Atmos. Meas. Tech., 8, 987–997, 2015 www.atmos-meas-tech.net/8/987/2015/ doi:10.5194/amt-8-987-2015 © Author(s) 2015. CC Attribution 3.0 License.

Measurements of CH₃O₂NO₂ in the upper troposphere

B. A. Nault¹, C. Garland², S. E. Pusede^{2,*}, P. J. Wooldridge², K. Ullmann³, S. R. Hall³, and R. C. Cohen^{1,2}

¹Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, CA, USA

²Department of Chemistry, University of California at Berkeley, Berkeley, CA, USA

³Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO, USA

*now at: NASA Langley Research Center, Hampton, VA, USA

Correspondence to: R. C. Cohen (rccohen@berkeley.edu)

Received: 2 September 2014 – Published in Atmos. Meas. Tech. Discuss.: 17 September 2014 Revised: 12 January 2015 – Accepted: 4 February 2015 – Published: 27 February 2015

Abstract. Methyl peroxy nitrate (CH₃O₂NO₂) is a nonacyl peroxy nitrate that is important for photochemistry at low temperatures characteristic of the upper troposphere. We report the first measurements of CH₃O₂NO₂, which we achieved through a new aircraft inlet configuration, combined with thermal-dissociation laser-induced fluorescence (TD-LIF) detection of NO₂, and describe the accuracy, specificity, and interferences to CH₃O₂NO₂ measurements. CH₃O₂NO₂ is predicted to be a ubiquitous interference to upper-tropospheric NO₂ measurements. We describe an experimental strategy for obtaining NO₂ observations free of the CH₃O₂NO₂ interference. Using these new methods, we made observations during two recent aircraft campaigns: the Deep Convective Clouds and Chemistry (DC-3) and the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) experiments. The CH₃O₂NO₂ measurements we report have a detection limit (S/N = 2) of 15 pptv at 1 min averaging on a background of 200 pptv NO₂ and an accuracy of ± 40 %. Observations are used to constrain the interference of pernitric acid (HO₂NO₂) to the CH₃O₂NO₂ measurements, as HO₂NO₂ partially decomposes ($\sim 11\%$) along with CH₃O₂NO₂ in the heated CH₃O₂NO₂ channel used to detect CH₃O₂NO₂.

1 Introduction

Methyl peroxy nitrate (CH₃O₂NO₂) is predicted to be abundant at temperatures below 240 K (Fig. 1), where it serves as a temporary reservoir of NO_x (NO_x = NO + NO₂). CH₃O₂NO₂ can be transported on regional scales moving NO_x from source to receptor regions and thus affecting O₃, OH, and other chemistry of the upper troposphere. The emphasis on low temperatures results from non-acyl peroxy nitrates, such as CH₃O₂NO₂ and pernitric acid (HO₂NO₂), having lower thermal stability and shorter lifetimes than acyl peroxy nitrates, such as peroxy acetyl nitrate (PAN) and peroxy propionyl nitrate (PPN) (~100 kJ mol⁻¹ for non-acyl peroxy nitrates).

The low thermal stability of CH₃O₂NO₂ poses analytical challenges. At room temperature, CH₃O₂NO₂'s lifetime is shorter than 1 s (Fig. 1). If the air sample is brought into a warm aircraft prior to detection, this very short lifetime results in substantial decomposition for residence times longer than even 0.1 s (Fig. 2). As a result of the decomposition of $CH_3O_2NO_2$, there is also a positive interference to NO_2 measurements with residence times at warm temperatures longer than 0.1 s. For NO₂ measurements, the interference was quantified to be as much as 43% during a study over Canada in springtime (Browne et al., 2011). Thus, in addition to interest in measurement of CH₃O₂NO₂, it is essential to understand CH₃O₂NO₂ to correct NO₂ measurements for its presence. Alternatively, in the absence of such a correction, it is necessary to interpret NO₂ measurements as XNO₂, where XNO_2 is the sum of ambient NO_2 and some or all of non-acyl peroxy nitrates (Browne et al., 2011).

There have been no prior direct measurements of ambient $CH_3O_2NO_2$. The only in situ information about $CH_3O_2NO_2$ stems from indirect measurements of the sum of $CH_3O_2NO_2$ and HO_2NO_2 by calculating the difference between total peroxy nitrate measurements and measurements of PAN and PPN (Murphy et al., 2004) and analysis of temperaturedependent deviations of NO_2 observations from photosta-

Figure 1. Calculated mean total lifetime profile of $CH_3O_2NO_2$ (blue) and HO_2NO_2 (green) for typical conditions observed during DC-3 in the daytime. The total lifetime is calculated using observed OH, photolysis rates, and temperatures along with the rate constants listed in Table 2 and measurements in Table 3. The black line marks the region where the non-acyl peroxy nitrates have a lifetime longer than 1 h.

Figure 2. Calculated fraction of (**a**) $CH_3O_2NO_2$ and (**b**) HO_2NO_2 dissociated at residence times of 2.0 (blue), 0.5 (red) and 0.1 s (black), and cabin temperatures ranging from 275 to 310 K. The calculations are for ambient pressures of 230 hPa and ambient temperatures of ~ 225 K. (**c**) XNO_2 ($XNO_2 = NO_2$ + fraction dissociated $CH_3O_2NO_2$ and fraction dissociated HO_2NO_2) as a function of the residence times and cabin temperatures used in (**a**) and (**b**). We use the median mixing ratios of NO_2 (200 pptv), $CH_3O_2NO_2$ (90 pptv), and HO_2NO_2 (40 pptv) observed between 220 and 230 K during DC-3.

tionary state (e.g., Browne et al., 2011). Murphy et al. (2004) showed that the sum of non-acyl peroxy nitrates contributes a large fraction of the NO_y budget (10–22%) in aged air masses. However, the individual contributions from $CH_3O_2NO_2$ and HO_2NO_2 were only identified modeling the sum. Browne et al. (2011) calculated that $CH_3O_2NO_2$ mix-

ing ratios of ~ 25 pptv should be expected; however, their calculations along flight tracks were limited to air samples at photostationary steady state.

Using the limited observational inferences as a guide, Browne et al. (2011) added CH₃O₂NO₂ chemistry to a global chemical transport model (GEOS-Chem) and used the model to explore the role of CH₃O₂NO₂ in the upper troposphere ($T \sim 210-250$ K), allowing study of conditions that do not reach steady state. They found that CH₃O₂NO₂ chemistry reduced NO_x mixing ratios with measurable effects on O₃, HNO₃, OH, and HO₂. They showed that CH₃O₂NO₂ mixing ratios peak in the summer due to more rapid photochemistry, and that biomass burning or deep convection can increase CH₃O₂NO₂ mixing ratios by a factor of ~ 3 over mean atmospheric mixing ratios.

