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Abstract. Continuous rainfall measurements from ground-

based radars are crucial for monitoring and forecasting heavy

rainfall-related events such as floods and landslides. How-

ever, complete coverage by ground-based radars is often

hampered by terrain blockage and beam-related errors. In

this study, we presented a method to fill the radar gap using

surrounding radar-estimated precipitation and observations

from a geostationary satellite. The method first estimated the

precipitation over radar gap areas using data from the Com-

munication, Ocean, and Meteorological Satellite (COMS);

the first geostationary satellite of Korea. The initial precip-

itation estimation from COMS was based on the rain rate-

brightness temperature relationships of a priori databases.

The databases were built with temporally and spatially collo-

cated brightness temperatures at four channels (3.7, 6.7, 10.8,

and 12 µm) and Jindo (126.3◦ E, 34.5◦ N) radar rain rate ob-

servations. The databases were updated with collocated data

sets in a timespan of approximately one hour prior to the des-

ignated retrieval. Then, bias correction based on an ensem-

ble bias factor field (Tesfagiorgis et al., 2011b) from radar

precipitation was applied to the estimated precipitation field.

Over the radar gap areas, this method finally merged the bias-

corrected satellite precipitation with the radar precipitation

obtained by interpolating the adjacent radar observation data.

The merging was based on optimal weights determined from

the root-mean-square error (RMSE) with the reference sen-

sor observation or equal weights in the absence of reference

data. This method was tested for major precipitation events

during the summer of 2011 with assumed radar gap areas.

The results suggested that successful merging appears to be

closely related to the quality of the satellite precipitation es-

timates.

1 Introduction

The need for continuous monitoring and accurate measure-

ment of precipitation is critical for the efficiency of severe

weather and hazard predictions, such as that of flash floods,

landslides, and extreme rainfall forecasts. Precipitation is

conventionally estimated from ground-based radar by ob-

serving the backscattered reflectivity from raindrops (Austin,

1987). The precipitation estimates obtained from radars are

quite beneficial to weather forecasters and meteorologists,

because radar-estimated rain rate information is available in

high spatial and temporal resolutions. However, there may be

observational gap areas caused by terrain blockage and beam

breakdown. In particular, radar estimates can be significantly

absent over mountainous regions where heavy rainfalls can

occur. Assuring the continuous measurement of precipitation

highly varying in space and time creates the need for merging

available observations over the gap areas.

Precipitation estimates from geostationary satellites may

be considered to mitigate the discontinuity in radar observa-

tions because the satellites provide large observational cover-

age at high spatial and temporal resolutions. Despite the ad-

vantage of frequent observation from geostationary satellites,

the primary infrared(IR)-based sensors onboard the satellites

only detect cloud-top brightness temperatures that are indi-

rectly related to the physical process of surface precipita-

tion (Kidd et al., 2003). The ground-based radar, which is

an active microwave sensor, can estimate precipitation more

accurately than IR-based precipitation estimation, because

microwave sensors can detect radiation directly from water

droplets or ice particles within clouds. Therefore, better pre-

cipitation estimates over radar gap areas may be attained by
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Table 1. List of precipitation cases for the precipitation estimations from the geostationary satellite and construction of a priori databases.

Precipitation case

Selected date and time Date and time of radar and satellite

for precipitation observations for a priori databases

retrieval (YYMMDDHHMM)

(YYMMDDHHMM) Radar Satellite

1107091340 1107091345

1107091330 1107091330

1 1107091400 1107091310 1107091315

1107091300 1107091300

1107091230 1107091230

1107092040 1107092045

1107092000 1107092000

2 1107092100 1107091940 1107091945

1107091930 1107091930

1107091900 1107091900

1107121140 1107121145

1107121100 1107121100

3 1107121200 1107121040 1107121045

1107121030 1107121030

1107121000 1107121000

1108072240 1108072245

1108072230 1108072230

4 1108072300 1108072210 1108072215

1108072200 1108072200

1108072130 1108072130

utilizing the adjacent radar estimated precipitation and satel-

lite estimations.

