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Abstract. The purpose of this study is to describe a new al-

gorithm based on a neural network approach (Passive mi-

crowave Neural network Precipitation Retrieval – PNPR)

for precipitation rate estimation from AMSU/MHS observa-

tions, and to provide examples of its performance for spe-

cific case studies over the European/Mediterranean area. The

algorithm optimally exploits the different characteristics of

Advanced Microwave Sounding Unit-A (AMSU-A) and the

Microwave Humidity Sounder (MHS) channels, and their

combinations, including the brightness temperature (TB) dif-

ferences of the 183.31 channels, with the goal of having a sin-

gle neural network for different types of background surfaces

(vegetated land, snow-covered surface, coast and ocean). The

training of the neural network is based on the use of a cloud-

radiation database, built from cloud-resolving model simula-

tions coupled to a radiative transfer model, representative of

the European and Mediterranean Basin precipitation clima-

tology. The algorithm provides also the phase of the precip-

itation and a pixel-based confidence index for the evaluation

of the reliability of the retrieval.

Applied to different weather conditions in Europe, the al-

gorithm shows good performance both in the identification of

precipitation areas and in the retrieval of precipitation, which

is particularly valuable over the extremely variable environ-

mental and meteorological conditions of the region.

The PNPR is particularly efficient in (1) screening and re-

trieval of precipitation over different background surfaces;

(2) identification and retrieval of heavy rain for convective

events; and (3) identification of precipitation over a cold/iced

background, with increased uncertainties affecting light pre-

cipitation. In this paper, examples of good agreement of pre-

cipitation pattern and intensity with ground-based data (radar

and rain gauges) are provided for four different case studies.

The algorithm has been developed in order to be easily tai-

lored to new radiometers as they become available (such as

the cross-track scanning Suomi National Polar-orbiting Part-

nership (NPP) Advanced Technology Microwave Sounder

(ATMS)), and it is suitable for operational use as it is com-

putationally very efficient. PNPR has been recently extended

for applications to the regions of Africa and the South At-

lantic, and an extended validation over these regions (using

2 yr of data acquired by the Tropical Rainfall Measuring Mis-

sion precipitation radar for comparison) is the subject of a pa-

per in preparation. The PNPR is currently used operationally

within the EUMETSAT Hydrology Satellite Application Fa-

cility (H-SAF) to provide instantaneous precipitation from

passive microwave cross-track scanning radiometers. It un-

dergoes routinely thorough extensive validation over Europe

carried out by the H-SAF Precipitation Products Validation

Team.

1 Introduction

Clouds and precipitation play a very important role in the

global water and energy cycle. Accurate global measure-

ments of precipitation are therefore important for the vali-

dation of global climate models and for understanding the
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natural variability of the earth’s climate. Moreover, rainfall

monitoring can serve as an important element for risk man-

agement of severe precipitation events.

Space-borne monitoring of clouds and precipitation all

around the globe has been gaining a growing interest from

the international scientific community as a primary contri-

bution to determine and detect the global climatic changes.

Both infrared (IR) and microwave (MW) emissions are used

for precipitation retrievals. While IR estimates of rainfall are

only indirect because IR measurements are sensitive only to

the uppermost layers of clouds, MW observations have the

great advantage of providing a more direct measurement of

the precipitation due to the ability of MW radiation to pene-

trate precipitating clouds and interact with its liquid and ice

hydrometeors (e.g., Mugnai et al., 1990; Wilheit et al., 1994;

Weng and Grody, 2000; Bennartz and Petty, 2001; Bauer et

al., 2005). Passive microwave (PMW) techniques for the es-

timation of precipitation have seen great advances over the

past years, due largely to the increased number of radiome-

ters available, with improved sensing capabilities (i.e., higher

spatial resolution, number of available channels useful for

precipitation retrieval) and due to the several theoretical stud-

ies on microwave radiative transfer modeling through precip-

itating clouds (e.g., Mugnai et al., 1993; Wilheit et al., 1994;

Smith et al., 1998, 2002; Stephens and Kummerow, 2007;

Skofronick-Jackson and Johnson, 2011).

Satellite PMW observations are provided by radiometers

aboard low Earth-orbiting (LEO) satellites, whose constella-

tion has recently reached its optimal configuration for pre-

cipitation monitoring with the launch of the NASA/JAXA

Global Precipitation Measurement (GPM) core satellite on

27 February 2014 (Hou et al., 2014), to provide 3-hourly

global coverage of the precipitation between 65◦ S and

65◦ N. PMW radiometers are usually categorized based on

their scanning mode: (1) cross-polarized conical scanning

configuration, such as the Special Sensor Microwave Im-

ager/Sounder (SSMIS) aboard the Defence Meteorologi-

cal Satellite Program satellites, the passive Tropical Rain-

fall Measuring Mission (TRMM) Microwave Imager (TMI)

aboard the NASA TRMM satellite, and the advanced GPM

Microwave Imager (GMI); (2) cross-track scanning config-

uration, such as the Advanced Microwave Sounding Unit-

A (AMSU-A) and the Microwave Humidity Sounder (MHS)

aboard NOAA-18 and NOAA-19 and the ESA MetOp-A and

MetOp-B satellites (which has replaced AMSU-B aboard

previous NOAA satellites), and the Advanced Technology

Microwave Sounder (ATMS) aboard the Suomi National

Polar-orbiting Partnership (Suomi NPP).

Several precipitation retrieval algorithms have been de-

veloped throughout the years to exploit imaging and sens-

ing capabilities of PMW radiometers of both types (e.g.,

Wilheit et al., 1994; Marzano et al., 1999; Kummerow et

al., 2001; Mugnai et al., 2001; Stephens and Kummerow,

2007). This paper focuses on the AMSU-A and MHS ra-

diometers originally designed for temperature and water va-

por sounding, respectively. AMSU-A has 15 channels: 12

channels in the 54 GHz oxygen band for temperature sound-

ing, and three additional window channels at 23.8, 31.4, and

89 GHz. MHS (and AMSU-B), designed for humidity sound-

ing, has five channels: three channels in the 183 GHz wa-

ter vapor absorption line, and two window channels at 89

and 150 GHz. It is worth noting that similar sets of chan-

nel frequencies are used in most PMW radiometers currently

available, such as the conical scanning SSMIS radiometers

and the cross-track ATMS. It is worth mentioning, however,

that polarization (V/H) information from conical scanning

instruments provides useful information for surface charac-

terization, screening of not-precipitating area, and precipi-

tation retrieval, which is not available from the mixed po-

larization signal of cross-track scanning radiometers. The

effects of cloud and precipitation on microwave radiances

of the AMSU/MHS channels have been extensively ana-

lyzed (Wang et al., 1989, 1997; Burns et al., 1997; Grody

et al., 2000; Staelin and Chen, 2000; Greenwald and Christo-

pher, 2002; Bennartz and Bauer, 2003; Hong et al., 2005;

Deeter and Vivekanandan, 2005; Funatsu et al., 2007). Win-

dow channels are used for the retrieval of surface precipita-

tion and other surface hydrological products. The retrieval

of surface precipitation using low-frequency window chan-

nels is based on the contrast between surface and precipi-

tation (for example over ocean) (Chen and Staelin, 2003).

High-frequency channels at 89 and 150 GHz are mostly af-

fected by the scattering by ice and are useful in delineating

precipitation due to the correlation between the upper por-

tion of the clouds and surface rain rate (Weng and Grody,

2000; Weng et al., 2003). Specifically, the 150 GHz channel

is sensitive to smaller-sized ice particles due to its shorter

wavelength relative to 89 GHz, and this improves the iden-

tification of precipitation area, especially in stratiform rain

regimes (Ferraro et al., 2000; Bennartz and Bauer, 2003).

However, there are large uncertainties related to the scatter-

ing signal due to unresolved microphysical issues. Recent

publications (e.g, Skofronick-Jackson et al., 2013; Johnson

et al., 2012; Kulie et al., 2010) have highlighted this issue

and the need to further understand how different combina-

tions of microphysical features affect high-frequency bright-

ness temperatures. For this reason, the precipitation retrieval

exploiting high frequencies is complicated by their sensi-

tivity to the highly variable microphysical characteristics of

iced hydrometeors (shape, size and density). This issue has

of course a significant impact on light rain and snowfall re-

trieval. In PNPR this issue is tackled through continuous im-

provements and refinement of the microphysical parameter-

ization in the cloud-radiation database used in the training

phase of the neural network (NN).