Following on these studies demonstrating that an understanding of $CH_3O_2NO_2$ is important, we developed new configurations of the UC Berkeley thermal-dissociation laserinduced fluorescence (TD-LIF) instrument inlet aimed at unambiguous measurements of NO₂ and $CH_3O_2NO_2$. In this paper, we describe the design and performance of a modified inlet for the TD-LIF instrument; provide recommendations for minimizing and eliminating $CH_3O_2NO_2$ interferences to NO₂; and present observations of $CH_3O_2NO_2$ from two recent aircraft campaigns: the Deep Convective Clouds and Chemistry (DC-3) and the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) experiments. These measurements are the first in situ measurements providing specific information about atmospheric $CH_3O_2NO_2$.

2 Thermal-dissociation laser-induced fluorescence detection of CH₃O₂NO₂

2.1 Thermal-dissociation laser-induced fluorescence

The TD-LIF instrument has been described previously (Thornton et al., 2000; Day et al., 2002; Wooldridge et al., 2010). Briefly, NO₂ is measured by laser-induced fluorescence (Thornton et al., 2000) with supersonic expansion (Cleary et al., 2002). A 7 kHz, Q-switched, frequencydoubled Nd:Yag laser pumps a tunable dye laser producing ~ 20 ns pulses at 585 nm and a bandwidth of 0.06 cm⁻¹. The dye laser is tuned on (9 s) and off (3 s) an isolated rovibronic feature of the jet-cooled NO2 at 585 nm. The ratio between the peak and background NO₂ fluorescence is 10:1, sampling from an ambient pressure of 1 atm. The laser light is focused through two multipass White cells. Red-shifted fluorescence (wavelengths greater than 700 nm) of excited NO₂ is detected at a right angle to the excitation using a red-sensitive photomultiplier tube (Hamamatsu H7421-50). Scattered light is minimized using time-gated detection and dielectric band-pass filters that block light at wavelengths less than 700 nm. Fluorescence counts are collected at 4 Hz

Figure 3. Schematic of the TD-LIF inlet sampling manifold. Arrows and letters refer to lengths referenced in Table 1. The species measured in each channel is shown at the right, where $\Sigma PNs \equiv PAN + PPN + CH_3O_2NO_2 + HO_2NO_2 + ...$ and $\Sigma ANs \equiv$ the sum of gas and aerosol alkyl and multifunctional nitrates.

and reported as 1 s averages. For these measurements, calibrations were performed at least every hour during a level flight leg or after a significant change in altitude using a 4.67 (\pm 0.26) ppmv NO₂ standard (Praxair) diluted to ~ 2–8 ppbv in zero air. The accuracy and stability of this reference gas was compared against a library of other NO₂ standards in our laboratory. Measurements of zero were obtained with similar frequency. Fluorescence quenching by water vapor is accounted for (Thornton et al., 2000) using diode laser hygrometer (DLH) measurements of H₂O (Diskin et al., 2002).

The TD-LIF instrument samples ambient air using a large flow carried through a 35 mm internal diameter (i.d.) tube from the undisturbed free stream either by ram pressure from a partially plugged shroud at the inlet tip (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites, or ARCTAS; DC-3) or carried through a 16 mm i.d. tube by a 120Lmin^{-1} sample pump (SEAC4RS). The core of that flow was subsampled by a short ($\sim 0.10 \,\mathrm{m}$ long) tube where air had a residence time of ~ 0.03 s and then split into multiple sample lines for detection of specific categories of NO_v (Fig. 3). For CH₃O₂NO₂ detection, the sample is passed directly through a heated quartz tube (i.d. ~ 4.3 mm, $T \approx 60$ °C) for 0.06–0.08 s followed by PFA tubing (i.d. $\sim 3.2 \text{ mm}$) to one of two NO₂ detection cells. The residence time between the heater and the detector was \sim 0.4–0.5 s. The temperature (\sim 60 °C) for the heated quartz was chosen by calculating the temperature that would maximize the amount of CH₃O₂NO₂ dissociated while minimizing the amount of HO₂NO₂ dissociated (Fig. 4). This also ensures that PAN and its analogs (e.g., PPN) did not dissociate in the CH₃O₂NO₂ channel. Dinitrogen pentoxide (N₂O₅) has similar thermodynamics to HO₂NO₂ at this temperature (Wooldridge et al., 2010); however, the typical N₂O₅ mixing

Figure 4. The calculated fractional decomposition of CH3O2NO2 (blue) and HO2NO2 (green) as a function of CH₃O₂NO₂ oven temperatures at a pressure of 230 hPa and a residence time of 0.08 s. The black line marks the target temperature (~ 60 °C) for optimal separation of CH₃O₂NO₂ and HO₂NO₂. Rates used to calculate the fraction decomposition are shown in Table 2.

ratio during the day is estimated to be small due to slow rates of production at night under the low-temperature conditions favorable to the presence of $CH_3O_2NO_2$.

The lower maximum temperatures of the CH₃O₂NO₂ and sum of peroxy nitrates (Σ PNs) heaters compared to the sum of alkyl and multifunctional nitrates (Σ ANs) heaters (Fig. 5) allow for a simpler construction, as described in Wooldridge et al. (2010). Instead of bare nichrome wire, commercial woven fiberglass insulated heating cables are used, and thermo-

Figure 5. Schematic of the species measured in the TD-LIF channels and the temperature set points (temperatures the species dissociate) for those channels. $\Sigma PNs \equiv$ PAN + PPN + CH₃O₂NO₂ + HO₂NO₂ + ... and $\Sigma ANs \equiv$ alkyl and multifunctional nitrates. The channel subtracted to calculate the measured species (e.g., CH₃O₂NO₂) is shown before the equals sign in the third column.

couples are fastened directly to the quartz tubes. The very small amount of heat required to bring the sample streams to $60 \,^{\circ}\text{C}$ (~ 1 W for CH₃O₂NO₂, as calculated from the air heat capacity and mass flow rates) means that neither the maximum heater power (50 W across the 0.175 m heated length for CH₃O₂NO₂ dissociation) nor the quartz tube thermal resistance are limiting factors that would cause the thermocouple measurement to differ significantly from the internal gas temperature. Additionally, using the constant wall temperature approximation (e.g., Kliner et al., 1997; references therein), we calculate thermal equilibration lengths of 0.01–0.02 m for CH₃O₂NO₂, which are short compared to the overall heated lengths (0.175 m).

