89◦S, and 76◦W-83◦W) during all Decembers of 2000-2004, for
θ0=65◦-70◦. The blue line shows albedos calculated using the ADMs from Loeb et al. (2005) and the
green line shows albedos calculated with the new ADMs.
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Figure 11. Mean TOA albedo and standard deviation as a func-

tion of solar azimuth angle using clear footprints in a South Pole

region (88–89◦ S, and 76–83◦W) during all Decembers of 2000–

2004, for θ0= 65–70◦. The blue line shows albedos calculated us-

ing the ADMs from Loeb et al. (2005) and the green line shows

albedos calculated with the new ADMs.

(e.g., Warren et al., 1998; Kuchiki et al., 2011). However, sas-

trugi are not found to be a noticeable feature on Greenland.

To account for the differences in surface conditions, we de-

velop separate ADMs for Antarctica and Greenland.

Antarctica

Corbett et al. (2012) demonstrated that the instantaneous

albedo over clear permanent snow calculated from Ed2SSF

shows a sine wave shape as solar azimuth angle changes

(while φ remains within a 5◦ bin, blue line of Fig. 11). This

is because the effect that sastrugi have on the snow BRDF

depends on their orientation relative to the sun. When they

are aligned parallel to the sun the reflectance in the forward

scattering direction is relatively high, and the back scatter-

ing reflectance is relatively low in comparison to when the

sastrugi are aligned perpendicular to the sun.

To understand how sastrugi affect snow BRDF, we use

measurements from the Multi-angle Imaging Spectrora-

diometer (MISR; Diner et al., 1998), which provides near-

simultaneous measurements of a target from nine cameras

(four forward, four aftward and one nadir). These multi-angle

measurements are used to quantify the effect of sastrugi on

reflectances at different viewing angles, and a set of adjust-

ment factors are developed to account for the effect of sas-

trugi on ADMs based upon co-located MISR and CERES

measurements (Loeb et al., 2006).

We can demonstrate the effect of sastrugi over clear-sky

Antarctica by examining the joint distributions of the stan-

dard scores of 0.86 µm reflectances (ρm) from any two pairs

of MISR cameras. The standard score is defined as
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Figure 12. (a) Joint probability distribution of 0.86 µm reflectance standard scores between MISR’s Df
and Da cameras. The dashed lines indicate the standard score ranges used to develop adjustment factors.
(b) as in (a) but for MISR’s Df and Cf cameras. (c) the Df conditional probabilities of standard score,
when the Da standard score is between -1 and -2 (blue histogram) and between 1 and 2 (green histogram).
(d) adjustment factor against viewing zenith angle for the different standard score ranges for θ=65◦-70◦

in the forward direction. Dashed lines indicate the nine MISR camera angles. These values are used to
adjust the mean CERES reflectances in order to create the ADMs.
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Figure 12. (a) Joint probability distribution of 0.86 µm reflectance standard scores between MISR’s Df and Da cameras. The dashed lines

indicate the standard score ranges used to develop adjustment factors. (b) As in (a) but for MISR’s Df and Cf cameras. (c) The Df conditional

probabilities of standard score when the Da standard score is between −1 and −2 (blue histogram) and between 1 and 2 (green histogram).

(d) Adjustment factor against viewing zenith angle for the different standard score ranges for θ = 65–70◦ in the forward direction. Dashed

lines indicate the nine MISR camera angles. These values are used to adjust the mean CERES reflectances in order to create the ADMs.

z(θ0,θm,φ)=
ρm (θ0,θm,φ)− ρm (θ0,θm,φ)

σρm (θ0,θm,φ)
, (12)

where the averages (ρm) and standard deviation (σρm ) are cal-

culated in 5◦ bins for all available θ0 and φ at each MISR

viewing angle θm. The absolute value of z represents the de-

parture of a measurement from the mean in units of the stan-

dard deviation, with negative z indicating the measurement

is below the mean and positive z is above the mean.

Figure 12 shows the joint distributions of z between for-

ward viewing Df (θm= 70.5◦) camera and aftward view-

ing Da (θm=−70.5◦) camera, and between Df camera and

forward viewing Cf (θm= 60◦) camera using all available

clear-sky measurements (including multiple θ0 and φ bins).

The two forward viewing cameras (Fig. 12b) show a strong

positive correlation, but the forward and aftward cameras

(Fig. 12a) show a distinct negative correlation. This indicates

that the sastrugi are increasing the reflectance in one direc-

tion while at the same time decreasing the reflectance in the

opposite direction. Thus, if the sastrugi cause the reflectance

at a given angle to deviate from the mean by a certain amount,

the joint distributions characterize how the sastrugi will af-

fect the reflectances at other angles. We then use these to get

the conditional probabilities for seven discrete intervals of z

(dashed lines in Fig. 12a and b), allowing us to estimate the

most likely z of one camera, given another camera’s z. As z

does not change with θ0 and is only sensitive to φ being in

the forward or backward direction, we average z over all θ0

and forward and backward directions (z(θm, φf/b)). For ex-

ample, the most likely z value for the Df camera is 1.1 when

z is between −2 and −1 for the Da camera (blue histogram

in Fig. 12c), and the most likely z value for the Df camera

is −0.8 when z is between 1 and 2 for the Da camera (green

histogram in Fig. 12c). Thus, for each MISR camera, depend-

ing on the magnitude of z at this angle, we can estimate the

most likely z at the eight other camera angles.