Opaque channels (bands around 54 and 183 GHz) were

originally designed to retrieve temperature and water va-

por profiles due to their different sensitivity to specific lay-

ers of the atmosphere (Staelin and Chen, 2000; Blackwell

and Chen, 2005). However the 183.31 GHz absorption band
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channels have shown great potentials for precipitating cloud

characterization and for precipitation retrieval. Due to the

different penetration ability of radiation at microwave fre-

quencies, low-level clouds have little effect on channels near

the 183 GHz water vapor band if the sounded atmospheric

layers (as characterized by the water vapor weighting func-

tions) are above the cloud top. On the other hand, high-level

clouds lower the brightness temperatures (TBs) due both

to the increased absorption by water vapor within the satu-

rated cloud and to the scattering by ice and water droplets

(Burns et al., 1997). Moreover, in the 183 GHz water va-

por absorption band, the TB depression increases as the

frequency moves away from the center of the absorption

band. As a matter of fact, the radiation at 183.31± 7 GHz

can penetrate deeper into the cloud than for the other two

183 GHz channels, and therefore it is subject to larger scat-

tering from mid- and low cloud layers; the 183.31± 1 GHz

channel primarily responds to deep convection with large,

high-density ice particles into the upper atmosphere (Ferraro,

2004; Bennartz and Bauer, 2003, Hong et al., 2005; Burns

et al., 1997; Funatsu et al., 2007). These different responses

of the three 183.31 GHz channels suggested the possibility

of analyzing the vertical distribution of hydrometeors (Hong

et al., 2005; Burns et al., 1997; Wang et al., 1989, 1997).

Burns et al. (1997) developed a screening criterion based

on the difference 131 between measured TBs at 183.31± 3

and 183.31± 1 GHz to detect and exclude convective events.

Hong et al. (2005) derived methods to detect deep convective

clouds and convective overshooting using the TB differences

117, 113, 137 (corresponding respectively to the differences

between the 183.31± 1 and 183.31± 7 GHz, 183.31± 1 and

183.31± 3 GHz, and 183.31± 3 and 183.31± 7 GHz chan-

nels). Qiu et al. (2005) proposed the use of these differ-

ences to characterize convection as weak convection or strat-

iform rain, moderate convection, and strong convection. Fer-

raro (2004) also used, with some changes, the relationships

among those differences to classify convective events. Fu-

natsu et al. (2007, 2009) have further analyzed and verified

the use of these differences, together with AMSU-A chan-

nels, to detect upper-level disturbances and areas of signifi-

cant precipitation in the Mediterranean region.

Precipitation retrieval algorithms from AMSU/MHS mea-

surements are based, in most cases, on three different ap-

proaches. The first is based on a physical approach and eval-

uates the rain rate from the relationship with the ice wa-

ter path (IWP) (Weng et al., 2003; Zhao and Weng, 2002;

Qiu et al., 2005; Ferraro et al., 2005; Kongoli et al., 2007),

which depends on the different rain types that are identi-

fied through the differences of 183 GHz channels, in the way

mentioned above. The second approach is based on multiple

linear regression with ground-based measurements. In Lavi-

ola and Levizzani (2011) the rain rate is estimated using a

linear combination of the AMSU-B/MHS opaque channels

at 183.31 GHz obtained through a multiple linear regression

with radar data. In Grody et al. (2000) relationships between

rain rate and some scattering indexes (computed using chan-

nels 23, 31, 89 and 150 GHz) are built and calibrated using

coincident radar and rain gauge measurements. In Di Tom-

maso et al. (2009) the rain rate retrieval procedure is based on

an extensive set of regression curves between TB differences

(117, 137, and between 89 and 150 GHz) and surface rainfall

rate in various atmospheric and surface conditions. The third

approach is based on the use of NNs (Hall et al., 1999; Staelin

et al., 1999; Sorooshian et al., 2000; Chen and Staelin, 2003;

Hong et al., 2004; Blackwell and Chen, 2005; Sussuravadee

and Staelin, 2007, 2008a, b, 2009, 2010; Krasnopolsky et al.,

2008; Leslie et al., 2008). This approach originates from the

consideration that an exact relation between surface rain rate

and observed brightness temperatures is nonlinear and diffi-

cult to evaluate, as precipitation is one of the most difficult

of all atmospheric variables to retrieve. On the other hand,

NNs are widely applied in an increasing number of meteoro-

logical applications for their capability to approximate com-

plex nonlinear and imperfectly known functions. The use of

neural networks involves the training of the network with a

large representative database, often obtained from numerical

weather prediction model cloud-resolving simulations. Con-

sequently, the performance of the network is largely depen-

dent on the completeness and the representativeness of the

database and on its consistency with the observations.

The purpose of this study is to describe a new algorithm

based on a NN approach (Passive microwave Neural net-

work Precipitation Retrieval – PNPR) for precipitation rate

estimation applied to AMSU/MHS observations, and to ex-

amine its performance for specific case studies over the Eu-

ropean/Mediterranean area (25◦ N to 75◦ N latitude, 25◦W

to 45◦ E longitude). The training of the PNPR is based on

the use of a cloud-radiation database representative of the

European and Mediterranean Basin precipitation climatol-

ogy. It is worth mentioning that to build this database we

have used the same cloud-resolving model simulations and

the same radiative transfer modeling framework used for our

Bayesian precipitation retrieval algorithm for conically scan-

ning radiometers called the Cloud Dynamics and Radiation

Database (CDRD) (see Casella et al. (2012, 2013), Sanò et

al. (2013) and Smith et al. (2013) for a full description of the

CDRD; see Mugnai et al. (2013b) for an overview of PNPR

and CDRD and a description of the context leading to their

development). The motivation for using a neural network al-

gorithm for AMSU/MHS cross-track scanning radiometers

stems from the fact that the changing viewing angle across

a scan passage, and the concomitantly changing atmospheric

path, introduce viewing-angle-dependent errors in the Radia-

tive Transfer Equation Modeling System (RMS) calculations

(see Mugnai et al., 2013b).

For conical scanners RMS-generated errors are consis-

tent across the scan passage, and thus easily detectable as

systematic errors when conducting validation checks. When

viewing-angle-dependent errors enter retrievals, they compli-
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cate how systematic error should be expressed and impose a

reduced confidence in formulating Bayesian probabilities.

Both CDRD and PNPR have been developed within the

EUMETSAT “Satellite Application Facility on Support to

Operational Hydrology and Water Management” (H-SAF,

http://hsaf.meteoam.it) and are currently used operationally

for producing instantaneous surface precipitation rates from

conically scanning and cross-track scanning radiometers (see

Mugnai et al. (2013a) for a full description of the H-SAF

project and of all the precipitation products). Within the H-

SAF program the PNPR precipitation product (as well as the

CDRD precipitation product) routinely undergoes a valida-

tion process carried out by the independent H-SAF Precipita-

tion Product Validation Group (PPVG), whose composition

and methodology are presented by Puca et al. (2014). It is

therefore beyond the scope of this paper to carry out an exten-

sive validation of the algorithm. The goal of the present pa-

per is threefold: first, to describe in detail the PNPR; second,

to verify the ability of a single NN for different background

surfaces to recognize the different patterns and precipitation

intensities in correspondence with the different surface types;

and third, to verify the impact of a NN algorithm optimized

for Europe on the precipitation retrieval for selected case

studies, evidencing the importance of using a database rep-

resentative of the area of interest for the NN training phase.

Future perspectives on the use of PNPR for other parts of the

globe and its application to different radiometers will be pro-

vided. As a matter of fact, the algorithm has been recently ex-

tended to cover the Meteosat Second Generation (MSG) full

disk (the extended version will be soon operational within H-

SAF). Moreover, it is being modified for applications to the

Suomi NPP ATMS cross-track scanner.

The PNPR algorithm is described in Sect. 2, with refer-

ence to the relevant features of the AMSU/MHS database

(Sect. 2.1), the architecture of the neural network utilized

and the design procedure (Sect. 2.2), and the main charac-

teristics of the precipitation retrieval algorithm (Sect. 2.3).

Section 3 concerns the verification of the retrieval and the

analysis of the results, for selected case studies, compared

with ground-based measurements (Sects. 3.1 and 3.2). This

section presents also (Sect. 3.3) the results of a comparison

with the H-SAF PR-OBS-2 v2.3 retrieval algorithm (here-

after referred to as H02 v2.3) (Mugnai et al., 2013a) and the

statistical scores. Section 4 contains the conclusive remarks

about the performance of the network and future perspec-

tives.

2 PNPR algorithm description

PNPR optimally exploits the different characteristics of

AMSU-A and MHS channels and their combinations (win-

dow channels as well as the contribution of the TB differ-

ences of the 183.31 GHz channels, 117, 113, 137), with the

goal of having a single neural network for different types

of background surfaces (vegetated land, snow-covered sur-

face, coast and ocean). It should be mentioned that other au-

thors (e.g., Surussavadee and Staelin, 2008a, b) use different

neural networks for different types of background (land or

ocean) to deal with the very different signatures of the pre-

cipitating cloud over the two types of surfaces characterized

by very different emissivities. However, the use of different

networks for different backgrounds can lead often to discon-

tinuity of the estimates in correspondence with transitions

between these two types of surface. The approach of a single

NN prevents precipitation estimates from being inconsistent

when an observed precipitation system extends over two or

more types of surfaces.