Mixing ratios of ambient CH₃O₂NO₂ are determined by subtracting the measurements from the NO₂ channel from the CH₃O₂NO₂ channel (60 °C, Fig. 5). Similarly, the mixing ratio of the ambient sum of peroxy nitrates (Σ PNs = PAN + PPN + CH₃O₂NO₂ + HO₂NO₂ + ...) is determined by subtracting the measurements from the NO₂ channel from the Σ PN channel, and the mixing ratio of ambient sum of alkyl and multifunctional nitrates (Σ ANs) is determined by subtracting the measurements from the Σ PN channel from the Σ AN channel (Fig. 5). The HNO₃ channel depicted in Fig. 5 has been employed in other TD-LIF deployments, but was not part of the DC-3 and SEAC4RS configuration.

Table 1. Lengths for tubing in the corresponding sections for Fig. 3.

Campaign	Section A	Section B	Section C	NO ₂ channel max residence time
ARCTAS	0.10 m	0.20 m	2.00 m	0.85 s
DC-3	0.10 m	0.08 m	1.50 m	0.50 s
SEAC4RS	1.00 m	0.12 m	0.30 m	0.23 s

2.2 NO₂ measurements free of non-acyl peroxy nitrate interference

Measuring NO₂ free of CH₃O₂NO₂ interference is desirable for understanding upper-tropospheric chemistry and essential to correctly derive the $CH_3O_2NO_2$ and ΣPN mixing ratios from the heated channels (Fig. 5). Measurements of NO_2 at ambient temperatures lower than 240 K, where non-acyl peroxy nitrates are more abundant due to longer thermal lifetimes (Fig. 1), are not free of interferences if the sample residence time in the aircraft is long (Browne et al., 2011). Figure 2 shows the calculated fraction of CH₃O₂NO₂ and HO₂NO₂ thermally dissociating in the NO₂ inlet prior to measuring NO₂ for different residence times and as a function of cabin temperature. At a cabin temperature of 300 K, approximately 90_{-10}^{+5} , 40_{-6}^{+11} , and 10_{-2}^{+3} % of CH₃O₂NO₂ and approximately 8 ± 2 , 2%, and less than 1% of HO₂NO₂ will thermally decompose at residence times of 2, 0.5, and 0.1 s, respectively. The uncertainties are based on the 2σ range reported for the decomposition rates of CH₃O₂NO₂ and HO₂NO₂. The partial thermal decomposition of CH₃O₂NO₂ and HO₂NO₂ can cause up to a 50% increase in the measured NO₂ (XNO₂) vs. the ambient NO_2 (Fig. 2c).

2.3 Inlet configurations and effects on NO₂ and CH₃O₂NO₂ measurements

Figure 3 shows the schematic of the TD-LIF inlet. Table 1 lists the lengths and residence times of the different inlets used in three recent experiments: ARCTAS, DC-3, and SEAC4RS. The residence time is set by the measured length of tubing, the diameter of the tubing, and the flow speed of the sample pumps. Unless stated otherwise, the tubing has an internal diameter of ~ 3.2 mm. Following the recommendations of Wooldridge et al. (2010) and Browne et al. (2011), we shortened the residence time for the NO₂ sample from 0.85 s during ARCTASto 0.5 s during DC-3, reducing the decomposition of CH₃O₂NO₂ in the NO₂ channel from ~ 90 to ~ 45 %.

To reduce the residence time further during SEAC4RS, a bypass pump was used to bring a large flow of ambient air through a 1 m, 15.9 mm i.d. tubing (Section A). We then reduced the length of Section C (Fig. 3, Table 1). The combined effects of these changes reduced the maximum residence time for NO₂ from 0.5 s (DC-3) to 0.23 s (SEAC4RS). This

B. A. Nault et al.: Measurements of CH₃O₂NO₂ in the upper troposphere

Table 2. Reactions and rates used in calculating dissociations in instrument and photostationary steady-state calculations for CH₃O₂NO₂.

Reaction	Rate constant	
$CH_3O_2NO_2 + M \rightleftharpoons CH_3O_2 + NO_2 + M$	Low-pressure limit = $1.0 \times 10^{-30} \times (T/300)^{-4.8}$	
	High-pressure limit = $7.2 \times 10^{-12} \times (T/300)^{-2.1}$	
	$K_{\rm eq} = 9.5 \times 10^{-29} \times \exp(11234/T)^{\rm a}$	
$HO_2NO_2 + M \rightleftharpoons HO_2 + NO_2 + M$	Low-pressure limit = $2.0 \times 10^{-31} \times (T/300)^{-3.4}$	
	High-pressure limit = $2.9 \times 10^{-12} \times (T/300)^{-1.1}$	
	$K_{\rm eq} = 2.1 \times 10^{-27} \times \exp(10900/T)^{\rm a}$	
$CH_3O_2NO_2 + h\nu \rightarrow CH_3O_2 + NO_2$	Assumed to be equal to measured HO ₂ NO ₂ value	
$CH_3O_2NO_2 + h\nu \rightarrow CH_3O + NO_3$	Assumed to be equal to measured HO ₂ NO ₂ value	
$CH_4 + OH \rightarrow CH_3O_2 + NO_2$	$2.45 \times 10^{-12} \times \exp(-1775/T)^{a}$	
$CH_3C(O)O_2 + NO \rightarrow CH_3O_2 + CO_2 + NO_2$	$8.1 \times 10^{-12} \times \exp(270/T)^{a}$	
$CH_3C(O)O_2 + CH_3C(O)O_2 + 2O_2 \rightarrow 2CH_3O_2 + 2CO_2 + O_2$	$2.9 \times 10^{-12} \times \exp(500/T)^{a}$	
$\mathrm{CH}_{3}\mathrm{C}(\mathrm{O})\mathrm{CH}_{3} + h\nu + \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3}\mathrm{C}(\mathrm{O})\mathrm{O}_{2} + \mathrm{CH}_{3}\mathrm{O}_{2}$	Measured	
$CH_3OOH + OH \xrightarrow{70\%} CH_3O_2 + H_2O$	$3.8 \times 10^{-12} \times \exp(200/T)^{a}$	
$CH_3C(O)OH + h\nu + O_2 \rightarrow CH_3O_2 + HCO$	Measured	
$CH_3O_2 + NO \rightarrow CH_3O + NO_2$	$2.8 \times 10^{-12} \times \exp(300/T)^{a}$	
$CH_3O_2 + HO_2 \rightarrow Products$	$3.8 \times 10^{-13} \times \exp(780/T)^{b}$	
$CH_3O_2 + CH_3C(O)O_2 \rightarrow Products$	$2.0 \times 10^{-12} \times \exp(500/T)^{a}$	
$CH_3O_2 + CH_3O_2 \rightarrow Products$	$9.5 \times 10^{-14} \times \exp(390/T)^{a}$	
$CH_3C(O)O_2NO_2 \rightleftharpoons CH_3C(O)O_2 + NO_2$	Low-pressure limit = $9.7 \times 10^{-29} \times (T/300)^{-5.6}$	
	High-pressure limit = $9.3 \times 10^{-12} \times (T/300)^{-1.5}$	
	$K_{\rm eq} = 9.0 \times 10^{-29} \times \exp(14000/T)^{\rm a}$	
$CH_3C(O)O_2NO_2 + h\nu \rightarrow CH_3C(O)O_2 + NO_2$	Measured	
$\rm CH_3C(O)OOH + OH \rightarrow \rm CH_3C(O)O_2 + \rm H_2O$	$3.7 \times 10^{-12} \text{ c}$	
$CH_3C(O)H + OH + O_2 \rightarrow CH_3C(O)O_2 + H_2O$	$4.7 \times 10^{-12} \times \exp(345/T)^{b}$	
$CH_3C(O)O_2 + HO_2 \rightarrow Products$	$5.2 \times 10^{-13} \times \exp(980/T)^{b}$	
$HO_2NO_2 + OH \rightarrow Products$	$8.8 \times 10^{-19} \times T^2 \times \exp(1130/T)^{d}$	

