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Abstract. In this paper we compare water vapor mixing ra-

tio measurements from two quasi-parallel flights of the Pico-

SDLA H2O and FLASH-B hygrometers. The measurements

were made on 10 February 2013 and 13 March 2012, respec-

tively, in the tropics near Bauru, São Paulo state, Brazil dur-

ing an intense convective period. Both flights were performed

as part of a French scientific project, TRO-Pico, to study the

impact of the deep-convection overshoot on the water bud-

get. Only a few instruments that permit the frequent sound-

ing of stratospheric water vapor can be flown within small-

volume weather balloons. Technical difficulties preclude the

accurate measurement of stratospheric water vapor with con-

ventional in situ techniques. The instruments described here

are simple and lightweight, which permits their low-cost de-

ployment by non-specialists aboard a small weather balloon.

We obtain mixing ratio retrievals which agree above the cold-

point tropopause to within 1.9 and 0.5 % for the first and sec-

ond flights, respectively. This level of agreement for balloon-

borne measured stratospheric water mixing ratio constitutes

one of the best agreement reported in the literature. Because

both instruments show similar profiles within their combined

uncertainties, we conclude that the Pico-SDLA H2O and

FLASH-B data sets are mutually consistent.

1 Introduction

Water vapor in the stratosphere plays an important role in the

radiative and chemical budget (Shindell et al., 1998; Herman

et al., 2002; Loewenstein et al., 2002). Changes in the strato-

spheric humidity can have a significant impact on the climate

and the radiative balance of the Earth atmosphere (Forster

and Shine, 2002; Solomon et al., 2010; Riese et al., 2012).

Climate models show that an increase in stratospheric hu-

midity can lead to stratospheric cooling and consequently to

a more important ozone depletion (Shindell, 2001; Dvorstov

and Solomon, 2001).

Regular radiosonde measurements are reliable only in the

lower-to-middle troposphere zone, whereas high-precision

hygrometers must be employed for stratospheric measure-

ments because this region is so dry. Although a variety of

techniques have been developed for measuring water vapor

in the stratosphere, achieving high-accuracy measurements

of humidity in the stratosphere is far from routine. Current

stratospheric measurements of humidity include frost-point

detection, light absorption using tunable diode laser spec-

trometers and fluorescence (Lyman-α radiation) methods.

Usually, in situ instruments have a higher precision and a

better spatial resolution than remote sensing instruments be-

cause the former measurements are performed directly in-
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side the air mass and do not require geophysical inversion.

Several balloon-borne measurements to monitor the strato-

spheric water vapor have been conducted since the early

1980s (Kley et al., 2000; Oltmans et al., 2000; Rosenlof et

al., 2001; Vömel et al., 2002, 2007a, b; Jensen et al., 2005,

2008; Read et al., 2007; Weinstock et al., 2009; Hurst et al.,

2011; Berthet et al., 2013; Rollins et al., 2014; Kindel et al.,

2015). In some cases, coincident flights have been realized

leading to comparisons of in situ water vapor measurements

(Jensen et al., 2005, 2008; Vömel et al., 2007a, b; Weinstock

et al., 2009; Hurst et al., 2011; Berthet et al., 2013). How-

ever, persistent disagreements remain. For example, Vömel

et al. (2007a) compared in situ balloon-borne measurements

of water vapor from several instruments during coincident

flights. Comparison of in situ water vapor measurements

from the CFH (cryogenic frost-point hygrometer) and the

NOAA/CSD aircraft hygrometer (cryogenic frost-point hy-

grometer) led to differences ranging up to 40 % between 14

and 17 km. Throughout the entire altitude range (from 10

to 20 km) the measurements from the Harvard Lyman-α hy-

grometer and the CFH showed considerable discrepancies up

to 110 %. Differences of ±10 % were found by comparing

the FLASH-B (Lyman-α) and NOAA/CMDL (frost-point

hygrometer) water vapor measurements obtained at altitudes

of 15 km, in the polar stratosphere (Vömel et al., 2007b).

Jensen et al. (2008) found that discrepancies between nearly

simultaneous water vapor measurements in the TTL (tropical

tropopause layer) could reach 2 to 3 ppmv: this latter work

compares measurements from the Harvard water vapor in-

strument (HWV, Lyman-α) and from the Harvard ICOS (in-

tegrated cavity output spectroscopy) instrument within the

altitude range 15 to 19 km. More generally, in the TTL the

measurements have shown discrepancies larger than 10 %.