2.1 The training database

The use of neural networks involves a “training phase” us-

ing a large sample of data representative of the input and

the output variables used in the retrieval process (in this

case AMSU/MHS TBs and surface precipitation rate, re-

spectively). The performance of the NN is largely dependent

on the completeness and representativeness of the database

for the area of interest and on its consistency with the ac-

tual observations. In PNPR this data set is obtained from a

cloud-resolving model coupled to a radiative transfer equa-

tion (RTE) model used to simulate brightness temperatures

consistent with the scan viewing geometry and channel fre-

quencies of AMSU-A and MHS (following the methodology

similar to that described by Sanò et al. (2013) and Casella et

al. (2013)). The database includes 60 cloud-resolving simu-

lations of different precipitation events over the Europe and

Mediterranean area carried out with the University of Wis-

consin Nonhydrostatic Modeling System (UW-NMS) cloud-

resolving model (Tripoli, 1992; Tripoli and Smith, 2014a, b).

All the details about the cloud model configuration setup are

provided by Casella et al. (2013).

Figure 1 shows the seasonal and spatial distribution of the

inner domains. In essence, the database has been created for

the European region, covering the different seasons (15 sim-

ulations in each season) and different meteorological situa-

tions and precipitation regimes. Each simulation runs for 24

or 36 h with a 12 h spin-up time. The NOAA National Cen-

ter for Environmental Prediction (NCEP) Global Forecasting

System (GFS) gridded analyses at 0.5◦ resolution were used

as initial conditions and to nudge the boundaries of the outer

grid every 6 h throughout the simulation period.

The simulated satellite TB vectors are consistent with

the AMSU-A and MHS (or AMSU-B) channel frequencies,

viewing angles and viewing-angle-dependent IFOV sizes

along the scan projections. Both AMSU-A and MHS have

a swath of about 2200 km and a scan angle of ±48◦ from

nadir. AMSU-A takes 30 cross-track measurements and has

a near-nadir spatial resolution of 48 km, while MHS (AMSU-

B) takes 90 measurements and has a near-nadir spatial reso-

lution of 16 km. These cross-track scanners provide images

Atmos. Meas. Tech., 8, 837–857, 2015 www.atmos-meas-tech.net/8/837/2015/

http://hsaf.meteoam.it


P. Sanò et al.: The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm 841

Figure 1. Inner domains of the 60 NMS simulations, divided by

season.

with constant angular sampling along the scan (1.1◦), imply-

ing that the instantaneous field of view (IFOV) elongates as

the beam moves from nadir toward the edge of the scan. The

elongation is such that for AMSU-A the IFOV at the edge of

the swath is 80 km× 150 km and for MHS (and AMSU-B) is

27 km× 50 km.

The correspondence between TB vectors and their asso-

ciated surface precipitation rates is complicated by the de-

pendence of spatial resolution along the radiometer scan

due to the varying viewing angle. A variable sensor resolu-

tion (VSR) was defined according to the nominal resolution

of AMSU-B/MHS, varying from 16 km× 16 km/circular at

nadir to 26 km× 52 km/elliptical at scan edge. Thus, the

cloud-model high-resolution surface precipitation rates (and

associated environmental and microphysics vertical pro-

files) were averaged over 45 VSRs and the simulated TBs

were calculated at 45 different viewing angles. In all, the

database contains some 2.5 million entries for the Euro-

pean/Mediterranean Basin region and has 45 views for each

entry. Details about the radiative transfer model, single-

scattering parameterization, and surface emissivity parame-

terization are provided by Casella et al. (2013). It is worth

noting that NNs are able to handle such large databases be-

ing at the same time computationally very efficient.

2.2 The neural network

The neural network is a highly flexible tool alternative to re-

gression and classification techniques. It allows approximat-

ing unknown, complicated nonlinear functions to an arbitrary

degree of accuracy (Hsu et al., 1997; Shi, 2001; Chen et al.,

2006; Bellerby, 2007; Marzban, 2009).

Figure 2 shows a feedforward multilayer neural network

with ni inputs; n1 nodes in the first (input) layer (nodes are

called also perceptrons or neurons); n2 and n3 nodes in the

second and third layer (hidden layers), respectively; and one

output layer. Each node has its own transfer function. The

nodes are connected by links that transfer the weighted out-

put of a node to the linked nodes of the following layer. In

this following layer, each node receives, as input to its trans-

fer function, a weighted sum of the outputs of the previous

layer. The output of the transfer function corresponds to the

output of each node. For example, the output of a node (kth),

yk , of the first hidden layer takes the form

yk (ω,x)= f2

[
n1∑

j=1

ωkj × f1×

(
ni∑

t=1

ωj t × xt + b1

)
+ b2

]
, (1)

where xt are the input signals (ni values), ωj t are the weights

connecting the inputs to the nodes of the input layer and ωkj

the weights connecting the nodes of the input layer to the

nodes of the first hidden layer, f1 and f2 are the transfer

functions of the input layer and the first hidden layer, and

b1 and b2 are the bias of nodes of the two layers.

The estimation of the weights is performed in the training

phase. During this phase a training database is used (provid-

ing the network with synthetic input and output data).

In the backpropagation network, during the training

(Levenberg–Marquardt algorithm), when the network is

given an input, the signal propagates forward from the in-

put layer of nodes, through each internal layer, to the output

layer. The node in the output layer produces an output (yi),

which is compared to the ith target output (ti) defined in the

training set. An error value is calculated as

E =
1

n

n∑
i=1

(yi − ti)
2, (2)

where n is the number of elements of the training set. The

network corrects its weights to lessen the errors. The correc-

tion mechanism starts with the output neuron and propagates

backward through each internal layer to the input layer, mod-

ifying the value of each weight (i.e., ωij ) in relation to its

contribution to the error
(

∂E
∂ωij

)
. The iteration continues in

order to minimize the error.

The design of the network architecture is normally deter-

mined empirically. Model selection in neural networks aims

at finding as few hidden units and connections as neces-

sary for a good approximation of the true function. This se-

lection includes two relatively distinct aspects: determining

how many layers to use and determining how many nodes

to include in each layer. Unfortunately, this is not a simple

problem and turning to an empirical approach is often the

most reasonable way. In this study the model selection has

been carried out using a cross-validation method (Anders and

Korn, 1999; Marzban, 2009). In the cross-validation strategy

the comparison between two models is based on the mean

square prediction error (MSPE), which is obtained apply-

ing the model to different validation sets. For this purpose

www.atmos-meas-tech.net/8/837/2015/ Atmos. Meas. Tech., 8, 837–857, 2015
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Figure 2. Schematic diagram of a multilayer neural network (two hidden layers).

a test data set is used, divided into M subsets containing n

observations each. The model is repeatedly re-estimated us-

ing different data set of n(M − 1) observations, leaving out

a different subset each time. The average MSPE defines the

cross-validation error, CV (Anders and Korn, 1999):

CV=
1

M

M∑
m=1

MSPEm. (3)

In the cross-validation methodology, the first step consists

in determining the number of hidden layers. Starting from a

simple architecture, two models are compared, one of which

contains an additional hidden unit. For both the models the

CV is evaluated and, if the more complex unit shows a

smaller CV error, the additional hidden layer is accepted. The

procedure stops when no further hidden layer is able to re-

duce the CV error. At this point, with a similar procedure,

the number of nodes is optimized in each layer. The second

step aims at determining the input connections. To find irrele-

vant connection, one input is removed and the resultant CV is

compared with that of the complete network. In this way all

the models with one input connection removed are analyzed

and the model with the lowest CV error is accepted. At the

end of this second step, no input connection can be removed

without increasing the CV error. Considering that there is a

trade-off between the two steps, because the number of layers

and the number of nodes in each layer are interdependent, the

design tactic requires alternately tuning the number of layers,

the number of nodes and the number of inputs (Young, 2009).

Because of the complexity of this method, in designing the

network it was considered necessary to impose some con-

straints on both the input variables and the learning proce-

dure. Preliminarily, it should be mentioned that the goal was

to use a single neural network for all background surfaces

(vegetated land, snow-covered surface, coast and ocean) and

that the network output is the estimated surface precipitation

rate.