These standard score relationships established using

nine MISR camera angles (vertical dashed lines in Fig. 12d)

are interpolated onto 5◦ θc bins (symbols in Fig. 12d) for use

with CERES measurements. For a reflectance measurement

at a given θ and φ, depending on how much it deviates from

the mean, we can adjust the reflectances at other θc bins ac-
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cordingly. The adjustment factors also depend on φ; hence

they are derived separately for the forward and backward

directions and are denoted as β(θc, φf/b, z)θ,φ . Figure 12d

shows an example of the adjustment factors for θ = 65–70◦

and for the forward scattering direction. The seven curves

are for the seven standard score groups, and the shape of

these curves indicate how much the reflectance at other view-

ing angles should be adjusted. If the standard score of a re-

flectance taken at θ = 65–70◦ is greater than 2, the shape

of the red solid line shows how much the reflectances at

other viewing angles should be adjusted. For example, the re-

flectance at θc= 20◦ should be 0.7 standard deviations above

the mean, and the reflectance at θc=−50◦ should be 1.0

standard deviations below the mean. Note that, regardless of

the standard score range, the most likely value at nadir is al-

ways close to zero (no deviation from the mean reflectance).

This is expected as sastrugi only have a large effect on the

BRDF at oblique angles.

To construct ADMs, we first calculate the mean CERES

reflectance (ρ) and standard deviations (σρ) in 2◦ θ0 bins and

5◦ θ and φ bins using clear footprints over Antarctica. For

each CERES θ bin, we apply the adjustment factors to ρ:

ρa (θ0,θ,φ,θc,φf/b,z)= ρ (θ0,θ,φ)+β(θc,φf/b,z)θ,φ

× σρ (θ0,θ,φ), (13)

where ρa(θ0, θ , φ, θc, φf/b, z) is the adjusted reflectance for

a given z range; if φ < 90◦, we pick the forward adjustment

factor β(θc, φf, z)θ,φ ; otherwise we use β(θ , φb, z)θ,φ . These

adjusted reflectances are integrated over all upwelling direc-

tions and the ADMs are derived from Eq. (1). Thus for each

θ bin, we develop 14 ADMs representing how anisotropy

changes as the reflectance deviates from the mean. To im-

prove sampling, combined Terra and Aqua ADMs were de-

veloped over Antarctica as no significant differences were

found over polar regions between measurements on these two

spacecrafts.

For every instantaneous measurement, we need to know

the standard score to selected the correct ADMs. The stan-

dard score is determined by using the mean reflectance

and standard deviation calculated using all (RAP and cross-

track) CERES measurements from Terra and Aqua for each

sun-satellite viewing geometry. A linear interpolation be-

tween standard score bin midpoints is used to interpolate the

anisotropic factors. The new ADMs are successful in remov-

ing the albedo dependence on solar azimuth angle (green line

in Fig. 11).

Greenland

Over Greenland, we create only one set of ADMs for clear

sky, as we do not have enough samples to develop separate

ADMs for bright and dark surfaces (Sect. 4.3.2). For the

same reason, we also combined data from Terra and Aqua

to develop combined ADMs. These ADMs are also applied

to all non-Antarctic permanent snow scenes.

4.4.2 Cloudy sky

For partly cloudy scenes (0.1 %<f < 99.9 %) over perma-

nent snow, we use the same method as Loeb et al. (2005)

and Kato and Loeb (2005) to develop ADMs for discrete in-

tervals of f and adding linear interpolation between mid-

points of f bins. For overcast scenes (f ≥ 99.9 %), we

separate the footprints by ECP and τ̃ . We use two ECP

bins (ECP< 1.5 and ECP≥ 1.5) and four τ̃ bins (ln τ̃ < 1,

1≤ ln τ̃ < 2, 2≤ ln τ̃ < 3, and ln τ̃ ≥ 3) to construct ADMs.

These τ̃ bin values roughly correspond to quartiles of the

overcast cloud optical depths over permanent snow. Surface

brightness is not considered here. Additionally, no distinction

of cloud phase is made for θ0< 60◦ to preserve sampling.

Similar to the anisotropy of clouds over ocean/land, the ice

phase ADMs are more isotropic than the liquid phase ADMs

over permanent snow.

4.5 Sea ice

The surface of sea ice is highly variable in space and time,

ranging from snow-covered ice to bare ice to melt ponds.