Some researchers have attempted to produce precipita-

tion information using multi-sensor estimated precipitation.

Kondragunta et al. (2005) integrated the satellite precipita-

tion estimates after local bias correction with radar and rain

gauge data in order to fill missing radar observations. Ma-

hani and Khanbilvardi (2009) generated multi-sensor pre-

cipitation products by merging satellite precipitation esti-

mates from the Hydro-Estimator (HE) algorithm (Scofield

and Kuligowski, 2003) with ground-based radar observations

in order to improve satellite-based precipitation retrieval.

Their results showed that merged precipitation tends to be

more accurate than satellite only driven precipitation over

radar gap areas. A similar approach was performed by Tesfa-

giorgis et al. (2011a). The approach applied bias correction

to the satellite precipitation estimates obtained from the HE

algorithm and proposed a successive correction method in

order to merge the satellite precipitation estimates with the

radar observation.

In this study, we developed a method of precipitation esti-

mation over radar gap areas based on the merging of geosta-

tionary satellite and radar observations currently operated by

the Korea Meteorological Administration (KMA). We used

a geostationary satellite called the Communication, Ocean,

and Meteorological Satellite (COMS) which was launched

in June 2010. COMS has four IR channels and one visible

channel with band centers located at 3.7, 6.7, 10.8, 12.0, and

0.67 µm, respectively (Choi et al., 2007). COMS provides the

brightness temperature (Tb) from IR channels every 15 min,

which has a 4 km spatial resolution over the Korean Penin-

sula. Precipitation estimates using IR Tb from geostationary

satellites have been presented in previous studies (e.g., Vi-

cente et al., 1998; Scofield and Kuligowski, 2003). In this

study, we independently estimated precipitation from COMS

based on a reference of radar observations. The methodology

for estimating the precipitation from a geostationary satellite

and the merging technique of radar and satellite precipitation

estimates are described in Sect. 2. This method was tested

with four precipitation cases during the summer of 2011 (Ta-

ble 1). The results of the merged precipitations are presented

in Sect. 3. A summary of our study is presented in Sect. 4.

2 Methodology

The methodology described in this study was designed to

create a merged radar and satellite estimated precipitation

field over radar gap areas. Figure 1 shows a schematic

representation of merging the radar and satellite precipi-

tation estimates. The methodology consisted of two parts.

The first part (Block 1) is related to the retrieval of
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Figure 1. A flow diagram to estimate the precipitation over a radar

gap area by merging the radar and satellite data.

satellite precipitation based on an a priori database. The other

part (Block 2) illustrates the procedure for merging satel-

lite precipitation estimates and adjacent radar observations

with optimally determined weights based on reference mea-

surements. The details of the methodology are discussed in

the following sub-sections. Among the 11 Doppler weather

radars currently operated by KMA over the Korean Penin-

sula, the radar at Jindo, in the west part of the Korean Penin-

sula (Fig. 2), was used in this study. The Jindo radar uses

the S-band typical for weather radars with an observation

range of 240 km radius. It primarily monitors precipitation

and storms approaching from the west of the Korean Penin-

sula.

2.1 Satellite precipitation estimation

2.1.1 The databases

Precipitation estimations from satellites in this study were

principally based on the relationships between the rain

rate and the satellite-observed Tb characterized by a pri-

ori databases. In the construction of the a priori database,

the radar-estimated rain rates were collected to ensure con-

sistency with the radar. Then, the brightness temperatures

at the four channels (3.7, 6.7, 10.8, and 12 µm) of COMS

were collocated temporally and spatially with the radar rain

rate observations in the databases. Downscaling of the satel-

lite data to 1 km was performed in order to collocate the

Figure 2. The location of the Jindo radar (red triangle) and its ob-

servational coverage (black circle), which indicates the study area.

radar and satellite data, because of the difference between the

radar (1× 1 km) and satellite (4× 4 km) spatial resolutions.