With regard to the input variables, we started considering

all the brightness temperatures of AMSU-A and MHS chan-

nels, together with the 183 GHz channel differences (117,

113, 137) and some ancillary data, such as latitude, lon-

gitude, surface height, the background surface type, sea-

son, pixel number and the secant of the zenith angle along

the AMSU/MHS cross-track scan. Geographical and mete-

orological parameters were introduced in order to mitigate

against the ambiguity intrinsic to the PMW precipitation re-

trieval process (e.g., Panegrossi et al., 1998). Pixel number

and secant of the zenith angle were also needed to deter-

mine the correction of the limb smearing on the TBs, an ef-

fect produced by the changing atmospheric path length along

the scan (Goldberg et al., 2001). The training procedure was

carried out also to have this effect taken into account and cor-

rected within the neural network itself. Principal component

analysis (PCA) (Jolliffe, 2002) was performed on AMSU-

A/MHS channels to explore the possibility of decreasing the

number of inputs, of reducing the effect of surface emission

variability on the measured TBs and consequently of improv-

ing the network performance in retrieving surface precipita-

tion (Surussavadee and Staelin, 2008a). Canonical correla-

tion analysis (CCA) (Hair et al., 1998; Wilks, 1995) was also

carried out to find the linear combination of the TBs (canon-

ical variable) of the various channels with maximum corre-

lation with the surface precipitation. Particularly, we chose

to use the CCA methodology for measuring canonical cor-

relations existing, in the database, between different channel
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combinations and the surface rain rate. Through this proce-

dure, by eliminating the channel combinations with a rela-

tively low correlation, we have built the most effective input

canonical variable to the NN.

In the application of the cross-validation method, in or-

der to find the minimum number of useful inputs among all

the variables initially considered, we imposed the use of the

three inputs 117, 113 and 137. This constraint is related to

one of the objectives of this research, namely the evaluation

of the effectiveness of all these inputs in detecting precipi-

tation areas (Hong et al., 2005; Funatsu et al., 2007, 2009).

The selection of the optimal inputs, with the cross-validation

method, was consequently affected by this constraint. Some

of the proposed variables were not very effective on the per-

formance of the network. Particularly, the principal compo-

nents (PCs) were not significant as expected (especially for

the retrieval of weak and stratiform precipitation), probably

because of the a priori condition of using a single network

for all background surfaces. In fact, different PCs would have

been selected as optimal (in terms of different TB combina-

tions and different order) depending on the type of surface

(as obtained in Surussavadee and Staelin, 2008a).

During the training phase, several preliminary tests were

carried out to avoid the overfitting, i.e., the loss in general-

ization ability of the network. This phenomenon can reduce

the output errors in a synthetic application (when the NN

is applied to the training database), but it increases the er-

rors if the NN is applied to data not included in the training

database. This is linked, in addition to the structure of the net-

work (number of hidden layers and nodes), also to the train-

ing procedure (an excess of iterations in the training, also

called overtraining). The overtraining forces the NN to learn

the fine structure that is generated by noise.

As a result of preliminary tests, some criteria for the train-

ing procedure have been defined. The first criterion con-

cerns the division of the training database into three pieces:

the ground truth (training) piece to be used for the actual

training, the validation piece for providing the synthetic TBs

used in a subsequent verification analysis, and the test piece

for providing the TBs for the comparison of the different

models. Notably, all three pieces need to be representative

of all precipitation events contained within the collective

database. The choice of the size and of the specific members

of each piece is thus crucial in obtaining an effective eval-

uation of the final NN’s performance. Consequently, a sta-

tistical analysis was performed on each piece to check their

representativeness of the different typologies of simulated

events, and of the whole range of precipitation rates. The

second criterion concerns the early-stopping method, i.e.,

the interruption of the training before complete convergence

has occurred. Through various experimental tests the early-

stopping method was refined in order to improve the general-

ization ability of the NN, in view of the size (several millions

of profiles) and complexity (wide range of the precipitation

values and different viewing angles) of the training database.

In particular, we have found some optimal conditions for the

gradient of the performance function of the NN (the per-

formance function is represented by the mean squared error

(mse)) and for the number of iterations (epochs) during the

training. In fact, these two parameters provide an indication

on the quality of the learning process of the network. The

number of epochs was limited in the range 500–1000, and

the minimum value of the gradient of performance (mse) was

fixed to 0.05. The correlation coefficient (R) evaluated in the

training data set was limited to 0.90, while the correspond-

ing minimum value in the validation data set was set at 0.80.

These values correspond to a balance between an appropriate

learning level and a good generalization ability of the NN.

During the phase of network design and the training pro-

cess, more than 200 architectures have been tested and an

optimal neural network has been obtained, where “optimal”

refers to the best performance of the network (i.e., minimum

CV over the full dynamic range of the inputs, absence of

overfitting and absence of anomalous inhomogeneities in the

retrievals) (Staelin and Surussavadee, 2007).

In order to reduce the complexity of the network, only the

input variables showing the largest impact on the results have

been selected. As a result, nine input variables are used in the

NN:

1. a linear combination of TBs (LCT) at 50.3, 89 and

150 GHz whose coefficients are obtained from the CCA

with respect to the surface rain rate (these channels

showed the highest correlation coefficients in the CCA

analysis in the database for all types of background sur-

faces);

2. 117 difference between the TBs of channels 183.31± 1

and 183.31± 7 GHz;

3. 137 difference between the TBs of channels 183.31± 3

and 183.31± 7 GHz;

4. 113 difference between the TBs of channels 183.31± 1

and 183.31± 3 GHz;

5. surface type (land, sea, coast);

6. latitude;

7. season;

8. surface height (altitude);

9. secant of the zenith angle.

The network has two hidden layers. In the first layer (the

input layer) the number of nodes equals the number of inputs.

For the second and third layers (the hidden layers), 20 and

8 nodes are selected, respectively. The tan-sigmoid transfer

function is used for the input and the hidden layers, while a

linear transfer function is used for the output node.
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Figure 3. Flow diagram of the PNPR algorithm.

2.3 PNPR flow diagram description

Figure 3 shows the flow diagram of the PNPR algorithm.

The PNPR algorithm receives as input the TBs (level 1c

data) measured by radiometers AMSU-A and MHS currently

aboard the U.S. NOAA-18 and NOAA-19 and the EUMET-

SAT MetOp-A MetOp-B satellites.

A first check (brightness temperatures processing block)

is carried out on the TBs, and pixels with any TB value

less than 50 K or greater than 400 K are discarded and not

considered for the retrieval (see Ferraro et al., 1998; Surus-

savadee et al., 2012). Moreover, the input TBs undergo a

quality check to remove those deriving from occasionally

corrupted channels. Furthermore, a dedicated NN corrects

the TB of channel 7 (corresponding to 54.94 GHz) of the

MetOp-A satellite using other channels in the oxygen band.

AMSU-A data are gridded to the MHS data grid using a bi-

linear interpolation. A second step involves the generation

of the auxiliary maps (auxiliary maps generation block). The

algorithm generates five maps: the geographical map (lati-

tude), the seasonal map, the surface type map (land, ocean,

coast), the orography map (surface height) and the zenith an-

gle map. The surface type map does not contain information

on the presence of snow/ice at the surface. The identification

of this condition is assigned to the PNPR algorithm itself.

The third step (NN inputs processing block) is the evalua-

tion of the NN inputs LCT, 117, 137 and 113. The fourth

step (NN module block) involves the normalization of the in-

puts and the surface precipitation rate evaluation using the

NN. The fifth step involves a screening test for identifica-

tion of potentially precipitating pixels. The screening pro-

cedure used is based on the method described by Chen and

Staelin (2003), which uses the comparison of the TBs at

183± 7 or 183± 3 GHz with different thresholds depending

on the zenith angle and the spatially filtered limb-corrected

TB at 53.6 GHz, obtained by selecting the highest brightness

temperature within a 7× 7 array of MHS pixels (hereafter,

T max
53.6 ). The full description of the screening procedure is pro-

vided by Mugnai et al. (2013b).

The precipitation map, obtained from the screening proce-

dure, is used to filter the NN output (which includes all the

pixels of the satellite swath), setting to 0 the rain rate val-

ues of the pixels resulting with no rain. An additional output

(generation of phase flag map block) provided by the algo-

rithm is the indication of the phase of the precipitation: liq-

uid, solid, mixed or unknown (when the phase determination

procedure is not applicable). The determination of the phase

flag is based on the studies on snow and ice detection of Su-

russavadee and Staelin (2009), Rosencrantz (2003) and Kon-

goli et al. (2003), and with reference to the indexes defined

by Grody et al. (2000) for the identification of presence of a

snowy and iced background (this information is used in the

quality map definition). In these studies snowfall is detected

using TBs at 20.3, 50.3 and 89 GHz, and combinations of

these channels. The phase flag is evaluated only for pixels

flagged as precipitating after the screening procedure, and it

is not available over coastal background surfaces.