The main problem for in situ measurements of water vapor

is contamination by outgassing from the balloon and the in-

strument structure. Recently, the proper selection of wall ma-

terials and the judicious positioning of the different elements

have significantly reduced this confounding effect.

The TRO-Pico project, which is funded by the French Na-

tional Research Agency (ANR) for 5 years, was launched

in 2010. The main objectives of TRO-Pico are to combine

balloon-, ground-, and satellite-based observations as well

as model simulations at different scales to study the im-

pact of deep-convection overshoots on the stratospheric hu-

midity. The balloon campaigns were realized during March

2012 and from November 2012 to March 2013 in Bauru,

São Paulo state, Brazil, and were hosted by IPMet (Insti-

tuto de Pesquisas Meteorológicas). The campaigns were di-

vided into two periods: the SMOP (6-month observation pe-

riod) to study the change of water vapor during the overall

convective season and the IOP campaign (intensive obser-

vation period), occurring during the most intense convec-

tive period, to study the troposphere-to-stratosphere trans-

port and the stratospheric moistening impact. Both compar-

ison flights discussed here are part of the IOP. Within both

periods, 31 successful water vapor flights were carried out

under small zero-pressure balloons from 500 to 1500 m3, or

1.2 kg rubber balloons. Water vapor measurements were per-

formed using two lightweight hygrometers: Pico-SDLA H2O

and FLASH-B. A forthcoming paper will present the mete-

orological/dynamical analysis of the water vapor measure-

ments linked to specific hydration in the lower stratosphere

(Khaykin et al., 2013b).

In order to validate the observations, Pico-SDLA and

FLASH were launched twice on the same day within a 3 h

interval close to the convection overshoot event: 13 March

2012 and 10 February 2013. These two cases will be dis-

cussed in this paper. These flights were performed using

small weather balloons in order to limit the effect of wa-

ter outgassing. Only a few instruments can be flown un-

der such small-volume balloons to permit regular soundings.

Unlike other compact hygrometers where the speed of de-

scent prevents accurate measurements, these instruments can

measure stratospheric water vapor even during descent under

parachutes.

The purpose of this study is to evaluate the accuracy of the

water vapor measurements preformed during this campaign

and to quantify the consistency of the data produced by the

two hygrometers. Both Pico-SDLA and FLASH hygrometers

are described in the Sect. 2 and the flight train is described

in Sect. 3. The in situ water vapor measurements in the TTL

and lower stratosphere are compared for each of the flights

in the Sect. 4.

2 Instrumentation

2.1 The Pico-SDLA H2O hygrometer

2.1.1 Description of Pico-SDLA H2O

Pico-SDLA H2O (hereafter Pico-SDLA) is a lightweight

spectrometer which measures water vapor using laser ab-

sorption spectroscopy (Durry et al., 2008). The probe laser

emits at a wavelength of 2.63 µm and has a 1 m path length

through ambient air. This hygrometer was flown during a co-

incident flight with the ELHYSA frost-point hygrometer in

March 2011, leading to a stratospheric water vapor measure-

ment comparison (Berthet et al., 2013). Both hygrometers

agreed to within 3.5 % in the polar stratosphere, which is well

below their combined instrumental uncertainties.

The mass of the Pico-SDLA is less than 9 kg, making it

suitable as a payload for small stratospheric balloons (500

and 1500 m3). Its design was improved in 2012 in order to

meet the requirements of TRO-Pico campaigns. The elec-

tronic components are now integrated into a Rohacell box on

the top of the cell, which makes the instrument more com-

pact. Figure 1 shows the new version of the hygrometer. It

uses a distributed feedback diode laser emitting at 2.63 µm.