This variability in surface type affects the characterization of

SW sea ice anisotropy. As there are very few data sets avail-

able that provide information about the surface conditions of

the Arctic/Antarctic sea ice, one way to obtain information is

through the use of spectral channels (e.g., Rösel et al., 2012;

Tschudi et al., 2008). The reflectances of 0.47 and 0.86 µm

channels from MODIS provide large contrast for different

sea ice surface types (Rösel et al., 2012), and we define the

sea ice brightness index as

η = 1−
ρ0.47− ρ0.86

ρ0.47+ ρ0.86

. (14)

For bright surfaces, such as snow over sea ice, η is close to

1 as the spectrum is relatively flat between the two chan-

nels. As the snow/ice melts and melt ponds begin to form,

the 0.86 µm reflectance decreases faster than the 0.47 µm re-

flectance, causing η to decrease, with the lowest values oc-

curring for open ocean. This is confirmed by the evolution of

monthly η maps in the Arctic region (not shown). In April,

η is high (above 0.9 over most of the Arctic oceans), as the

sea ice is mostly covered by snow after the winter. As the

year progresses into summer and snow/ice melts, η starts to

decrease.

4.5.1 Clear sky

Over sea ice, clear sky is defined as footprints with f < 1 %.

The ADMs for clear sky are developed for six sea ice fraction

(from cloud mask algorithms) bins with angular resolutions

of 5◦ for all θ0, θ , and φ. For scenes with sea ice fraction

greater than 99 %, they are further divided into three η bins

(Table 2). The BRDFs of the three η classes for θ0= 65–70◦

are shown in Fig. 13. The lowest η bin has the lowest albedo

and highest anisotropy in its BRDF. This is what we would
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Table 2. Sea ice SW ADM scene type definitions by cloud fraction (%), sea ice fraction (%), sea ice brightness index (η), cloud optical depth

(̃τ ), and effective cloud phase (ECP).

Cloud Sea ice Sea ice Cloud Cloud

fraction (%) fraction (%) brightness optical depth phase

0–1 0–1 all – –

(clear) 1–25 all – –

25–50 all – –

50–75 all – –

75–99 all – –

99–100 η≤ 0.85, 0.85<η≤ 0.935, η> 0.935 – –

1–25 0–1 all all all

25–50 1–25 all all all

50–75 25–50 all all all

50–75 all all all

75–99 all all all

99–100 η≤ 0.85, 0.85<η≤ 0.935, η> 0.935 all all

75–99 0–1 all ln τ̃ < 1, ln τ̃ ≥ 1 all

1–25 all ln τ̃ < 1, ln τ̃ ≥ 1 all

25–50 all ln τ̃ < 1, ln τ̃ ≥ 1 all

50–75 all ln τ̃ < 1, ln τ̃ ≥ 1 all

75–99 all ln τ̃ < 1, ln τ̃ ≥ 1 all

99–100 η≤ 0.85, 0.85<η≤ 0.935, η> 0.935 ln τ̃ < 1, ln τ̃ ≥ 1 all

99–100 all 0–0.6 continuous in ln τ̃ ECP<1.5, ECP≥ 1.5

all 0.6–0.7 continuous in ln τ̃ ECP< 1.5, ECP≥ 1.5

all 0.7–0.8 continuous in ln τ̃ ECP< 1.5, ECP≥ 1.5

all 0.8–0.9 continuous in ln τ̃ ECP< 1.5, ECP≥ 1.5

all 0.9–1.0 continuous in ln τ̃ ECP< 1.5, ECP≥ 1.5
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Figure 13. Clear-sky sea ice BRDFs for three η classes for θ0= 65–70◦.

expect, as the surface types that are being represented in this

range are known to be more anisotropic than the surface rep-

resented by the higher η bins, such as snow.

The ADMs that we developed for the high η bin corre-

spond well to the “bright” ADMs from Loeb et al. (2005)

and Kato and Loeb (2005), while the ADMs for the low η

bin correspond well to the “dark” ADMs. The ADMs for the

mid-η bin sit between the high and low ones. The use of η

provides a measure to objectively separate the scenes into

different brightness categories.

4.5.2 Cloudy sky

For partly cloudy scenes (1≤ f < 99 %), we use a similar

approach to that of Loeb et al. (2005) and Kato and Loeb

(2005). However, for partly cloudy scenes we redefine the

sea ice fraction to be the fraction of the clear portion of the

footprint covered by sea ice (namely, normalize the sea ice
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fraction by the clear-area fraction). Previously the sea ice

fraction used was the fraction of the footprint covered by sea

ice, which, as the sea ice under the clouds is unknown, could

not be greater than the clear-area fraction. This redefinition

increases the number of ADMs for partly cloudy scenes (Ta-

ble 2) and allows us to be consistent in how we treat the

clear-sky sea ice, regardless of the cloud fraction. For scenes

with sea ice fraction greater than 99 %, we also split the

scenes into three η bins (same as clear sky). We use the

PSF-weighted MODIS reflectance over clear portion of the

footprint to calculate η. For scenes with 75≤ f < 99 %, we

also construct ADMs for thin (ln τ̃ < 1) and thick (ln τ̃ ≥ 1)

clouds.

For overcast conditions (f ≥ 99 %), the new ADMs are

based on a linear regression between reflectance and lnτ̃ .