In a subsequent step (creation of pixel-based quality map)

the algorithm provides a quality flag to be associated with

the retrieval, providing immediate indication of areas or con-
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ditions where the retrieval is more or less accurate. The qual-

ity flag (poor, fair, good or missing) is based on a percentage

confidence index (PCI) describing both the product quality

and reliability, based on four different criteria:

1. quality of input data (used sensor, type and number of

channels used, horizontal resolution, malfunctioning of

radiometers);

2. background surface index (type of surface, snowy/iced

background);

3. event type index (snow storm, stratiform rain, convective

cells);

4. internal algorithm performance index (i.e., dependence

on scan viewing angle).

The PCI evaluation is carried out through the following steps:

1. A preliminary PCI value is assigned with different crite-

ria depending on the output of the screening procedure:

– For no-rain pixels a preliminary value of the

PCI is evaluated according to some conditions on

the TBmax
53.6 provided in Table 1. The presence of

snow/ice on the background surface lowers the

value of the PCI, which is limited to 10.

– For rainy pixels the PCI value is based on a proce-

dure that identifies the event typology. This proce-

dure (Funatsu et al., 2007, 2012) classifies four ty-

pologies of precipitation – not identified/light strat-

iform, stratiform, convective and heavy convective

(overshooting top) – and associates a preliminary

value of the PCI according to the values listed in Ta-

ble 2. Also in this case, the presence of snowy/iced

background on area with precipitation lowers the

value of the PCI (the PCI value is limited to 10).

The preliminary PCI value associated with precipi-

tation on coastal area has an upper limit equal to 30

(quality flag “fair”).

2. The preliminary PCI value is combined to some correc-

tion coefficients to become the final value of the PCI:

– satellite operation status coefficient (the PCI value

decreases when satellite has some problem, e.g.,

damaged channels);

– scan geometry coefficient (the PCI value decreases

as the scan viewing angle increases);

– data quality coefficient (the PCI is set to 0 in the

case of corrupted channels and/or unrealistic values

of measured TBs).

Table 1. Preliminary PCI thresholds based on screening algorithm.

Test on TB Environmental situation Preliminary

PCI

TBmax
53.6

< 242 K very cold/dry 0

(precipitation retrieval

not available)

TBmax
53.6
≥ 242 K and cold/dry situation 20

TBmax
53.6

< 248 K

TBmax
53.6
≥ 248 K warm/wet situation 50

Table 2. Preliminary PCI based on precipitation type.

Typology of event Preliminary PCI

Not identified/light stratiform 40

Stratiform 50

Convective 90

Heavy convective 90

3 Case studies

In this section we analyze the results of the PNPR algorithm

for four precipitation events characterized by different mete-

orological conditions. The precipitation events were selected

from those used in the verification study described in Pane-

grossi et al. (2013). In that study the two currently opera-

tional H-SAF PMW precipitation products (the PNPR al-

gorithm for AMSU/MHS measurements, and the Bayesian

CDRD algorithm (Sanò et al., 2013; Casella et al., 2013)

for SSMIS measurements) were analyzed and compared to

ground-based measurements provided by the H-SAF Precip-

itation Product Validation Team (PPVT). The study was car-

ried out for several case studies representative of the different

environmental and meteorological situations in Europe and

in the Mediterranean area. In the present paper we focus on

the results of PNPR also in relation to the selection procedure

of the NN input variables discussed in Sect. 2.2.

3.1 Ground-based data processing

As ground truth, both radar and rain gauge data are used

for comparison with the PNPR retrievals. It is worth not-

ing, however, that precipitation measurements from ground-

based observations are subject to large uncertainty and tha

comparison with satellite-based retrievals is very problematic

(e.g., Smith et al.,1998; Anagnostou and Krajewski, 1999;

Kummerow et al., 2000; Lin and Hou, 2008; Rinollo et al.,

2013; Porcù et al., 2014). Puca et al. (2014) have raised sev-

eral issues related to the use of radar and rain gauge data for

satellite-based precipitation product validation, and within

the H-SAF validation program a common validation proto-

col (i.e., common code for data processing, quality control of

data) has been adopted in order to prevent some of the prob-

www.atmos-meas-tech.net/8/837/2015/ Atmos. Meas. Tech., 8, 837–857, 2015



846 P. Sanò et al.: The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm

lems. However, some of the issues inherent to the ground-

based system used always need to be taken into account

when comparing satellite-based and ground-based precipita-

tion data. These issues include (1) the lack of consistency be-

tween gauges and radar in several cases; (2) problems with

radar measurements, such as beam blocking in mountain-

ous regions, lack of intercalibration among different radars

or among different networks and uncertainty of precipitation

estimates particularly critical in the presence of snowfall; and

(3) problems with rain gauge measurements, such as sparse

network, different time integration among stations and dif-

ferent instruments (i.e., heated or not-heated). These issues

have been considered in the analysis of the PNPR results de-

scribed in this section.

In order to maintain the satellite precipitation retrieval at

its native resolution, both radar and rain gauge data are av-

eraged according to a procedure developed in collaboration

with the H-SAF validation team. The radar and rain gauge

data are averaged using a 2-D Gaussian function with an el-

liptic horizontal section approximating the MHS radiometer

antenna pattern, elongating as the beam moves from nadir

toward the edge of the scan, from 16 km× 16 km/circular

at nadir to 26 km× 52 km/elliptical at scan edge, and ro-

tated accordingly to the actual satellite scan orientation at the

ground (see Puca et al., 2014).

3.2 Discussion and qualitative comparison with

ground-based measurements

Four of the case studies presented in Panegrossi et al. (2013)

are considered: a flood-producing storm, a convective precip-

itation event, a moderate/light stratiform precipitation event

and a cyclone system causing several thunderstorms with

heavy precipitation. In this section a qualitative assessment

of the results and eye-balling comparison with ground-based

measurements will be carried out, a more quantitative analy-

sis (with dichotomous and continuous statistical scores) will

be provided in Sect. 3.3.

The first case study concerns an intense flood event in

northwestern Italy, affecting the eastern Liguria region and

northern Tuscany on 25 October 2011. A widespread trough

extending from the North Atlantic entered on the west

Mediterranean, inducing wet and persistent southwesterly

flow over Italy. A cold front system, associated with this low-

pressure area, arrived in the central-western Mediterranean.

The cold front was preceded by intense moist and unstable

currents, from the southeast, in the lower layers, scrolling

from the Tyrrhenian to the Ligurian Sea (Fig. 4, left panel).

The flow at high altitude with a southwesterly direction, con-

trolled by the polar jet, resulted, within the cloud layer, in the

formation of a thunderstorm line that has assumed a configu-

ration of supercell, particularly around the city of La Spezia.

The slow cyclonic rotation around the low-pressure system

has made stationary cold front for about 15 h in the same

area, resulting in persistent rain, interspersed with intense

Figure 4. 25 October 2011, 12:00 UTC: (left) air mass RGB EU-

METSAT product from MSG SEVIRI, mean sea level pressure

(black contour lines) and geopotential height at 500 hPa (green con-

tour lines) from ECMWF analysis and (right) MSG water vapor

image at 6.2 µm (EUMeTrain, www.eumetrain.org).

storm events. The orographic and surface heating forcing

supported local development of convective cells over Lig-

uria. Peaks of accumulated rain ranging between 300 and

550 mm in 24 h were registered by rain gauges to the north

and over the Cinque Terre area (east of the Liguria region)

(Rebora et al. 2013).

Figure 4 (right panel) shows the MSG SEVIRI WV

(6.2 µm) image. The edges of the dry area (dark) correspond

to stratospheric (dry) air protruding down adjacent to the re-

gion of intense convective activity. This region, extending

from the Tyrrhenian Sea to the northeast of Italy, is well iden-

tified in Fig. 5, which shows MHS images from the NOAA-

19 satellite overpass at 11:44 UTC. It is characterized by the

strong TB depression at 150 GHz (Fig. 5, left panel) and by

the TB depression at 183.31± 3 GHz, identifying the most

intense convective cells (Fig. 5, right panel) along the thun-

derstorm line. The dry stratospheric air intrusion is evident

also in the 183.31± 3 GHz image (dark red areas).

Figure 6 shows the result of the LCT and the differences

113, 137 and 117, representing the four NN inputs derived

from the AMSU-A/MHS TBs. The two top panels show the

signal due mostly to the lower layers of the atmosphere, near

the surface for the LCT (the window channels 50.3, 89 and

150 GHz contribute to this parameter), highly correlated with

the precipitation, and in the lower atmosphere for the 137

difference. The effect of surface emissivity is more evident

in the LCT panel. In the bottom left panel the 113 difference

shows the situation in the layers of the atmosphere higher

than those of the two top panels (the height of the layers de-

pends on the atmospheric moisture conditions). The impact is

evident on 137 of the most intense convection over La Spezia

and west of Corsica (red areas), while less intense areas of

precipitation (i.e., in the eastern Mediteranean) are much less

evident. The difference 117, in the bottom right panel, shows

higher sensitivity than the other two in the area of the flood.