^a JPL 2011 (Sander et al., 2011); ^b Atkinson et al. (2006) (http://iupac.pole-ether.fr/htdocs/summary/vol2_summary.pdf); ^c Master Chemical Mechanism v3.2 (Saunders et al., 2003); ^d Jiménez et al. (2004).

reduced the factional thermal dissociation of $CH_3O_2NO_2$ in the NO₂ channel to ~ 22 %.

We obtain an NO₂ measurement by correcting for the partial thermal dissociation of $CH_3O_2NO_2$ in the XNO_2 channel (Eq. 1). The $CH_3O_2NO_2$ measurement is then determined by subtracting the corrected NO_2 and the fraction of thermally dissociated HO_2NO_2 in the $CH_3O_2NO_{2,CHANNEL}$ (Eq. 2) from the total signal in that channel.

$$NO_2 = XNO_2 - f_1 \times CH_3O_2NO_2 \tag{1}$$

$$CH_3O_2NO_2 = CH_3O_2NO_{2,CHANNEL} - NO_2$$
(2)
- $f_2 \times HO_2NO_2$

To calculate the fraction of $CH_3O_2NO_2$ (f_1 in Eq. 1) that dissociates in the NO₂ sample line, we use the cabin temperature we measured near the TD-LIF NO₂ sample line along with the thermal rate constant (Table 2). To calculate the fraction of HO₂NO₂ (f_2 in Eq. 2) that has dissociated in the $CH_3O_2NO_2$ channel, we use the measured oven temperature (~ 60 °C) along with the thermal rate constant (Table 2). With Eq. (1) and (2), we solve for the NO₂ and $CH_3O_2NO_2$ mixing ratios observed if there is an independent measurement or calculation of HO₂NO₂. During DC-3, the correction for the thermal dissociation of CH₃O₂NO₂ in XNO₂ ranged from 0 to 30 pptv (0 to 40 %) of the NO₂ mixing ratios at temperatures less than 240 K. During SEAC4RS, the correction ranged from 0 to 23 pptv (0 to 21 %). The correction for the thermal decomposition of HO₂NO₂ ranged from 0 to 20 pptv (0 to 11 %) for both campaigns.

2.4 Accuracy, uncertainty, and limit of detection for CH₃O₂NO₂

The accuracy of the CH₃O₂NO₂ measurements depends on the accuracy of our primary measurement of NO₂, the conversion efficiency in our inlet, and the interference of HO₂NO₂ in the CH₃O₂NO₂ channel. The uncertainty of the NO₂ calibration standard is ~ 5% (Sect. 2.1). Using the rate constant and 2σ uncertainty recommendation from JPL-2011 (Sander et al., 2011) at 60 °C, the thermal decomposition rate constant of CH₃O₂NO₂ is 36.0^{+19.0}_{-13.0} s⁻¹, indicating between 85 and 99% of CH₃O₂NO₂ is decomposed at this temperature and a residence time of 0.08 s. Including the uncertainty estimated for the oven temperature (± 5 °C), the amount of CH₃O₂NO₂ decomposed ranges from 70 to 100 %.

The transmission efficiency depends on recombination reactions and oxidation of NO. Day et al. (2002) and Wooldridge et al. (2010) showed these to be small effects ($\sim 5-10\%$) at NO mixing ratios less than 1 ppbv and pressures in the inlet region less than 400 hPa (ambient pressure). Assuming mixing ratios of 100 pptv for CH₃O₂NO₂ and HO₂NO₂, 200 pptv for NO₂, and 100–5000 pptv NO, we calculate a positive interference to CH₃O₂NO₂ measurements ranging from ~ 8 to 26% from the oxidation of NO to NO₂. The typical NO mixing ratios at the temperatures where CH₃O₂NO₂ is stable range from ~ 50 to 400 pptv (25th–75th percentile), and for this range we calculate a positive interference of less than 10%.

The similarity in the bond strength between HO₂NO₂ and CH₃O₂NO₂ (~100 and ~93 kJ mol⁻¹, respectively) prevents having a temperature set point that completely separates the two species (Fig. 4). For the oven temperature selected to decompose CH₃O₂NO₂ (60 °C) and the residence time in the oven (0.08 s), we calculate approximately 11^{+10}_{-6} % of HO₂NO₂ dissociates in the CH₃O₂NO₂ channel.

To summarize, the largest source of uncertainty in the $CH_3O_2NO_2$ measurement is the uncertainty of the thermal decomposition rate for $CH_3O_2NO_2$ (~30%). Other effects, including recombination reactions and the thermal decomposition of HO_2NO_2 , are each typically less than 10%. Combining these uncertainties, we estimate a total uncertainty of ± 40 % for the $CH_3O_2NO_2$ measurements. We note that the sum of the NO_2 and $CH_3O_2NO_2$ measurement ($CH_3O_2NO_2$, CHANNEL) is more accurate (~10%) than the separate quantities.