A satellite pixel was split into 4 pixels in both the longitu-

dinal and latitudinal directions. Then, the collocated satellite

brightness temperature (Tbcol
) was computed as follows:

Tbcol
=

n∑
i=1

Wi · Tborg

n∑
i=1

Wi

(1)

and

Wi = exp

(
−r2

2 · resradar

)
, (2)

where Tborg , resradar, and r indicate the Tb at the original res-

olution (4× 4 km), the radar spatial resolution (1 km), and

the distance between the satellite sub-pixel and radar pixel at

location i. This collocation method applies to the Tb at each

of the four channels. After collocation, the radar rain rate and

corresponding satellite Tb was collected over the radar obser-

vational area for each of the selected precipitation cases. The

databases also included non-raining areas of the Tb in order

to discriminate non-raining areas.

In order to include the database elements reasonably close

to the physical properties of a target scene, the database was

supposed to be continuously updated in a time span of ap-

proximately 1.5 or 2 h prior to the designated retrieval time.
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Therefore, the final database consisted of sub-databases con-

structed at five different time steps before the selected re-

trieval period. The data and time of the radar and satellite

data for each of the precipitation cases used in the construc-

tion of the a priori databases are shown in Table 1. In ad-

dition, each sub-database was set to have a different weight

based on the time difference from the designated retrieval.

The weight was expressed as follows:

Ti = exp

(
−ti

tmax

)
, (3)

where ti is the interval between the construction time of the

ith sub-database and the designated retrieval time, and tmax

is the largest time interval between the sub-databases and

the retrieval. Since the radar and satellite data were avail-

able every 10 and 15 min, respectively, there was a tempo-

ral mismatch of 5 min between the two data sets. In order to

minimize the effects of the temporal inconsistency, the mis-

matched data set was assigned to have a smaller weight than

the matched one.

As an example of the database characteristics, the rela-

tionships between the radar rain rate and the satellite Tb at

the four different channels for the precipitation case 2 are

shown in Fig. 3. Empty squares indicate a mean of the Tb

of a 2 mm h−1 interval of the radar rain rate. It was observed

that the Tb tended to decrease as the radar rain rate increased.

Similar relationships for GOES-8 Tb at 10.7 µm and the radar

rain rate were also shown by Vicente et al. (1998).

2.1.2 Retrievals and bias correction

Once the a priori databases were constructed, the satellite

precipitation estimation was achieved through the Bayesian

inversion method as utilized by Shin and Kummerow (2003).

In this approach, finding the posterior probability was the pri-

mary objective. The probability may be written as follows:

P (R|Tb)= P(R)×P(Tb|R), (4)

where P(R | Tb) is the probability of a particular rain rate

R at a given Tb, P(R) is the probability that a specific rain

rate can be observed, and P (Tb |R) is the probability of ob-

serving Tb at a particular R. As outlined by Rodgers (2000),

the conditional probability P (Tb |R) may be simulated by

a multi-dimensional Gaussian distribution of the difference

between the observation and the corresponding simulation

from a forward model. The uncertainty was also involved in

the observation and forward simulation. However, in a re-

trieval using the observational database as in this study, the

error from the forward computations would not appear in the

covariance matrix for the term P (Tb |R). The covariance ma-

trix has only the diagonal elements of the instrumental noises

at each channel. Furthermore, since the P(R) of the prior in-

formation, constructed during the period close to the desig-

nated retrieval time, was a good description of the true prob-

ability distribution of the precipitation fields observed by the

Figure 3. Mean relationship between the COMS brightness tem-

perature (Tb) and the Jindo radar rain rate. Channels at 10.8, 12.0,

3.7, and 6.7 µm are indicated by black, blue, green, and red squares,

respectively.

radar, the P(R)was simply replaced by the frequency of each

element in the prior information.