As already mentioned, the trends of these three differences,

their magnitudes and reciprocal relationships provide impor-

tant information on the characteristics (extent, intensity and

structure) of the precipitation (Wang et al., 1997; Burns et
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Figure 5. Intense convective precipitation with a flood occurring over the La Spezia area (Italy, 44◦ N, 10◦ E) on 25 October 2011. AMSU-B

(NOAA 19), 11:44 UTC: TB (K) at 150 GHz (left panel) and TB (K) at 183.31± 3 GHz (right panel).

Figure 6. Flood over the La Spezia area (Italy, 44◦ N, 10◦ E), 25 October 2011, 11:44 UTC. Maps of the four inputs data to the NN derived

from the AMSU-A/MHS TBs: LCT (top left), 137 (top right), 113 (bottom left) and 117 (bottom right).

al., 1997; Hong et al., 2005; Qiu et al., 2005; Funatsu et al.,

2007). The positive differences of all 113, 137 and 117 cor-

respond to areas of deep convection, in agreement with Hong

et al. (2005) and the analysis of Funatsu et al. (2009) in the

Mediterranean region.

Figure 7 (top left panel) shows the PNPR surface precipi-

tation retrieval (mm h−1) over Italy and in the area hit by the

flood for the 11:44 UTC overpass. The precipitation pattern

follows the thunderstorm line evidenced in the previous fig-

ures, and the precipitation values exceeding 10 mm h−1 cor-

respond to the areas with larger TB depression at 150 GHz

(Fig. 5) and evidenced as positive difference areas of 113,

137 and 117 in Fig. 6. In the top right panel of Fig. 7 the

map of the PCI is shown. The confidence in the retrieval is

very high in correspondence with the areas of more intense

precipitation, while it tends to decrease in the coastal area,

where the reliability of the retrieval is lower. In the bottom

panels of Fig. 7 the PNPR rain rates are compared to the rain

gauge measurements. Porcù et al. (2014) have shown that an

integration time interval between 0.5 and 1 h of rain gauge

measurements is needed for an optimal comparison between

a typical quasi-instantaneous PMW precipitation product (at
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low spatial resolution) and local rainfall accumulation mea-

surements from rain gauges. They also show that the use

of two rain gauges instead of one within the satellite IFOV

generally decreases the errors related to rain gauges network

spatial distribution. In the left panel the PNPR-retrieved sur-

face precipitation (mm h−1) over land is shown only in cor-

respondence with the IFOVs where at least two rain gauges

were available. The bottom right panel shows rain gauge pre-

cipitation in the 60 min cumulation interval around the time

of the satellite overpass, spatially averaged over the satellite

IFOVs as described in Sect. 3.1. When comparing the two

panels, a fairly good agreement is evident in the areas with

the most intense precipitation. The difference in precipitation

measured on the west side of the coast of Liguria is linked to

the uncertainty in the identification of coastal area and in the

corresponding retrieval. There are some areas of light precip-

itation (northeast of Italy (46◦ N, 13◦ E) and southern coast

of the Calabria region (39◦ N, 17◦ E)) of missed precipitation

by PNPR. In these regions light cumulated precipitation is

registered by the rain gauges. Such a discrepancy might be

due to the different nature of the measurements by the satel-

lite (quasi-instantaneous) and the gauges (integrated in time).

Areas of false alarm (precipitation detected by the satellite

and not measured by the rain gauges) are limited to regions

with very light precipitation in central Italy and Sardinia and

are due to weaknesses in the screening procedure, more criti-

cal when the signal due to the precipitation is weak compared

to that of the surface background.

A second case study concerns a convective precipitation

case that occurred over Germany on 7 August 2010. A baro-

clinic zone coming from the Baltic Sea reached Poland and

the Czech Republic and moved up to Austria. In the same

area sub-tropical air was advected from south to north on the

east side of the associated low pressure.

On 7 and 8 August 2010 the precipitation reached high

values (150 mm in 48 h) in parts of Germany, especially in

Saxony, causing floods in the upper parts of the rivers Neiße,

Spree and Elbe with catastrophic damages (Rachimow and

Krahe, 2011). Also in this case we have verified that the four

inputs to NN derived from AMSU-A and MHS TBs iden-

tify in a correct way the precipitation system (not shown).

Figure 8 shows the TB (K) image at 150 GHz from MHS

(MetOp-A) (top left panel), at 09:51 UTC on 7 August. The

area affected by the convective event (mostly in the Czech

Republic) is highlighted by the TB depression at 150 GHz.

The PNPR surface precipitation rate estimate (mm h−1) (top

right panel) shows values of precipitation up to 12 mm h−1

in the same area. Rectangles in the panels show the approxi-

mate area covered by the radar measurements. Bottom panels

present in detail the results in the area included in the rect-

angles. Comparing the radar measurements (bottom right)

with the PNPR retrieval (bottom left), the ability is evident of

PNPR to distinguish between the two precipitation regimes

observed by the radar. Overall, a good agreement is evident,

but there is an underestimation of the precipitation in PNPR

Figure 7. Flood over the La Spezia area (Italy, 44◦ N, 10◦ E), 25 Oc-

tober 2011, 11:44 UTC. PNPR surface precipitation rate (mm h−1)

(top left panel), “quality index” (top right panel), PNPR surface

precipitation rate (mm h−1) over land (bottom left) for compari-

son with rain gauges data and 1h cumulated precipitation (11:00–

12:00 UTC), from rain gauges, averaged over the IFOV and sam-

pled (bottom right).

in the most intense areas, partly due to the low spatial reso-

lution of the MHS IFOV compared to the radar.

A third case study concerns a stratiform precipitation that

occurred over Hungary on 1 December 2009. Light strati-

form precipitation over land represents a situation where usu-

ally PMW retrievals have large uncertainties, mostly because

of the low TB contrast between the precipitating cloud (char-

acterized by low-density iced hydrometeors with reduced TB

depression at high frequencies) and the land surface back-

ground. The microwave signal corresponding to rainy pixels

is very weak and is often difficult to discriminate it from rain-

free pixels in the screening procedure.

In Fig. 9 the values of LCT (top left) and of 117 (top

right) are presented. In both panels, the patterns of pre-

cipitation over Hungary are shown in a consistent manner

(black rectangle). The LCT, although more sensitive to the

surface emissivity, correctly identifies the area of stratiform

rain. Moreover, in both panels even the most intense por-

tions of the perturbation system, extending southward (out

of the range of the radar) and in the Mediterranean north of

the African coast, is evident in both images, showing high

sensitivity of 117 to the convective areas. In the middle left
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Figure 8. Convective precipitation over Germany, 7 August 2010,

09:51 UTC. Top panels: map of MHS (MetOp-A) TB (K) at

150 GHz (left), and PNPR surface precipitation rate (mm h−1)

(right) (rectangles show the approximate area covered by the radar

measurements). Bottom panels: detail of radar rainfall rate estimates

(mm h−1) (for the area in the rectangles shown in top panels) ob-

tained from radar network RADOLAN, at 09:50 UTC (left), and

PNPR surface precipitation rate (mm h−1) (right).

panel the TB (K) at 150 GHz shows a slight depression in

the northwest of Hungary. The pattern of the precipitation

retrieved by PNPR, visible in the middle right panel of the

figure, shows a noticeable ability to differentiate between the

stratiform precipitation area in northwestern Hungary and the

more intense, very well identified cells in correspondence to

the largest TB depression. The values of the precipitation in

northwestern Hungary do not exceed 3 mm h−1, while the

precipitation reaches 14 mm h−1 over Bosnia and Herzegov-

ina and the Adriatic Sea. Rectangles in the top and middle

panels show the approximate area covered by the radar mea-

surements, shown in detail in the bottom panels.

The radar estimates and precipitation pattern are quite sim-

ilar to those retrieved by PNPR. The area with values of

117 larger than −8 K (in the top right panel) corresponds

approximately to the area where the precipitation is about

2–3 mm h−1 (bottom right panel). This result seems consis-

tent with what was found in statistical analyses of moderate

precipitation by Funatsu et al. (2009). PNPR shows a good

ability in resolving precipitation signature also in the case of

stratiform precipitation.

A fourth case study concerns a cyclone system formed

over Hungary on 30 July 2011 that brought several thunder-

storms confined to the eastern part of Hungary (the western

Figure 9. Stratiform precipitation over Hungary, 1 December 2009,

09:05 UTC. Top panels: map of the input data to the NN, LCT (left)

and 117 (right). Middle panels: map of MHS (MetOp-A) TB (K)

at 150 GHz (left), and PNPR surface precipitation rate (mm h−1)

(right) (rectangles show the approximate area covered by the radar

measurements). Bottom panels: detail of radar rainfall rate estimates

(mm h−1) (for the area in the rectangles shown in top panels) ob-

tained from the Hungarian radar network, at 09:00 UTC (left), and

PNPR surface precipitation rate (mm h−1) at 09:05 UTC (right).

part was not affected by precipitation). Figure 10 presents the

results for this case (same as in the middle and bottom pan-

els of Fig. 9). As in the previous cases, the ability of PNPR

to correctly predict the area affected by the precipitation is

remarkable. Also in this application the PNPR retrieval (bot-

tom right panel) is in a good agreement with the radar mea-

surements (bottom left) evidencing areas of higher precipita-

tion in correspondence with those shown by the radar images.