The precision of the CH₃O₂NO₂ measurements depends on the shot noise of the photon-counting rate, the precision of the NO₂ measurement, the concentration of NO₂, and the concentration of CH₃O₂NO₂. Using the median NO₂ measured between 10 and 11 km (~ 200 pptv of NO₂), and using the lower end of the sensitivity observed during DC-3 (0.100 cts pptv⁻¹), the detection limit for CH₃O₂NO₂ is 15 pptv at 60 s⁻¹ for S/N = 2. The median limit of detection (S/N = 2 and 60 s averaged data) for the DC-3 campaign is shown vs. altitude in Fig. 10b (red line).

3 Ambient measurements of CH₃O₂NO₂

CH₃O₂NO₂ measurements obtained during the DC-3 (2012) and SEAC4RS (2013) campaigns are located in NASA's publicly accessible archives: http://www-air.larc.nasa.gov/cgi-bin/ArcView/dc3-seac4rs and https://www-air.larc.nasa.gov/cgi-bin/ArcView/seac4rs.

Figure 6. Five-minute-averaged time series of (a) NO_2 (blue) and $CH_3O_2NO_2$ (black) channel and (b) temperature from a flight on 17 June 2012 during DC-3. The local time was approximately midafternoon during this time segment.

3.1 Characterization of the measurements of ambient CH₃O₂NO₂

We utilize the measurements collected during DC-3 to validate the temperature selected to fully decompose $CH_3O_2NO_2$ with minimal interference from thermally decomposed HO_2NO_2 . First, we ensure that the $CH_3O_2NO_2$ channel behaves as expected: at high ambient temperatures (low altitudes) the $CH_3O_2NO_2$ channel should only be detecting ambient NO_2 (Fig. 1), but at low ambient temperatures (high altitudes), the $CH_3O_2NO_2$ channel should be detecting NO_2 from both ambient NO_2 and thermally decomposed $CH_3O_2NO_2$. This behavior is observed, as shown in an example flight from DC-3 (Fig. 6).

We utilize observations of CH₃O₂NO₂ near the limit of detection (Fig. 7 between \sim 21:30 and 22:00 UTC) to calculate an upper limit for the thermal dissociation of HO₂NO₂ in the CH₃O₂NO₂ channel. The median observed HO₂NO₂ is 94^{+11}_{-35} pptv (plus 75th quartile and minus 25th quartile). In the $CH_3O_2NO_2$ channel, we observed 24^{+10}_{-6} pptv (median and interquartile). Assuming zero for the CH₃O₂NO₂ mixing ratio, this gives an upper limit to the HO₂NO₂ present in the $CH_3O_2NO_2$ of ~ 25 % of the measured HO_2NO_2 . Calculations (Sect. 2.4) suggest the most likely amount of HO₂NO₂ thermally dissociated is ~ 11 %, with an upper limit based on propagating uncertainties in rate constants of 25 to 30 %. The observed values are consistent with this upper limit. We conclude that some (~ 6 pptv calculated assuming photostationary steady state) CH₃O₂NO₂ should be present. If we assume this CH₃O₂NO₂ is correct, the HO₂NO₂ fraction dissociated is $\sim 20\%$.

Another way to determine if the temperature selected fully decomposes $CH_3O_2NO_2$ with minimal HO_2NO_2

B. A. Nault et al.: Measurements of CH₃O₂NO₂ in the upper troposphere

Species	Method	Reference
NO ₂ , CH ₃ O ₂ NO ₂ , Σ PNs HO ₂ NO ₂ , PAN, PPN	Thermal-dissociation laser-induced fluorescence Chemical ionization mass spectrometry	Thornton et al. (2000), Day et al. (2002) Slusher et al. (2004), Kim et al. (2007)
OH, HO_2	Laser-induced fluorescence	Faloona et al. (2004)
UV photolytic frequencies	Spectral radiometry	Shetter and Müller (1999)

Table 3. Measurements used in this analysis and calculations of the lifetimes in Fig. 1.

Figure 7. Five-minute-averaged time series of (a) uncorrected (black) and corrected (magenta) $CH_3O_2NO_2$ for HO_2NO_2 thermal decomposition, (b) HO_2NO_2 , and (c) pressure altitude (blue) and temperature (green) from a flight on 30 May 2012 during DC-3. Local sunset is approximately 00:00 UTC.

decomposition is to compare inferred CH₃O₂NO₂ $(CH_3O_2NO_2(inferred) \equiv \Sigma PNs - (HO_2NO_2 + PAN + PPN))$ to measured CH₃O₂NO₂ during the DC-3 campaign (Fig. 8). PAN, PPN, and HO₂NO₂ were measured by chemical ionization-mass spectrometry (Table 3; Slusher et al., 2004; Kim et al., 2007). The observations used are one minute merged data from temperatures between 220 and 230 K, where the signal of the CH₃O₂NO₂ measurements is well above the noise (Fig. 10b). Using weighted (by accounting for differing uncertainties in the individual points) bivariate least-squares fit (Cantrell, 2008), we calculated a slope of $0.93 (\pm 0.07)$ after removing a few (378 of 1296 data points) $CH_3O_2NO_{2(inferred)}$ points more than ± 3 standard deviations from the median. While the CH₃O₂NO_{2(inferred)} is not completely independent from CH₃O₂NO₂, as both CH₃O₂NO₂ and Σ PNs are measured by the same technique, the fact that the slope is nearly 1 indicates that the temperature selected for the CH₃O₂NO₂ channel is high enough to thermally decompose all CH₃O₂NO₂, supporting the conclusion that the thermally decomposed HO₂NO₂ is less than the upper limit (25-30%) calculated above. Also, the slope implies

Figure 8. CH₃O₂NO₂ inferred (Δ CH₃O₂NO₂) as the difference of the total peroxy nitrates minus PAN, PPN, and HO₂NO₂ compared to CH₃O₂NO₂ observed by TD-LIF at temperatures between 220 and 230 K (Table 3). The red line is a weighted fit to the data: slope of 0.93 (±0.07) and intercept of -33.0 (±5.9) pptv. The uncertainties used in the calculations are ±40 % + 20 pptv for CH₃O₂NO₂, ±15 % + 20 pptv for SPNs, ±15 % + 2 pptv for PAN, ±20 % + 1 pptv for PPN, and ±30 % + 1 pptv for HO₂NO₂. The R² of the fit is 0.3.

that the direct $CH_3O_2NO_2$ measurement is accurate to at least the ± 40 % estimated above.