Separate regressions are derived for liquid (ECP< 1.5) and

ice (ECP≥ 1.5) clouds, and for five η bins (Table 2). As η is

calculated using clear MODIS pixels, we create maps of η for

each month for each 1◦ equal angle region from clear-sky and

partly cloudy footprints. Mean reflectances are calculated for

each θ0, θ , φ, ECP, η, and ln τ̃ bins. The angular resolution is

5◦ for all three angles and the width of the ln τ̃ bin is 1. Linear

fits are then performed between these mean reflectance val-

ues and the ln τ̃ bin midpoints. Figure 14a shows an example

of the linear regression between mean reflectance and ln τ̃ for

θ0= 55–60◦, θ = 35–40◦, and φ= 45–50◦. Reflectances are

larger for higher η bins than for lower η bins. However, once

the ln τ̃ is high enough, the reflectances intersect. This sug-

gests there is a point where the optical thickness overcomes

the effect of the surface brightness.

Reflectances from linear regressions are integrated to de-

rive albedo for different values of ln τ̃ . Albedo increases lin-

early with ln τ̃ , and a linear regression is used to represent

the relationship between the albedo and ln τ̃ (Fig. 14b). For

the same ln τ̃ value, albedos are higher for ice clouds than

for liquid clouds, and they are also higher for larger η. Albe-

dos and reflectances from the linear regressions are used to

derive anisotropic factors.

4.6 Mixed-scene fields of view

For CERES FOVs that consist of multiple surface types, the

SW anisotropic factors are determined by accounting for the

area coverage by each surface type:

R(θ0,θ,φ)=
π
(
aWÎW+ aLÎL+ aSÎS

)
aWF̂W+ aLF̂L+ aSF̂S

, (15)

where aW, aL, and aS are the area fraction over a FOV cov-

ered by water, land, and snow/ice; ÎW, ÎL, and ÎS are the

corresponding mean radiances from ADMs for the three sur-

face types; and F̂W, F̂L, and F̂S are the corresponding ADM

fluxes.
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Figure 14. (a) Mean CERES reflectance values against ln τ̃ for dif-

ferent cloud phases and mean η values for θ0= 55–60◦, θ = 35–

40◦, and φ= 45–50◦. The fitted linear regression lines are also

shown. (b) The albedo values against ln τ̃ for different cloud phases

and mean η values and the fitted regressions.

5 Longwave and window angular distribution models

The LW/WN anisotropy is a weak function of θ0 and φ;

therefore, the LW/WN ADMs are developed only as a func-

tion of θ (with a 2◦ angular bin resolution). Day and night

ADMs are developed separately, because different cloud re-

trieval algorithms are used for daytime and nighttime scenes.

5.1 Clear sky over ocean, land, and desert

The clear-sky LW and WN ADMs are defined in terms of sur-

face and meteorological properties. As in Loeb et al. (2005),

there are six surface types (ocean, forests, savannas, grass-

land/cropland, dark deserts, and bright deserts). For foot-

prints with mixed surface types, the anisotropy is calculated

by averaging the ADM radiance and flux among the differ-

ent types, weighted by the surface area of each type (Eq. 15).

The meteorological variables used for the LW/WN ADMs

are precipitable water (w), lapse rate (1T ), and surface skin

temperature (Ts). The lapse rate is defined as the difference

between Ts and the temperature at a level 300 hPa below the

surface pressure. The intervals for w, 1T , and Ts are listed

in Table 3. Note there are now additional bins used for Ts.

For clear-sky scenes, the most important variable for

LW/WN anisotropy is Ts, as the ADMs become more

anisotropic when Ts increases. The 20 K interval used for Ts

by Loeb et al. (2005) meant that a scene with Ts= 291 K

would be assumed to have the same anisotropy as one with

Ts= 309 K. This leads to errors in predicted radiance in ar-

eas that have Ts close to the bin boundaries. To correct this,

the skin temperature bin size was reduced from 20 to 10 K,

and interpolation between the Ts bins is performed when

possible. The interpolation is performed in radiance space,
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Table 3. Precipitable water (w), lapse rate (1T ), and surface skin

temperature (Ts) intervals used to determine LW and WN ADMs

under clear-sky conditions over the ocean, land, and desert. There

are 4 w bins, 4 1T bins, and 10 Ts bins.

w (cm) 1T (K) Ts (K)

0–1 < 15 < 260

1–3 15–30 260–340 every 10 K

3–5 30–45 > 340

> 5 > 45

where the new anisotropic factor is calculated from a mean

radiance Î (w, 1T , Ts) linearly interpolated between Î (w,

1T , Ts1
) and Î (w, 1T , Ts2

), where Ts1
<Ts<Ts2

. Note

that, because skin temperatures are not necessarily evenly

distributed within a Ts bin, the interpolation is between bin-

averaged values of Ts. There are cases where interpolation is

impossible because there is not a valid ADM above or be-

low that of the scene’s ADM. In these cases, the bin’s mean

ADM is used as in Loeb et al. (2005). The use of smaller

Ts bins and interpolation reduces the rms error (Eq. 4) over

the oceans near 30◦ S, where the Ts is around 290 K, and the

global daytime monthly mean rms error is reduced from 1.7–

1.8 to 1.2–1.4 %.