3.3 Statistical scores

Dichotomous statistical scores and continuous statistical

scores were calculated for all case studies, considering all

AMSU/MHS available overpasses, and using as ground truth

the closest-in-time radar rainfall estimates and/or 1 h cumu-
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Figure 10. Thunderstorms over Hungary, 30 July 2011, 08:24 UTC.

Top panels: map of MHS (MetOp-A) TB (K) at 150 GHz (left), and

PNPR surface precipitation rate (mm h−1) (right) (rectangles show

the approximate area covered by the radar measurements). Bottom

panels: detail of radar rainfall rate estimates (mm h−1) (for the area

in the rectangles shown in top panels) obtained from the Hungarian

radar network at 08:30 UTC (left panel), and PNPR surface precip-

itation rate (mm h−1) (right) at 08:24 UTC.

lated rainfall from rain gauges, spatially averaged to match

the satellite IFOV horizontal resolution and orientation (see

Sect. 3.1). For comparison with PNPR, the statistical scores

were calculated also for the H-SAF instantaneous precipita-

tion product H02 v2.3 (Mugnai et al., 2013a) for cross-track

scanning radiometers, operational in H-SAF in the period

from January 2011 throughout June 2013 (since July 2013

PNPR has become the algorithm used for the H02 H-SAF

operational product (v2.4)). H02 v2.3 is based on the algo-

rithm of Surussavadee and Staelin (2008a, b; hereafter the

AMSU/MM5 algorithm), a global artificial neural-network-

based algorithm for AMSU-A/MHS (or /AMSU-B) mea-

surements. The AMSU/MM5 algorithm is trained using a

global database generated from cloud-radiation model pre-

cipitation simulations carried out at a number of locations

around the globe with the Pennsylvania State University–

National Center for Atmospheric Research (PSU-NCAR)

Mesoscale Model-5 (MM5). Within the AMSU/MM5 al-

gorithm different NN estimators are trained for land and

sea surface background. With respect to the original ver-

sion of AMSU/MM5, in H02 v2.3 a calibration proce-

dure was adopted to optimize the retrieval for the Euro-

pean/Mediterranean area (whereas in PNPR no calibration is

carried out, while the training cloud-radiation data set was

specifically created to represent the Europe/Mediterranean

area). The H02 v2.3 calibration was carried out using the

ground-based data from the H-SAF rain gauge and radar

network, with different procedures depending on latitude

(lat≤ 45◦ N, 45◦ N < lat < 50◦ N, lat≥ 50◦ N) and season.

H02 v2.3 has the same screening procedure (for identifica-

tion of potentially precipitating pixels) used in PNPR. More-

over, H02 v2.3 uses a specific neural network to process the

radiometer brightness temperatures in order to correct the

limb effect. The H-SAF product H02 v2.3 is being routinely

validated, for the whole period of operation, through exten-

sive validation over Europe carried out by the H-SAF PPVG

(Puca et al., 2014).

We have used the H02 v2.3 algorithm for the retrieval of

precipitation in the four case studies analyzed in the pre-

vious section, utilizing the same overpasses and same TBs

(AMSU-A and MHS level 1c input data) as in PNPR. Fig-

ure 11 shows the results obtained from H02 v2.3 for three

of the four overpasses presented in the previous section (the

stratiform precipitation case in Hungary of 1 December 2009

is not shown because the results obtained with the two algo-

rithms are very similar). In the figure, the H02 v2.3 retrievals

are presented in the left panels, and the ground-based mea-

surements in the right panels (rain gauges in the top panel for

the Italy case, and high-resolution radar estimates in the mid-

dle and bottom panels for the Germany and Hungary cases).

By comparing these results with those obtained with PNPR

– shown in Figs. 7, 8, and 10 – a good agreement is evi-

dent of the precipitation pattern between the two algorithms,

with significantly improved ability of PNPR to localize the

areas affected by heavy precipitation. In the 25 October 2011

case (Italy) the precipitation in H02 v2.3 is highly underesti-

mated along the coast of Liguria. A significant underestima-

tion of the most intense precipitation (both with respect to the

ground-based data and with respect to PNPR) is also evident

for the Germany case (7 August 2010, panels in the middle of

Fig. 11) and for the Hungary case of scattered thunderstorms

(30 July 2011, bottom panels in Fig. 11).

Table 3 presents the statistical scores (defined according to

Nurmi (2003) and used in Puca et al. (2014)) of H02 v2.3 and

PNPR retrievals compared to ground measurements (gauges

or radars), calculated for all available satellite overpasses for

all case studies (Table 4 provides a list of all overpasses avail-

able). The continuous statistical scores (to verify the accu-

racy of rainfall rate estimation) are mean error (ME), stan-

dard deviation (SD), the root mean squared error (RMSE)

and the correlation coefficient (CC). The dichotomous statis-

tical scores (to verify the accuracy of rain detection) are prob-

ability of detection (POD), false alarm rate (FAR) and criti-

cal success index (CSI) where the rain/no rain threshold was

set to 0.25 mm h−1. POD90, FAR90 and CSI90 represent the

values of POD, FAR and CSI limited to precipitation values

above the 90th percentile of the three convective cases. These

indexes were introduced to evaluate the algorithm’s ability to

correctly identify the location of the areas of heavy precipi-
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Figure 11. Comparison between H-SAF product H02 v2.3 (left

panels) and ground-based measurements (right panels). Top panels:

flood over the La Spezia area (Italy, 44◦ N, 10◦ E), 25 October 2011,

11:44 UTC. H02 v2.3 surface precipitation rate (mm h−1) over land

(left), and 1 h cumulated precipitation (11:00–12:00 UTC) from rain

gauges, spatially averaged and sampled (right). Middle panels: con-

vective precipitation over Germany, 7 August 2010, 09:51 UTC.

H02 v2.3 surface precipitation rate (mm h−1) (left), and radar

rainfall rate estimate (mm h−1) at high resolution at 09:50 UTC

(right). Bottom panels: thunderstorms over Hungary, 30 July 2011,

08:30 UTC. H02 v2.3 surface precipitation rate (mm h−1) (left) at

08:24 UTC, and radar rainfall rate estimate (mm h−1) at high reso-

lution at 08:30 UTC (right).

tation, often associated with convection. The improvement is

evident of PNPR with respect to H02 v2.3 both in the contin-

uous and the dichotomous statistics scores. It is remarkable

that the PNPR precipitation product is not subject to any kind

of calibration, and the results derive uniquely from the high

quality of the training database used, representative of the

Table 3. Cumulative error statistics of H02 v2.3 and PNPR re-

trievals for all available satellite overpasses for all case studies.

H02 v2.3 PNPR

ME −1.07 −0.75

SD 2.90 2.47

RMSE 2.22 2.10

CC 0.50 0.63

POD 0.74 0.74

FAR 0.43 0.40

CSI 0.48 0.52

POD90 0.54 0.63

FAR90 0.46 0.39

CSI90 0.37 0.41

Table 4. Satellite overpasses (UTC times) utilized in the binned

analysis.

Country Date Satellite overpass time (UTC)

Italy 25 October 2011 01:27, 02:03, 03:08, 08:26,

10:06, 11:50, 12:54, 19:49

Germany 7 August 2010 00:18, 02:00, 02:01, 09:50,

11:50, 11:52, 13:35, 19:38

Hungary 1 December 2009 00:50, 01:13, 09:05, 11:02,

12:20, 12:43, 18:50, 20:30

Hungary 30 July 2011 00:27, 01:59, 08:24, 10:04,

11:48, 11:57, 13:29, 19:50

European/Mediterranean climatology, and on the design of

the NN and of the algorithm.

A further verification of the results obtained in the case

studies was performed using the binned analysis introduced

by Ferraro and Marks (1995) and employed in verification

studies of satellite-based precipitation retrieval using ground-

based measurements (e.g., Di Tommaso et al., 2009). Fol-

lowing this approach the ground-based data (radar or rain

gauges) averaged at the satellite IFOV resolution were sepa-

rated in 1 mm h−1 rain rate bins, and the mean of the corre-

sponding retrieved rainfall rate values from PNPR and H02

v2.3 was computed for each bin. The last bin represents all

pixels with a precipitation rate above 10 mm h−1. The use of

this technique allows comparing quantitatively the results in

separate intervals over the full range of rain rate values. In ad-

dition it allows mitigating, to some extent, the negative effect

of time–space mismatches on the comparison between the

satellite retrieval and the ground-based measurements. Fig-

ure 12 shows the result of this analysis. The data used refer

to all satellite overpasses for each of the four case studies.