3.2 Examples of measurements of CH₃O₂NO₂

A time series of $CH_3O_2NO_2$ during the flight of 30 May 2012 is shown in Fig. 7. The flight of 30 May 2012 sampled the aging of deep convective outflow affected by lightning NO_x . The time series shows the variability in the $CH_3O_2NO_2$ measurements that corresponds to the temperature of the ambient air, location of the DC-8, and chemical aging of the convective outflow. Prior to approximately 01:00 UTC, the DC-8 was sampling different altitudes to characterize the aging of convective outflow. At higher altitudes (ambient temperatures less than 230 K), the mean $CH_3O_2NO_2$ was ~ 100 pptv and ranged from ~ 26 to 165 pptv. At lower altitudes (ambient temperatures between 230 and 260 K), the mean $CH_3O_2NO_2$ was ~ 35 pptv and ranged from 0 to 95 pptv.

At these lower altitudes, where the HO₂NO₂ measurements are higher (range $\sim 20-170$ pptv) than the CH₃O₂NO₂ mixing ratios, the structure in the CH₃O₂NO₂ measurements is not simply a mirror of the HO₂NO₂ measurements. If there were a large interference from the thermal decomposition of HO₂NO₂ in the CH₃O₂NO₂ channel, we would expect to see a similar structure in the two measurements. For example, between 00:00 and 01:00 UTC, the HO₂NO₂ mixing ratio peaks at ~ 170 pptv, whereas at the same time the CH₃O₂NO₂ decreases to ~ 10 pptv. The largest corrections for the thermal decomposition of HO₂NO₂ in the CH₃O₂NO₂ in the CH₃O₂NO₂ in the cH₃O₂NO₂ is a small interference in the measurement of CH₃O₂NO₂.

At 01:00 UTC, the DC-8 started sampling stratospheric air. The CH₃O₂NO₂ mixing ratios dropped to ~ 30 pptv (range 0–140 pptv). This is lower than the values observed in the upper troposphere at ambient temperatures less than 230 K. Even though the temperatures in the lower stratosphere are low enough for the CH₃O₂NO₂ lifetime to be greater than 10 h, the observations of CH₃O₂NO₂ indicate that the lower stratosphere has lower mixing ratios of the precursors of CH₃O₂ needed to form CH₃O₂NO₂. These include the peroxy acyl radical from acetaldehyde, which reacts with NO to produce CH₃O₂ (e.g., Tyndall et al., 2001), and CH₃COCH₃, which can photolyze to produce CH₃O₂ (e.g., Folkins and Chatfield, 2000; Jaeglé et al, 2001; Neumaier et al., 2014).

An example of CH₃O₂NO₂ behaving as an important NO_x reservoir downwind of deep convection is shown in Fig. 9. We observed the production of CH₃O₂NO₂ in the aging outflow of deep convection during the flight of 21 June 2012 (Fig. 9). The DC-8 sampled at a constant ambient temperature (\sim 225 K) and entered the outflow between 12:00 and 13:00 UTC (0–1 h chemically aged), where the CH₃O₂NO₂ mixing ratio was observed to be \sim 0 pptv. The aircraft sampled the outflow until \sim 16:30 UTC (4.5 h chemically aged), where the CH₃O₂NO₂ mixing ratio was observed to be \sim 150 pptv. The apparent CH₃O₂NO₂ production rate was \sim 60 pptv h⁻¹ – an indication of the importance of this chemistry to understanding upper-tropospheric chemistry.

We compare the median $CH_3O_2NO_2$ profiles during DC-3 (black), SEAC4RS (dark grey) and ARCTAS-A (blue, as calculated by Browne et al., 2011) in Fig. 10b. At altitudes above 7 km, higher mixing ratios of $CH_3O_2NO_2$ were observed during both DC-3 and SEAC4RS compared to ARCTAS-A due to the influence of deep convection, lightning NO_x, and biomass burning. Also, DC-3 and SEAC4RS occurred later in the year (May–June 2012 for DC-3 and August–September 2013 for SEAC4RS) than ARCTAS-A (April 2008); thus, photochemistry is more active, producing more $CH_3O_2NO_2$. This is consistent with calculations described by Browne et al. (2011), who found modeled $CH_3O_2NO_2$ mixing ratios to be higher in the summer than spring. Finally, the observed $CH_3O_2NO_2$ during SEAC4RS

Figure 9. Five-minute-averaged time series of the chemical evolution of $CH_3O_2NO_2$ downwind from convection from a flight on 21 June 2012 during DC-3. The *x* axis shows the age of the air parcel that the DC-8 started sampling at approximately 12:00 UTC (0h), which was the local sunrise.

at lower altitudes is higher due to the impact of agricultural and biomass burning. Higher NO₂ mixing ratios from biomass burning shift the equilibrium towards $CH_3O_2NO_2$, similar to the higher NO₂ concentrations shifting the equilibrium towards HO₂NO₂ production near an urban area (Spencer et al., 2009). Higher $CH_3O_2NO_2$ mixing ratios due to biomass burning are also consistent with the GEOS-Chem results from Browne et al. (2011).

During DC-3, $CH_3O_2NO_2$ measurements dropped to below the limit of detection at high altitudes (>11.5 km) when the aircraft was sampling the stratosphere. The stratosphere is higher during SEAC4RS since the campaign occurs later in the season; thus, higher mixing ratios of $CH_3O_2NO_2$ are observed.

Finally, we compare the calculated instantaneous steadystate mixing ratios of CH₃O₂NO₂ to measured CH₃O₂NO₂ during DC-3 (Fig. 11). We limit the comparison to observations for which the calculated lifetime of CH₃O₂NO₂ is less than 10 h, the tropospheric composition has not been recently perturbed by fresh NO_x emissions (NO_x / NO_y < 0.4) or stratospheric intrusions $(O_3/CO < 1.25)$, and to solar zenith angles less than 85° - all conditions that make it more likely that steady state is achieved in the atmosphere. We used only observations at temperatures less than 250 K where CH₃O₂NO₂ is thermally stable. The comparison is also restricted to observations where the CH₃O₂NO₂ signal is greater than the noise (Fig. 10b). Observations with CH₃O₂NO₂/NO₂ greater than 1 are excluded as they are also indicative of an air mass that is not in steady state. The reactions used in the model are listed in Table 2. Within the variability and uncertainty of the measured and calculated CH₃O₂NO₂ mixing ratios, the calculated values are nearly

Figure 10. The median profile of (a) NO₂, (b) CH₃O₂NO₂, (c) CH₃O₂NO₂/(NO₂+CH₃O₂NO₂), and (d) temperature for ARCTAS-A (blue), DC-3 (black), and SEAC4RS (dark grey). The red line in (b) is the median limit of detection for S/N = 2, 60 s for DC-3. The green line in (c) is the median CH₃O₂NO₂/(NO₂+CH₃O₂NO₂) in background air where NO_x/NO_y is less than 0.2 during DC-3.