After the retrieval of the satellite precipitation, a bias cor-

rection based on an ensemble bias factor field (Tesfagiorgis

et al., 2011b) computed from the radar precipitation was em-

ployed in order to improve the retrieval accuracy. The bias

factor, which was defined as the ratio of a radar rain rate

and the retrieved satellite precipitation at a specific loca-

tion and time, was randomly selected over the study area.

Ensembles of the perturbed bias factor and bias field were

then generated. The details of the ensemble bias correction

method were described by Tesfagiorgis et al. (2011b). By us-

ing the bias field, the bias-corrected precipitation estimation

from the satellite was calculated. The radar-observed precip-

itation (left column) and the satellite-estimated precipitation

with the bias correction (right column) from four of the pre-

cipitation cases are presented in Fig. 4. The spatial patterns

of the satellite precipitations were relatively well matched

to those of the radar observations. The bias-corrected satel-

lite precipitation estimates were also compared to those by

the radar observations in terms of the bias, root-mean-square

error (RMSE), and correlation statistics (Fig. 5). The bias

and correlation coefficients between the radar and satellite

estimates ranged from 1.21 to 4.10 mm h−1 and from 0.46

to 0.61, respectively. Although all of the estimation statis-

tics tended to improve after the bias correction (not shown),

a relatively large bias and RMSE still existed depending on

the cases. The statistics might be attributed to the inherently

indirect and inconsistent physical relationships between the

surface rainfall and the satellite IR Tb.
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Figure 4. Images of the Jindo radar rain rates (left column) and

satellite precipitation estimates after bias correction (right column)

for the four precipitation cases.

2.2 Merging radar and satellite precipitation estimates

Precipitation estimation over radar gap areas was based on

the merging of two precipitation fields: the bias-corrected

satellite precipitation and the radar observations interpolated

from the surrounding radar observations. The procedure to

obtain the satellite precipitation estimates with bias correc-

tion was discussed in the previous section. The interpolation

of the adjacent radar observations across the gap areas was

performed using the following equation:

Figure 5. Scatter density diagrams of the radar rain rate estima-

tion and satellite estimated precipitation after bias correction for the

four precipitation cases of (a) case 1, (b) case 2, (c) case 3, and

(d) case 4. Comparison statistics including correlation coefficient

(Corr), bias, and root-mean-square error (RMSE) are also presented

in each panel.

R′ =

N∑
k=1

Ik ·Rk

N∑
k=1

Ik

, (5)

where R′ is the interpolated radar rain rate at a pixel at the

radar resolution over the gap area and Rk is the radar ob-

served rain rate at the kth pixel among N pixels within a

5 km distance from the location of R′. Ik is the kth pixel’s

weight determined by the following Gaussian function:

Ik = exp

(
−d2

k

2r2

)
, (6)

where dk is the distance (km) between the given pixel over

the radar gap area and the kth pixel over the surrounding area,

and r is the maximum distance (km), which was set to 5 km

in this study. We may then note that the interpolation is sim-

ply based on the distances between the pixel in the gap and

the radar pixels in the surrounding area. The interpolation

repeats at each pixel within the gap area. This interpolated

value was merged with the matching satellite precipitation

estimate at a pixel over the radar gap area. The method of
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merging was applied only within the gap area, so that the

initial radar observations remained intact outside of the gap

area.

In order to generate the merged precipitation field, the

weight coefficients allocating the contribution from each data

set over the radar gap area needed to be determined. The

weight coefficients are calculated at each pixel. The pro-

posed method in this study is thus considered a successive

correction implying a pixel-by-pixel calculation of the gap

(e.g., Brandes, 1975; Mahani and Khanbilvardi, 2009; Tesfa-

giorgis and Mahani, 2013). The previous study of Bran-

des (1975) applied a successive correction method to produce

radar calibration fields using rain gauges. Mahani and Khan-

bilvardi (2009) and Tesfagiorgis and Mahani (2013) used

satellite precipitation estimates and surrounding radar pre-

cipitation within a moving window. These studies utilized the

difference between radar and satellite precipitation estima-

tions of surrounding gap (outside of the gap) for generating

merged precipitation. This study first estimates satellite pre-

cipitation and interpolates the radar rain rate field over the

gap areas using surrounding radar-estimated precipitation.

