Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Volume 8, issue 2
Atmos. Meas. Tech., 8, 875–890, 2015
https://doi.org/10.5194/amt-8-875-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 8, 875–890, 2015
https://doi.org/10.5194/amt-8-875-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 20 Feb 2015

Research article | 20 Feb 2015

Development of a sky imaging system for short-term solar power forecasting

B. Urquhart, B. Kurtz, E. Dahlin, M. Ghonima, J. E. Shields, and J. Kleissl B. Urquhart et al.
  • University of California, San Diego, California, USA

Abstract. To facilitate the development of solar power forecasting algorithms based on ground-based visible wavelength remote sensing, we have developed a high dynamic range (HDR) camera system capable of providing hemispherical sky imagery from the circumsolar region to the horizon at a high spatial, temporal, and radiometric resolution. The University of California, San Diego Sky Imager (USI) captures multispectral, 16 bit, HDR images as fast as every 1.3 s. This article discusses the system design and operation in detail, provides a characterization of the system dark response and photoresponse linearity, and presents a method to evaluate noise in high dynamic range imagery. The system is shown to have a radiometrically linear response to within 5% in a designated operating region of the sensor. Noise for HDR imagery is shown to be very close to the fundamental shot noise limit. The complication of directly imaging the sun and the impact on solar power forecasting is also discussed. The USI has performed reliably in a hot, dry environment, a tropical coastal location, several temperate coastal locations, and in the great plains of the United States.

Publications Copernicus
Download
Citation