Figure 11. Binned modeled vs. measured $CH_3O_2NO_2$. The bars identify the interquartile of the modeled $CH_3O_2NO_2$. The blue line has a slope of 1 for reference.

the same as the measured values (median values falling near the one-to-one line). This agreement indicates that, for air parcels in photostationary state, the chemistry and kinetics are understood to within ~ 50 %. This also provides us with further confidence in the laboratory measurements of CH₃O₂NO₂ rate constants that we use as a guide to instrument design and evaluation.

4 Discussion

We observe that CH₃O₂NO₂ composed 7 % and HO₂NO₂ composed 5 % of the median NO_v budget between 220 and 230 K during DC-3, where NO_v is defined as the sum of NO_x , ΣPNs , ΣANs , and HNO_3 . This is significant since many transport models neglect CH₃O₂NO₂ chemistry. During DC-3, these weakly bound species comprised a larger portion of the median NO_v budget than HNO₃ (4%), which is a terminal sink for NOx. In prior analysis of tropospheric air cooler than 240 K, Murphy et al. (2004) calculated the sum of HO₂NO₂ and CH₃O₂NO₂ as the difference between Σ PNs measured by TD-LIF, and PAN and PPN measured using gas chromatography with electron capture detection (similar to CH₃O₂NO_{2(inferred)} above). Murphy et al. (2004) reported these two species were a large fraction of the NO_y budget at temperatures cooler than 240 K (17-22%), impacting NO_x and radical chemistry. That the percent composition for the non-acyl peroxy nitrates during DC-3 were lower than reported by Murphy et al. (2004) is not surprising because the sampling during DC-3 was biased toward fresh convective outflow impacted by lightning NO_x, meaning NO_x composed 39% of the NO_y budget vs. the 5% for the air observed by Murphy et al. (2004). For background air $(NO_x / NO_y < 0.2)$ observed during DC-3, CH₃O₂NO₂ composed a larger portion of the median NO_v budget (12%), and the median non-acyl peroxy nitrate portion of the NO_v budget $(CH_3O_2NO_2 + HO_2NO_2 (5\%))$ had a sum that is similar to the observations by Murphy et al. (2004) of 17 %.

The lower NO_x mixing ratios characteristic of the air observed by Murphy et al. (2004) were also characteristic of the air observed by Browne et al. (2011) during ARCTAS-A, as both were springtime measurements in the Arctic. The comparison of ARCTAS-A, DC-3, and SEAC4RS is shown in Fig. 10. The lower NO₂ mixing ratios observed during ARCTAS-A meant the air masses were more dominated by CH₃O₂NO₂ than by NO₂ (CH₃O₂NO₂ / (NO₂ + CH₃O₂NO₂) ratios closer to 1.0, Fig. 10c). The dominance of $CH_3O_2NO_2$ means that it is an important source of NO2, and that is an important interference for ambient NO₂ measurements. In DC-3, the influence of lightning NO_x emissions made the median air masses for the entire campaign more dominated by NO2 (ratios less than 0.5). The median $CH_3O_2NO_2/(NO_2+CH_3O_2NO_2)$ ratios are slightly smaller than the ratios calculated in the GEOS-Chem model from Browne et al. (2011) for air influenced by deep convection and lightning. In background air sampled by the DC-8 during DC-3, the median $CH_3O_2NO_2/(NO_2+CH_3O_2NO_2)$ ratio was in the range 0.3 to 0.7 (Fig. 10c, green). We observed similar median ratios during SEAC4RS (Fig. 10c, dark grey). These values are closer to the values calculated during ARCTAS (Fig. 10c, blue; Browne et al., 2011). This indicates that, with aging, the ratio shifts toward air more dominated by CH₃O₂NO₂, impacting the ozone chemistry of the upper troposphere, as previously described by Browne et al. (2011).

5 Conclusions

We report the first measurements of atmospheric CH₃O₂NO₂ and report recommendations for instrument design to sample NO₂ free of interferences from thermal decomposition of non-acyl peroxy nitrates. We conclude that, for an instruments where the sample lines and/or detection region is at a temperature of 300 K, total residence times of less than 0.1 s are required to keep the interference to NO₂ below 10% of CH₃O₂NO₂ and below 1% of HO₂NO₂. We describe a procedure for evaluating the interference of CH₃O₂NO₂ in NO₂ using measurements of CH₃O₂NO₂. Our measurements show that for temperatures less than 230 K the median CH₃O₂NO₂ is a larger fraction of NO_v than HNO₃, experimental evidence for the important role of CH₃O₂NO₂ in the upper troposphere. Our measurements also provide supporting evidence for the conclusion of Browne et al. (2011), who predicted larger CH₃O₂NO₂ mixing ratios in summer than in spring using GEOS-CHEM.

Acknowledgements. This research was funded by NASA grant NNX12AB79G and based upon work supported by the National Science Foundation Graduate Research Fellowship under grant no. DGE 1106400 to B. A. Nault. S. E. Pusede acknowledges support from the NASA Postdoctoral Program. We thank William H. Brune for use of the OH and HO₂ measurements, L. Gregory Huey

for the use of Georgia Institute of Technology CIMS data, Paul O. Wennberg for the use of HNO_3 data, and Thomas B. Ryerson for the use of NO data. We also thank the ground and flight crews of the DC-8 and DC-3 and SEAC4RS science team.