Optimal merging weights are then determined for the satel-

lite precipitation and interpolated precipitation fields based

on the RMSE difference from the reference data. The weight

coefficient, Kl , for the lth data set can be written as follows:

Kl =

1

σ 2
l

n∑
m=1

1

σ 2
m

l = 1, . . ., n, (7)

where σl and σm are the RMSE difference from the reference

data for the lth and mth data sets, respectively. In order to

evaluate the accuracy of the merged precipitation field, the

synthetic radar gap areas in the radar observational coverage

were set and three experiments with the two different refer-

ence data sets and the equal weight were performed.

The first determined the optimal weights based on the orig-

inal radar observation over the synthetic gap area. This ex-

periment was not possible in practice, since the radar obser-

vations did not exist over the gap area. It was deliberately

performed in order to compare with the other two merg-

ing experiments. The second experiment used the Automatic

Weather Station (AWS) data as the reference observation.

The AWS observation nearest to the merging pixel was se-

lected in this experiment. The final one assigned equal weight

coefficients to each data set (Kl = 1/n). The weight coeffi-

cient was 1 / 2 for the two data sets. This experiment could

be used in case any reference data were not available over the

gap area. The merging method works for either of the rain or

no-rain cases over the gap areas. The results of the three ex-

periments merging the interpolated radar precipitation field

and bias-corrected satellite precipitation data over the radar

gap area are presented in the next section. In the experiments,

the radar gap areas were selected over significant raining re-

gions with rain rates greater than 10 mm h−1 and its size was

Figure 6. Images of the Jindo radar rain rate estimations for the four

different precipitation cases of (a) case 1, (b) case 2, (c) case 3, and

(d) case 4. The black boxes in the rain images indicate the synthetic

radar gap areas whose size is 0.3◦× 0.3◦ latitude-longitude.

set to 0.3◦× 0.3◦ latitude-longitude. The images for the four

radar observation cases with the synthetically located gap ar-

eas (black box) are shown in Fig. 6.

3 Result and discussions

Precipitation estimations over the gap areas by the three ex-

periments were performed for the four different precipitation

cases. All of the selected gap areas were filled with rainfalls.

The results are presented in Fig. 7. Again, the three exper-

iments merging the bias-corrected satellite and interpolated

radar precipitation fields using the radar-determined weights,

the AWS-driven weights, and the equal weights without the

reference data are shown in the columns of Exp. 1, Exp. 2,

and Exp. 3, respectively. All three of the experiments roughly

displayed patterns similar to those in the original images of

the radar (the first column) with a certain degree of discon-

tinuity around the boundaries of the gap areas. In particular,

discontinuity was found in the second and third experiments

that adopted the merging approaches based on the AWS data

and equal weights (columns of Exps. 2 and 3). The optimal

weight merging method using the radar as a reference sensor

seemed to simulate the precipitation field with the smallest

discontinuity around the gap areas in all of the precipitation

cases (column of Exp. 1).
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Figure 7. Precipitation distributions estimated by the Jindo radar

for the four precipitation cases (the first column), same as in Fig. 6,

but focused on the surrounding of the gap areas (black line box).

Precipitation estimations over the black boxes from the three merg-

ing experiments employing the optimal weights determined by the

original radar data and the AWS data, and the equal weights (1 / 2)

are illustrated in the rest of the columns, respectively.

Figure 8 also compares the accuracy of the three merging

experiments for each of the precipitation cases. The first ex-

periment (column Exp. 1) appeared to produce higher qual-

ity precipitation estimates over the gap areas with high cor-

relations (0.71, 0.81, 0.90, and 0.66) and relatively low bi-

ases (−0.50, 0.23,−0.56, and 1.41) for the four precipitation

cases. This result may have been expected, because the origi-

nal radar observations over the gap areas were involved in the

merging process. On the other hand, the other merging meth-

ods (Exps. 2 and 3) did not appear to produce comparable

results relative to the first experiment. In addition, the vary-

ing estimation statistics may suggest that the accuracy of the

merged results tended to depend on the precipitation cases

and the location of the gap areas. In particular, the correlation

coefficients from the second experiment based on the AWS

data turned out to be highly variable ranging from −0.06 to

0.76.