We also consider additional w bins, but this has very little

effect on reducing the rms error. Elevation variability is also

tested as an additional LW ADM variable for daytime clear

land scenes, in an attempt to reduce the rms error over rough

terrain. However, adding elevation variability has very little

impact on the rms error.

5.2 Clear sky over permanent snow, sea ice, and fresh

snow

The ADMs over clear permanent snow, sea ice, and fresh

snow are constructed for different Ts bins (Table 4), as Ts

is the most important variable for LW/WN anisotropy. The

Ed4SSF produces relatively few clear-sky footprints over

snow and ice surfaces, particularly at the limb. For this rea-

son, the ADMs for these surfaces are constructed using RAP

measurements from both the Terra and Aqua satellites. In

cases where there were no clear footprints for a given com-

bination of surface type, θ , and Ts, the mean radiance at the

given θ and Ts over all snow and ice surface types (from both

day and night footprints) is used. This procedure is only used

for 51 out of 1485 (or 3.4 %) total θ bins, and the bins af-

fected tend to be at the limb, where F̂ has low sensitivity to

uncertainties in radiance. Note that for mixed snow and ice

surfaces, the predominant surface type is used to determine

the anisotropy.

One additional factor for clear-sky anisotropy over the

poles is stratospheric temperature. Over Antarctica, the sur-

face temperature falls suddenly to approximately 215 K

with the onset of the polar night in April, but the tem-

perature at 20 km falls from approximately 210 K in April

to 185 K in July (Hudson and Brandt, 2005). Since there

is very little emission from water vapor bands for such

cold atmospheres, the emission from CO2 bands in the

stratosphere is the most important departure from black-

body emission, and changes in the stratospheric temperature

have some impact on the anisotropy. Experiments with the

Principal Component-based Radiative Transfer Model (Liu

et al., 2006) using the temperature profiles from Hudson and

Brandt (2005) indicate that the anisotropic factor associated

with a nadir viewing zenith angle would rise from 0.995 in

April to 1.002 in July. However, there is currently no strato-

spheric temperature information available on the SSF data

product; the effect of stratospheric temperature on anisotropy

will be addressed in the future.

5.3 Cloudy sky over ocean, land, and desert

When clouds are present over ocean, land, and desert sur-

faces, we adopt the same method as Loeb et al. (2005) to con-

struct ADMs as a function of “pseudoradiance” (ψ), which

characterizes scenes in terms of f , w, Ts, and surface–cloud

temperature difference (1Tsc):

ψ (w,Ts,Tc,f,εs,εc)= (1− f )εsB (Ts)

+

2∑
j=1

[
εsB (Ts)

(
1− εcj

)
+εcjB

(
Tcj

)]
fj , (16)

where εs is the surface infrared emissivity, εc is the cloud

infrared emissivity, Tc is the cloud-top temperature, and

B(T )=π−1 σT 4 is the blackbody radiance, where σ is

the Stefan–Boltzmann constant. Subscript j indicates the

j th cloud layer within a CERES footprint. The quantity εcj

is determined according to

εcj = 1− e
−τaj , (17)

where the infrared absorption cloud optical depth of the

j th layer is denoted by τaj , and is calculated according to the

approach given in Minnis et al. (1998) using the visible opti-

cal depth and ice/liquid radius retrievals from the SSF prod-

uct. The pseudoradiance is meant to characterize emission

from the surface and cloud tops. For a given surface type,

and intervals of w, Ts, 1Tsc, and f (Table 5), the average ra-

diance is calculated for every 1 W m−2 sr−1 ψ bin. Separate

ADMs are calculated for day and night, and for the Terra and

Aqua satellites using RAP measurements. Here we increase

the number of f bins compared to that used by Loeb et al.

(2005). This additional f bin had little impact on the ADMs,

but it was implemented to be consistent with the f bins used

for other surface types.

A more substantial change in the cloudy-sky ADMs is in

the derivation of estimated radiance from pseudoradiance.
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Table 4. Surface skin temperature (Ts) intervals used to determine LW and WN ADMs under clear-sky conditions over permanent snow, sea

ice, and fresh snow.

Surface type Ts (K) Number of

Ts bins

Permanent snow (day) < 210; 210–270 every 10 K; > 270 7

Permanent snow (night) < 210; 210–250 every 10 K; > 250 6

Sea ice (day) < 240; 240–270 every 10 K; > 270 5

Sea ice (night) < 230; 230–250 every 10 K; > 250 4

Fresh snow (day) < 240; 240–270 every 10 K; > 270 5

Fresh snow (night) < 230; 230–270 every 10 K; > 270 6

Table 5. Surface type, precipitable water (w), cloud fraction (f ), surface–cloud temperature difference (1Tsc), and surface skin tempera-

ture (Ts) intervals used to determine LW and WN ADMs under cloudy conditions over the ocean, land, and desert surface. There are 4w bins,

5 f bins, 22 1Tsc bins, and 11 Ts bins.