Edited by: H. Harder

References

- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, doi:10.5194/acp-6-3625-2006, 2006.
- Browne, E. C., Perring, A. E., Wooldridge, P. J., Apel, E., Hall, S. R., Huey, L. G., Mao, J., Spencer, K. M., Clair, J. M. St., Weinheimer, A. J., Wisthaler, A., and Cohen, R. C.: Global and regional effects of the photochemistry of CH₃O₂NO₂: evidence from ARCTAS, Atmos. Chem. Phys., 11, 4209–4219, doi:10.5194/acp-11-4209-2011, 2011.
- Cantrell, C. A.: Technical Note: Review of methods for linear leastsquares fitting of data and application to atmospheric chemistry problems, Atmos. Chem. Phys., 8, 5477–5487, doi:10.5194/acp-8-5477-2008, 2008.
- Cleary, P. A., Wooldridge, P. J., and Cohen, R. C.: Laser-induced fluorescence detection of atmospheric NO₂ with a commercial diode laser and a supersonic expansion, Appl. Optics, 41, 6950–6956, 2002.
- Day, D. A., Wooldridge, P. J., Dillon, M. B., Thornton, J. A., and Cohen, R. C.: A thermal dissociation laser-induced fluorescence instrument for in situe detection of NO₂, peroxy nitrates, alkyl nitrates, and HNO₃, J. Geophys. Res., 107, 4046, doi:10.1029/2001JD000779, 2002.
- Diskin, G. S., Podolske, J. R., Sachse, G. W., and Slate, T. A.: Open-Path Airborne Tunable Diode Laser Hygrometer, in: Diode Lasers and Applications in Atmospheric Sensing, edited by: Fried, A., SPIE Proceedings, 4817, 196–204, 2002.
- Faloona, I. C., Tan, D., Lesher, R. L., Hazen, N. L., Frame, C. L., Simpas, J. B., Harder, H., Martinez, M., Di Carlo, P., Ren, X., and Brune, W. H.: A laser-induced fluorescence instrument for detecting tropospheric OH and HO₂: Characteristics and calibration, J. Atmos. Chem., 47, 139–167, 2004.
- Folkins, I. and Chatfield, R.: Impact of acetone on ozone production and OH in the upper troposphere at high NO_x, J. Geophys. Res., 105, 11585–11599, doi:10.1029/2000JD900067, 2000.
- Jaeglé, L., Jacob, D. J., Brune, W. H., and Wennberg, P. O.: Chemistry of HO_x radicals in the upper troposphere, Atmos. Environ., 35, 469–489, doi:10.1016/S1352-2310(00)00376-9, 2001.
- Jiménez, E., Gierczak, T., Stark, H., Burkholder, J. B., and Ravishankara, A. R.: Reaction of OH with HO₂NO₂ (Peroxynitric Acid): Rate Coefficients between 218 and 335 K and Product Yields at 298 K, J. Phys. Chem. A., 108, 1139–1149, doi:10.1021/jp0363489, 2004.
- Kliner, D. A. V., Daube, B. C., Burley, J. D., and Wofsy, S. C.: Laboratory investigation of the catalytic reduction technique for measurement of atmospheric NO_y, J. Geophys. Res., 102, 10759– 10776, doi:10.1029/96JD03816, 1997.

B. A. Nault et al.: Measurements of CH₃O₂NO₂ in the upper troposphere

- Kim, S., Huey, L. G., Stickel, R. E., Tanner, D. J., Crawford, J. H., Olson, J. R., Chen, G., Brune, W. H., Ren, X., Lesher, R., Wooldridge, P. J., Bertram, T. H., Perring, A., Cohen, R. C., Lefer, B. L., Shetter, R. E., Avery, M., Diskin, G., and Sokolik, I.: Measurement of HO₂NO₂ in the free troposphere during the Intercontinental Chemical Transport Experiment – North America 2004, J. Geophys. Res., 112, D12S01, doi:10.1029/2006Jd007676, 2007.
- Murphy, J. G., Thornton, J. A., Wooldridge, P. J., Day, D. A., Rosen, R. S., Cantrell, C., Shetter, R. E., Lefer, B., and Cohen, R. C.: Measurements of the sum of HO_2NO_2 and $CH_3O_2NO_2$ in the remote troposphere, Atmos. Chem. Phys., 4, 377–384, doi:10.5194/acp-4-377-2004, 2004.
- Neumaier, M., Ruhnke, R., Kirner, O., Ziereis, H., Stratmann, G., Brenninkmeijer, C. A. M., and Zahn, A: Impact of acetone (photo)oxidation on HO_x production in the UT/LMS based on CARIBIC passenger aircraft observations and EMAC simulations, Geosphy. Lett., 41, 3289–3297, doi:10.1002/2014GL059480, 2014.
- Sander, S. P., Abbatt, J. Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, 2011.
- Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of nonaromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161–180, doi:10.5194/acp-3-161-2003, 2003.

- Shetter, R. E. and Müller, M.: Photolysis frequency measurements using actinic flux spectroradiometry during the PEM-Tropics Mission: Instrument description and some results, J. Geophys. Res., 104, 5647–5661, 1999.
- Slusher, D., Huey, L. G., Tanner, D. J., Flocke, F. M., and Roberts, J. M.: A thermal dissociation chemical ionization mass spectrometry (TD-CIMS) technique for the simultaneous measurements of peroxacyl nitrates and dinitrogen pentoxide, J. Geophys. Res., 109, D19315, doi:10.1029/2004JD004670, 2004.
- Spencer, K. M., McCabe, D. C., Crounse, J. D., Olson, J. R., Crawford, J. H., Weinheimer, A. J., Knapp, D. J., Montzka, D. D., Cantrell, C. A., Hornbrook, R. S., Mauldin III, R. L., and Wennberg, P. O.: Inferring ozone production in an urban atmosphere using measurements of peroxynitric acid, Atmos. Chem. Phys., 9, 3697–3707, doi:10.5194/acp-9-3697-2009, 2009.
- Thornton, J. A., Wooldridge, P. J., and Cohen, R. C.: Atmospheric NO₂: In situ laser-induced fluorescence detection at parts per trillion mixing ratios, Anal. Chem., 72, 528–539, 2000.
- Tyndall, G. S., Cox, R. A., Granier, C., Lesclaux, R., Moortgat, G. K., Pilling, M. J., Ravishankara, A. R., and Wallington, T. J.: Atmospheric chemistry of small organic peroxy radicals, J. Geophys. Res., 106, 12157–12182, 2001.
- Wooldridge, P. J., Perring, A. E., Bertram, T. H., Flocke, F. M., Roberts, J. M., Singh, H. B., Huey, L. G., Thornton, J. A., Wolfe, G. M., Murphy, J. G., Fry, J. L., Rollins, A. W., LaFranchi, B. W., and Cohen, R. C.: Total Peroxy Nitrates (ΣPNs) in the atmosphere: the Thermal Dissociation-Laser Induced Fluorescence (TD-LIF) technique and comparisons to speciated PAN measurements, Atmos. Meas. Tech., 3, 593–607, doi:10.5194/amt-3-593-2010, 2010.