Comparisons of the radar observations, satellite estimates,

and merged results for their mean and standard deviations are

also presented in Table 2. In this study, the relative difference

was the ratio of the difference between the mean satellite esti-

mate (or the mean merged estimate) and the mean radar rain

rate to the mean radar rain rate. The standard deviations of

the merged results were less than those of the radar observa-

tions for all of the precipitation, implying that the variability

of the merged precipitation field was smaller than that of the

radar observation. For example, as shown in Table 2, the rela-

tive differences for the three merging experiments were quite

small (0.02, −0.01, and 0.10 mm h−1) for the precipitation

case 2, while the standard deviation differences between the

radar and merged precipitations were still noticeable. This

result suggests that the smaller variability appeared to be a

characteristic of the merged precipitation field and made a

distinct discontinuity around the gap areas in case 2 (Fig. 7),

regardless of the small relative differences. The other high-

light was that the absolute relative differences of the merged

results were smaller than those of the satellite estimates in

most of the cases. This indicates that the merging methods

tended to lead to better agreement with the radar observation

than applying only the satellite precipitation estimates to the

radar gap areas.

An attempt was made to analyze the impacts of the satel-

lite precipitation estimates on the merged results with addi-

tional radar gap areas at different locations and two differ-

ent precipitation cases including 10 July 2011, 12:00 (lo-

cal time) and 7 August 2011, 16:00. Figure 9 shows the

scatter diagrams of two of the correlation coefficients. The

first correlation (ρsr) was obtained from the satellite esti-

mates and the radar observations. The second (ρmr) indi-

cated the relationship between the merged precipitation es-

timates and the radar observation. Each of the scatter dia-

grams represents one of the three merging methods: (a) opti-

mal weight using radar, (b) optimal weight using AWS, and

(c) equal weight. An increasing trend of ρmr with an increase

in ρsr existed, indicating that highly correlated satellite pre-

cipitation estimates with radar observations produced well

matched merged precipitation fields over the radar gap with

radar observation, especially with merging methods of op-

timal weight using radar and equal weight. In other words,

more accurate precipitation estimation from satellites created

better merged results. This indicates that the accuracy of the

merged results depended on the accuracy of the satellite pre-

cipitation estimates. It was also obvious that ρmr was typi-

cally larger than ρsr except for a few cases in the merging

with AWS and equal weight. This result implies that using

merged precipitation fields helped to estimate more accu-

rate precipitation than using only satellite precipitation es-

timation over the radar gap area. In addition, the optimal

weight merging using the AWS method showed less depen-

dence on satellite estimates. This result may have been due

to the sparse distribution of the AWS observation data, which

failed to resemble the spatial characteristics of the radar ob-

servation.

The performance of the three merging methods was tested

(Fig. 10). The method of optimal weight merging using

radar clearly showed better performance than the other meth-

ods. The other notable feature was that the equal weight

www.atmos-meas-tech.net/8/719/2015/ Atmos. Meas. Tech., 8, 719–728, 2015
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Figure 8. Scatter diagrams for the radar rain rate estimations vs. the merged precipitation over the radar gap areas using the merging methods

of (a) optimal weight using radar, (b) optimal weight using AWS, and (c) equal weight for each of the precipitation cases.

merging method produced better merged results than the op-

timal weight merging using AWS. This result suggests that

the optimal weight information from the AWS appeared to

be inaccurate. The reason for this inaccuracy, as we have dis-

cussed previously, may be that the distance between the gap

pixel and the AWS (maximum 5 km) did not guarantee an

accurate description of the spatial characteristics of the radar

observation.