Surface type w (cm) f (%) 1Tsc (K) Ts (K)

Ocean 0–1 0.1–25 <−15 < 275

Land 1–3 25–50 −15 to 85 every 5 K 275 to 320 every 5 K

Desert 3–5 50–75 > 85 > 320

> 5 75–99.9

99.9–100

Loeb et al. (2005) used a third-order polynomial to charac-

terize the relationship between radiance and ψ . The poly-

nomial fit can be problematic for clouds with 1Tsc> 85 K

(Fig. 15). The problems appear to arise because the polyno-

mial is fitted to the entire range of ψ for a given interval of

w, Ts, 1Tsc, f , and θ . Most of the observed clouds are at

low ψ values (where the observed radiance increases rapidly

with ψ), while the upper part of the ψ range is for optically

thin clouds (where the observed radiance increases slowly

with ψ). Instead of a polynomial fit, the new ADMs use the

mean observed radiance (Î ) for each ψ bin, when possible.

If the mean observed radiance at a given ψ bin is not avail-

able, we use the polynomial fit as a backup. Examples of the

mean radiance at each ψ bin for three θ bins are shown in

Fig. 16a for daytime ocean scenes with w> 5 cm, Ts= 300–

305 K, 1Tsc= 65–70 K, and f = 100 %. We see that there is

a larger decrease in Î with θ for higher values of ψ , which

correspond to optically thinner clouds for a fixedw, Ts,1Tsc,

and f . The mean radiances Î are calculated for each θ bin for

different surface types for the intervals ofw, f , Ts, and1Tsc.

These radiances are then integrated over θ to produce F̂ , and

then R is calculated from Eq. (1).

The anisotropic factors for ψ = 51.5 and 99.5 W m−2 sr−1

are shown in Fig. 16b for clouds with the same characteristics

as those shown in Fig. 16a. We see that, for low ψ values

(thick clouds), R does not change much with θ because there

is little contribution from the surface, even at nadir. For high

ψ values (thin clouds), a significant amount of radiance from

the warm ocean surface is transmitted through the cloud at

nadir, but the cold cloud top dominates as θ increases. In

Figure 15. Observed LW radiances (contoured by percentage ) for

nighttime overcast clouds over ocean surfaces with 1Tsc> 85 K,

300<Ts< 305 K, w> 5 cm, and 60◦<θ < 62◦ plotted against

pseudoradiance. Third-order polynomial fit is shown with solid

black line, and mean radiance for each 1 Wm−2 sr−1 bin is shown

with broken white line.

addition to the changes listed above, additional bins at higher

values of1Tsc were tested, but this did not have a significant

effect on the retrieved fluxes.

5.4 Cloudy sky over permanent snow, sea ice, and fresh

snow

Loeb et al. (2005) developed ADMs over snow and ice sur-

faces for discrete intervals of f , Ts and 1Tsc. For the new

cloudy-sky ADMs over snow and ice, we use the pseudo-

radiance approach that is used for cloudy-sky land, ocean,

and desert (Sect. 5.3). The bin intervals of f , Ts and 1Tsc
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Table 6. Surface type, cloud fraction (f ), surface–cloud temperature difference (1Tsc), and surface skin temperature (Ts) intervals used to

determine LW and WN ADMs over cloudy permanent snow, sea ice, and fresh-snow surfaces. There are 5 f bins, 10 1Tsc bins, and 8 Ts

bins.

Surface type f (%) 1Tsc (K) Ts (K)

Permanent snow 0.1–25 <−10 < 210

Fresh snow 25–50 −10 to 70 every 10 K 210 to 270 every 10 K

Sea ice 50–75 > 70 > 270

75–99.9

99.9–100
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Figure 16. a) LW radiance against ψ for three θ bins over ocean for w>5 cm, 65<∆Tsc<70 K,
300<Ts<305 K, and f=100%. b) LW anisotropic factors for ψ=51.5Wm−2sr−1 and ψ=99.5Wm−2sr−1.
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Figure 16. (a) LW radiance againstψ for three θ bins over ocean forw> 5 cm, 65<1Tsc< 70 K, 300<Ts< 305 K, and f = 100 %. (b) LW

anisotropic factors for ψ = 51.5 Wm−2 sr−1 and ψ = 99.5 Wm−2 sr−1.

used for snow and ice are listed in Table 6. The pseudora-

diance formulation allows the LW/WN ADMs to take cloud

emissivity into account (via the cloud optical depth) over per-

manent snow, sea ice, and fresh-snow surfaces. Variations in

cloud emissivity were not considered previously, since the

only cloud property used was cloud fraction. The ADMs are

constructed separately for day and night, and separately for

the Terra and Aqua satellites using RAP measurements. For

mixed cloudy snow and ice surface types, the predominant

surface type is used to determine the anisotropy.

An example of the variation of LW radiance with ψ

for three θ bins is shown in Fig. 17a for daytime perma-

nent snow scenes with Ts= 240–250 K, 1Tsc= 30–40 K,

and f = 100 %. The anisotropic factors for the same scenes

are shown in Fig. 17b for ψ = 39.5 and 51.5 W m−2 sr−1.

Here the anisotropy increases withψ , although the increment

with ψ is smaller than that over warm surfaces (Fig. 16b).

This is because the atmospheric (and associated cloud top)

temperatures over polar regions tend to be closer to those at

the surface than over warm oceans.