Table 4 shows the times of the satellite overpasses utilized.

In Fig. 12, the left panel shows the mean retrieved val-

ues of PNPR and H02 v2.3 plotted against the correspond-

ing ground-based measurements in each 1 mm h−1 rain rate

bin. From the figure is evident that there is a good correla-

tion between PNPR and ground-based measurements, with

www.atmos-meas-tech.net/8/837/2015/ Atmos. Meas. Tech., 8, 837–857, 2015



852 P. Sanò et al.: The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm

Figure 12. Binned analysis of PNPR and H02 v2.3 retrievals for all case studies. The left panel shows the average retrieved values as a

function of the 1 mm h−1 rain rate bins of ground-based measurements. The right panel shows the FSE% values obtained for the retrievals

within each bin (see the text for details).

a general underestimation by PNPR when the values of the

precipitation rate are larger than 2 mm h−1. The correlation

is lower for H02 v2.3, and the underestimation is much more

evident. The panel also shows the values of the statistical in-

dexes RMSE and CC obtained by comparing the mean val-

ues of the retrievals (PNPR and H02) with the corresponding

mean values of the ground-based measurements.

In the right panel of Fig. 12 the values of the fractional

standard error percentage (FSE%), obtained for the retrievals

within each bin, are shown. FSE% is defined as

FSE%= 100 ·
rmse

true
, (4)

where true is the mean value of the ground-based measure-

ments in each bin. The values of this statistical index also

confirm a better performance of PNPR compared to H02 v2.3

for all rain rate bins (FSE% between 40 and 60 % for most

bins) except in the first bin (FSE% higher for PNPR than H02

v2.3) and for the second bin (FSE% around 90 % for both al-

gorithms). The result obtained for the first bin is due to the

algorithms’ uncertainties in detecting very low precipitation

rates, mitigated in the H02 v2.3 algorithm by the calibration

procedure, more efficient for low rain rate values.

4 Summary and conclusions

The design, the characteristics and the performance of a new

algorithm (PNPR) for surface precipitation estimation from

cross-track passive microwave radiometers based on a single

neural network for all types of surface background have been

presented. The algorithm was trained using a database based

on cloud-resolving model simulations, optimized for the Eu-

ropean and Mediterranean Basin areas. It receives as input a

linear combination of TBs of the window channels 50.3, 89

and 150 GHz and the differences of TBs of the 183.31 GHz

water vapor absorption band (in addition to some ancillary

environmental data). These TB differences have been proven

to be very effective in detecting precipitation, differentiating

between different precipitation structures and in the retrieval

of rainfall rate. The algorithm provides in output, in addition

to the precipitation, the phase and a quality index that pro-

vide a simple and immediate criterion for the evaluation of

the retrieval reliability.

Applied to four different weather conditions in Europe, the

algorithm has shown good performance both in the identifi-

cation of precipitation areas and in the retrieval of precip-

itation. The use of a single NN has responded correctly at

transitions between land, coast and sea, without introducing

discontinuities in the precipitation estimates. The precipita-

tion pattern and intensity agree well with those of the ground

data. In particular, the NN estimations were particularly ef-

ficient in the identification of heavy-rain areas of convective

events. The correct identification of the precipitation pattern

in the case of light rain was also evidenced, but it also showed

some criticisms, due to fact that in some conditions the mi-

crowave signal corresponding to rainy pixels is very weak,

and it is often difficult to be discriminated from rain-free

pixels. Moreover, as highlighted by the low values of the

percentage confidence index, other critical cases are repre-

sented by very cold/dry environmental situations, snowy/iced

backgrounds and over the coastal areas. The quality index –

higher for convective precipitation or in warm/moist environ-

mental conditions, and lower for light stratiform precipitation

and/or cold/dry conditions, or in the presence of a snowy/iced

background – indicates the reliability or the criticisms linked

to the retrieval. The phase flag is evaluated only for pixels

flagged as precipitating after the screening procedure and is

not available over coastal background surfaces (examples of

phase determination results, for liquid, snow and ice precipi-

tation, are shown in Panegrossi et. al., 2013). The comparison
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with the H-SAF H02 v2.3 algorithm (operational until June

2013), although limited to four cases, showed a good perfor-

mance of PNPR and better agreement with the ground-based

precipitation data. It should be mentioned that a more ex-

tensive verification study (19 case studies selected from the

H-SAF PPVG reports for the period 2009–2011) has been

carried out (Panegrossi et al., 2013) and the results are in

line with what is shown here, and with what has been ob-

tained in the comparison with the H-SAF H02 v2.3. PNPR

shows improved ability in the screening and retrieval of pre-

cipitation over different background surfaces, in the identifi-

cation and retrieval of heavy rain for convective events and,

in some cases, in the identification of precipitation over a

cold/iced background. Moreover, these results are also con-

firmed by the validation of PNPR over the African area over

a 2 yr period (2011–2012) where we use the TRMM precipi-

tation radar (PR) precipitation products as “truth” (presented

in Panegrossi et al., 2014).

In particular, the PNPR algorithm has shown better results

in the localization of the heavy-precipitation areas. These

results were confirmed by better statistical scores (both di-

chotomous and continuous) for all case studies analyzed and,

in particular, for the areas characterized by heavy precipita-

tion. It should be mentioned that while H02 v2.3 retains the

characteristics of AMSU/MM5, designed for a global pre-

cipitation retrieval and it has been calibrated to be optimized

for the European and Mediterranean areas, the optimization

of PNPR algorithm for the European region uniquely stems

from physical assumption, i.e., in the construction of the

cloud-radiation database used in the training phase of the re-

trieval. Moreover, the input variables used in PNPR are dif-

ferent from those used in H02 v2.3 and allow for the use of a

unique NN for all types of background surfaces.

It is worth noting that PNPR has been developed with the

aim to obtain precipitation retrievals from cross-track scan-

ning radiometers as consistent as possible with those ob-

tained from conically scanning radiometers, optimized for

the European/Mediterranean Basin region. This consistency,

besides the accuracy of the retrievals, is necessary in order

to be able to fully exploit all cross-track and conical scan-

ning radiometer overpasses from the GPM constellation of

satellites (available at about 3 h time interval in most parts

of the globe) and to be able to use precipitation products de-

rived from all sensors for monitoring precipitation at higher

spatial/temporal resolution (i.e., through blending or mor-

phing techniques with IR observations from geostationary

satellites). The full exploitation of all available sensors will

provide also useful products for nowcasting and/or hydro-

logical applications, with a significant reduction of the er-

rors associated with the inadequate sampling of precipita-

tion. The PNPR is a highly adaptable algorithm to different

environmental conditions, and it is computationally very ef-

ficient. Since July 2013, it has become the algorithm for the

operational instantaneous precipitation product from cross-

track PMW radiometers within the EUMETSAT H-SAF for

Europe and the Mediterranean Basin area (H-SAF product

H02 ver.2.4). All data are sent to EUMETSAT to be broad-

cast by EUMETCast in near-real time. Off-line products are

available via the EUMETSAT Data Center and the website

http://hsaf.meteoam.it. Similarly to all H-SAF operational

and pre-operational products, PNPR used in H-SAF will

soon undergo the standard independent validation carried out

routinely by the H-SAF PPVT team, which will further con-

tribute to outlining the strengths and the limitations of PNPR

with particular attention to case studies around arid regions,

and at high latitudes in cold/conditions, experiencing light

rain or snowfall.

The algorithm has recently undergone further develop-

ment with extension to the MSG full disk area. This new al-

gorithm uses a new neural network to estimate the surface

precipitation over the African region and a new screening

procedure (Casella et al. 2014) to identify the presence of

precipitation over arid surfaces. In a paper in preparation,

we will show the results of the validation of the extended

version of the algorithm over Africa and the South Atlantic,

where two full years (2011 and 2012) of coincident over-

passes of AMSU/MHS and the PR aboard the TRMM space

observatory are used. The use of PR has the advantage of pro-

viding consistent estimates of precipitation over an extended

period of time and over different regions in the tropics (be-

tween 35◦ S and 35◦ N). In the future, with the use of the

Dual-frequency Precipitation Radar (DPR) aboard GPM, it

will be possible to apply a similar validation procedure of all

H-SAF MSG full disk products, exploiting also the informa-

tion of the 3-D microphysical structure of the precipitating

cloud. Finally, PNPR has the feature of being easily adapt-

able to other cross-rack scanning radiometers, such as the

ATMS aboard the Suomi NPP satellite, for which a different

version of PNPR is under development.
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