4 Summary

The merging methods of radar and satellite precipitation es-

timates over radar gap areas were presented in this study.

This method first retrieved satellite-based precipitation us-

ing a priori databases constructed from the radar at the

Jindo site (126.3◦ E, 34.5◦ N) and the COMS-observed Tb

at each IR channel. Retrieval of precipitation was achieved

through a Bayesian inversion, which depended on the

Atmos. Meas. Tech., 8, 719–728, 2015 www.atmos-meas-tech.net/8/719/2015/
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Table 2. Mean (mm h−1) and standard deviation (SD) (mm h−1) values of the radar observation, satellite precipitation estimates after bias

correction, and radar-satellite merged results over the radar gap areas for the four precipitation cases. In this study, the relative difference

indicates the ratio of the difference between the satellite estimates or merged results from the radar observation to the mean radar observation

over the radar gap area.

Precipitation case

Merged results

Radar Satellite estimates Optimal weight Optimal weight Equal weight

merging – radar (Exp. 1) merging – AWS (Exp. 2) merging (Exp. 3)

Mean SD Mean SD Relative Mean SD Relative Mean SD Relative Mean SD Relative

difference difference difference difference

1 6.61 6.51 5.04 3.14 −0.24 6.10 3.11 −0.08 9.45 3.74 0.43 7.56 2.64 0.14

2 12.26 3.33 16.12 2.97 0.31 12.49 2.28 0.02 12.12 1.65 −0.01 13.46 1.79 0.10

3 6.63 3.88 8.33 2.24 0.26 6.07 3.20 −0.08 5.14 2.34 −0.22 5.76 1.97 −0.13

4 14.24 7.20 18.48 5.43 0.30 15.65 4.82 0.10 17.19 5.08 0.21 16.60 4.19 0.17

Figure 9. Scatter diagrams of the two correlation coefficients. The first correlation in the abscissa is obtained from the satellite estimates and

radar rain rate estimations. The other correlation in the ordinate is from the merged precipitation estimates and the radar rain rate estimations.

Panels are classified by the three merged precipitation estimates from (a) optimal weight using radar, (b) optimal weight using AWS, and (c)

equal weight.

relationships between the radar rain rate and the satellite Tb

in the database. The initial satellite estimates were then ad-

justed by an ensemble bias correction method (Tesfagiorgis

et al., 2011b) using the radar data.

The merging of the bias-corrected satellite precipitation

and interpolated radar precipitation fields over the radar

gap areas was implemented by optimal weight merging.

The weights were calculated optimally from the radar and

AWS. For comparison, an additional merging experiment

with equal weight was included.

The results showed that the optimal weight merging

method using radar data produced the minimum discontinu-

ity around the radar gap areas, which were synthetically de-

fined to test the merging methods (Fig. 7). The accuracy of

the merged results was evaluated by comparing the merged

results and the original radar observations over the radar gap

area. The optimal weight using the radar method outper-

formed the other merging methods based on the AWS and

equal weights with relatively high correlation coefficients

(0.66–0.90). The equal weight merging method without any

reference information generated merged precipitation over

www.atmos-meas-tech.net/8/719/2015/ Atmos. Meas. Tech., 8, 719–728, 2015
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Figure 10. The correlation coefficients between the merged precip-

itation and radar rain rate estimation over the different gap areas.

The merged precipitation estimates are obtained from the merging

methods of optimal weight using radar (solid line), optimal weight

using AWS (dashed line), and equal weight (dotted line).

the radar gap area, with variable correlation coefficients of

0.34–0.70 depending on the precipitation cases (Fig. 8). The

results of this experiment may be used to produce practical

precipitation estimates when any other ground observation is

not available. In terms of the mean value of precipitation over

the gap areas, the merged precipitation field agreed with the

original radar data within ∼ 17 % except for one method of

merging (Table 2). More importantly, the results of this study

demonstrate that more accurate precipitation estimation from

satellites is essential in order to create better merging results

over the radar gap areas (Fig. 9).
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