6 Footprints with insufficient imager information

For some CERES footprints, there is insufficient imager cov-

erage because of missing MODIS data and/or the lack of

scene identifications due to cloud property retrievals. When

the total fraction of unknown cloud properties is over 35 %,

we rely on artificial neural network (ANN) simulations to de-

termine the anisotropic factors (Loukachine and Loeb, 2004).

The percentage of footprints that are categorized as having

insufficient imager information is greatly reduced in Ed4SSF

(less than 2.0 % compared to 5.6 % for Ed2SSF) because of

the improvement in cloud algorithms. We follow the method-

ology of Loukachine and Loeb (2004) and use 1 year of Terra

and 1 year of Aqua RAP measurements to train the respective

ANN ADMs. The instantaneous fluxes from the new ANN

ADMs are validated against the fluxes inverted from the orig-

inal ADMs. For SW, the rms difference between these two

sets of fluxes is 5.3 %. For daytime LW (WN), the rms dif-

ference is about 1.0 % (1.3 %), and for nighttime LW (WN),

the rms difference is 1.5 % (1.6 %). These rms differences are

about half of those found in Loeb et al. (2005).

7 Effects of scene identifications and ADMs on TOA

fluxes

TOA fluxes in Ed4SSF are different from those in Ed2SSF

because of the changes in cloud algorithms and ADMs. To

separate the changes in TOA fluxes caused by cloud algo-

rithms from ADMs, we apply ADMs from Loeb et al. (2005)

to the new cloud algorithms used for Ed4SSF (hereafter refer

to as Ed4SSFβ). Thus, the differences between Ed4SSF and

Ed4SSFβ are due to changes in the ADMs, and differences

between Ed4SSFβ and Ed2SSF are due to changes in the

cloud algorithms. A more stringent test for the ADM effects

on flux would be updating the ADMs developed by Loeb

www.atmos-meas-tech.net/8/611/2015/ Atmos. Meas. Tech., 8, 611–632, 2015
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Figure 17. a) LW radiance against ψ for three θ bins over permanent snow for 30<∆Tsc<40 K,
240<Ts<250 K, and f=100%. b) LW anisotropic factors for ψ=39.5Wm−2sr−1 and ψ=50.5Wm−2sr−1.
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Figure 17. (a) LW radiance againstψ for three θ bins over permanent snow for 30<1Tsc< 40 K, 240<Ts< 250 K, and f = 100 %. (b) LW

anisotropic factors for ψ = 39.5 Wm−2 sr−1 and ψ = 50.5 Wm−2 sr−1.
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Figure 18. Instantaneous flux differences caused by changes in cloud algorithms (left panels, Ed4SSFβ-
Ed2SSF ) and by changes in ADMs (right panels, Ed4SSF-Ed4SSFβ). a) and b) for SW, c) and d) for
daytime LW, and e) and f) for nighttime LW, using Terra measurements of October 2002.
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Figure 18. Instantaneous flux differences caused by changes in cloud algorithms (left panels, Ed4SSFβ-Ed2SSF ) and by changes in ADMs

(right panels, Ed4SSF-Ed4SSFβ): (a) and (b) for SW, (c) and (d) for daytime LW, and (e) and (f) for nighttime LW, using Terra measurements

of October 2002.

et al. (2005) with the new cloud algorithms. However, the

updated ADMs were not available. The ADM effects on flux

would have been expected to be slightly smaller if we had

used the updated ADMs than what we present below.

Figure 18 shows the effects of cloud algorithms (left pan-

els) and ADMs (right panels) on instantaneous monthly grid-

ded (1◦× 1◦) TOA SW, daytime LW, and nighttime LW

fluxes for October 2002 using Terra measurements. Large

regional flux differences are due to changes in cloud algo-

rithms, as the new cloud algorithms detect more clouds dur-

ing both daytime and nighttime (except over Antarctica), and

the clouds are also thinner (except over the polar regions

during daytime) than the cloud algorithms used for Ed2SSF

(Fig. 19). Additionally, because more MODIS data are avail-

able for the Ed4SSF processing and the improvement in the

new cloud algorithms, there are more FOVs that provide

Atmos. Meas. Tech., 8, 611–632, 2015 www.atmos-meas-tech.net/8/611/2015/
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Figure 19. Daytime (right panels) and nighttime (left panels) sample number changes (a and b), cloud
fraction changes (%, c and d), and cloud optical depth changes (e and f) between Ed2SSF and Ed4SSF
for each 1◦ latitude × 1◦ longitude region, using Terra measurements of October 2002.
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Figure 19. Daytime (right panels) and nighttime (left panels) sample number changes (a, b), cloud fraction changes (%, c and d), and

cloud optical depth changes (e, f) between Ed2SSF and Ed4SSF for each 1◦ latitude× 1◦ longitude region, using Terra measurements of

October 2002.

valid flux inversions (Fig. 19a and b). Globally, the monthly

mean instantaneous TOA fluxes decrease by 0.3, 0.4, and

0.3 W m−2 for SW, daytime LW, and nighttime LW between

the new and old cloud algorithms. The new ADMs that we

describe in this paper tend to increase the TOA SW fluxes

(except over the polar regions), the daytime LW fluxes (ex-

cept over some portion of the land regions), and the nighttime

LW fluxes (except over the Antarctic). The global monthly

mean instantaneous TOA fluxes increased by 0.6, 0.4, and

0.2 W m−2 for SW, daytime LW, and nighttime LW.

For monthly mean instantaneous TOA fluxes, we expect

to see large differences (> 15 W m−2 for SW,> 3 W m−2 for

LW) on regional scales due to changes in cloud algorithms

and ADMs (difference between Ed2SSF and Ed4SSF).

However, differences in monthly global mean instanta-

neous fluxes are much smaller. For example, the monthly

global mean differences for Terra 2002 range from −0.2 to

0.6 W m−2 for SW, from−0.8 to 0.2 W m−2 for daytime LW,

and from −0.1 to 0.0 W m−2 for nighttime LW. Thus, differ-

ences in 24 h averaged fluxes would be even smaller than the

instantaneous flux differences, especially for SW fluxes.

8 Conclusions

To study the Earth’s radiative energy budget, the CERES-

measured SW and LW radiances must be converted to out-

going reflected SW and emitted LW fluxes at the TOA.

To accomplish this conversion, we developed scene-type-

dependent CERES SW, LW, and WN ADMs. Scene types are

determined by using surface types, cloud properties, aerosol

properties, and meteorological data from GEOS-5. ADMs

are derived separately for Terra and Aqua using all avail-

able CERES RAP measurements on each spacecraft for most

scene types. Over some snow/ice scenes, combined Terra and

Aqua ADMs are developed to improve sampling.

Over clear ocean, CERES SW ADMs over the non-glint

regions are developed for six wind speed bins, three aerosol

optical depth bins, and two aerosol types; and SW ADMs

over the glint regions are developed without considering the

aerosol types. Over clear land/desert/fresh snow, SW ADMs

are developed for every 1◦ latitude× 1◦ longitude region for

every calendar month using Ross–Li BRDF model. The ker-

nels for the BRDF model are derived for different intervals

of µ0, NDVI, and two categories of EV over rough terrain.

We construct clear permanent snow ADMs separately for

Antarctica and Greenland. Over Antarctica, we use MISR

www.atmos-meas-tech.net/8/611/2015/ Atmos. Meas. Tech., 8, 611–632, 2015
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measurements to construct ADMs that account for the effects

of sastrugi on anisotropy (but we do not need MISR mea-

surements to apply the ADMs); over Greenland, we develop

only one set of ADMs as sastrugi are not a noticeable feature

there. Over clear sea ice scenes, the SW ADMs are devel-

oped for six sea ice fraction bins, and when sea ice fraction

is greater than 99 %, the scenes are further divided into three

sea ice brightness index bins.

Over cloudy ocean, SW ADMs are defined as continuous

functions of ln(f τ̃ ), where f and τ̃ are cloud percentage

coverage and cloud optical depth derived from collocated im-

ager pixels. The relationship between CERES-measured SW

radiance and ln(f τ̃ ) is quantified using a sigmoidal fit to de-

velop ADMs, and the ADMs are derived separately for liq-

uid, mixed, and ice phase clouds. Over cloudy land/desert,

the sigmoidal fit is also used to relate the CERES SW radi-

ance from clouds with ln(f τ̃ ), by accounting for the surface

anisotropy using the clear-sky ADMs. Over cloudy fresh-

snow surfaces, the SW ADMs are constructed for discrete

intervals of cloud fraction and snow fraction; under overcast

conditions, ADMs are also derived by accounting for surface

brightness and cloud optical depth. Over cloudy permanent

snow, the SW ADMs are constructed for discrete intervals

of cloud fraction; under overcast conditions, cloud optical

depth and cloud phase are also included in ADM develop-

ment. Over cloudy sea ice, ADMs are developed accounting

for cloud fraction, sea ice fraction and brightness; for scenes

with cloud fraction greater than 75 %, ADMs are developed

for two categories of cloud optical depth; for overcast condi-

tions, linear regression between reflectance and ln τ̃ are used

to develop ADMs for liquid and ice phase clouds under dif-

ferent sea ice brightness bins.

Under clear-sky conditions, the CERES LW/WN ADMs

are developed for different surface types. Over land and

ocean, ADMs are derived for discrete intervals of precip-

itable water, surface skin temperature, and lapse rate; over

snow and ice surface, ADMs are derived only for discrete in-

tervals of surface skin temperature. For cloudy conditions,

the LW/WN ADMs are developed by combining surface

and cloud-top temperature, surface and cloud emissivity,

cloud fraction, and precipitable water (only over ocean, land,

desert) into a “pseudoradiance” parameter.

The new ADMs described in this paper change the

monthly mean 1◦× 1◦ instantaneous fluxes by less than

5 W m−2, compared to the ADMs developed by Loeb et al.

(2005). However, the changes in global monthly mean in-

stantaneous TOA fluxes are much smaller, generally less than

0.5 W m−2.
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