This diode has temperature and current controls. Then, we

distinguish the current modulation from the TEC temperature
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Figure 1. Description of the Pico-SDLA H2O hygrometer, im-

proved for the TRO-Pico campaign (2012–2013).

tuning. The current modulation of the laser is the preferred

method to scan the water vapor absorption line since the re-

sponse time is much faster than for a TEC temperature mod-

ulation; the water vapor absorption line is scanned by tuning

the laser current and fixing the TEC temperature. After pass-

ing through the ambient-air sample, the laser beam is focused

onto an indium arsenide detector using a sapphire lens. The

mechanical structure of the sensor comprises carbon fiber

tubes to strengthen the overall instrument, especially for the

landing with parachutes. The instrument is equipped with a

TM/TC antenna to transmit the spectrum data to the ground

during the flight and to control instrument parameters in case

intervention is required. The sensor is able to measure water

vapor from the ground to altitudes of 35 km for concentra-

tions ranging from 15 000 ppmv to less than 1 ppmv.

Two different rotation–vibration absorption transitions of

water vapor are probed because of the large variation in

mixing ratio occurring between the troposphere and the

stratosphere. For measurements from the ground to around

200 hPa pressure level, we used the 413← 414H16
2 O line at

3802.96561 cm−1. Above 200 hPa pressure level, we use the

202← 101H16
2 O line at 3801.41863 cm−1. During in-flight

measurements, the switch from one line to the other is au-

tomatically driven. Both sets of line parameters are obtained

from HITRAN 2012 database (Rothman et al., 2013). In HI-

TRAN, the line intensities for these two lines are based on

the work by R. A. Toth at JPL (Jet Propulsion Laboratory,

NASA) with a relative uncertainty of 2 % (see “Linelist of

water vapor parameters from 500 to 8000 cm−1” at http:

//mark4sun.jpl.nasa.gov/h2o.html). The water vapor transi-

tion is determined prior to the launch, thus allowing for au-

tomatic selection during in-flight measurements.

The mixing ratio is extracted from the measured spec-

tra using a nonlinear least squares fitting algorithm applied

to the measured line shape. We use the Beer–Lambert law

to model the spectrum and use a Voigt profile (VP) to de-

scribe the molecular line shape. In the case of the VP, the

self- and air-broadening effects are taken into account. In

HITRAN 2012, for the two lines, the self-broadening un-

certainty is ±5–10 % and the air-broadening uncertainty is

±2–5 %. We conducted some tests to determine the impact

of the width uncertainties on the retrieved mixing ratio; they

induced an error smaller than 1 %. We found that fitting

the VP to the measured spectra yielded residuals consis-

tent with the instrument noise. No evidence of systematic

residuals caused by higher-order line shape effects was ob-

served for stratospheric pressures (our region of interest).

Figure 2 shows an example of the transmission of three

atmospheric spectra of the H2O 202← 101 line recorded

during the 10 February 2013 flight in Bauru at differ-

ent altitudes in the lower stratosphere (24.24 hPa≡ 25.2 km;

73.60 hPa≡ 18.4 km; 101.05 hPa≡ 16.6 km). During this

flight, the cold-point tropopause (hereafter CPT) altitude was

approximately 16.7 km. In the upper panel, the black and red

lines represent the measurement and fitted results, respec-

tively. The corresponding fit residuals are shown in the bot-

tom panel. The standard deviation of the residuals is around

2× 10−4 and corresponds to the noise level of the mea-

sured beam transmission. These residuals do not show any

W structure, which is observed when the VP is fitted to tran-

sitions exhibiting non-Voigt effects such as Dicke narrow-

ing and/or speed-dependent effects (Dicke, 1953; Rautian

and Sobel’man, 1967; Tran et al., 2007; Boone et al., 2007).

Defining the spectrum signal-to-noise ratio (SNR) as the

peak absorbance divided by the baseline standard deviation,

we find a maximum SNR of approximately 65 : 1. For the

relatively low pressures (20 to 120 hPa) and hence low ab-

sorbances encountered in the TTL and in the lower strato-

sphere the VP provides an accurate representation of the

measured spectrum for the noise levels of this spectrometer.

At higher pressures (in the troposphere) a more sophisticated

line shape may be necessary because the spectrum SNR may

reveal systematic deviations from the VP.

Several tests were conducted to determine the sensitivity

of the fitting procedure to the baseline interpolation, as well

as to the temperature and pressure measurement uncertain-

ties. These tests were realized using a synthetic spectrum

with a noise level equivalent to the in-flight spectra. Details

of these tests are given below.
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Figure 2. Transmission of the atmospheric spectra of the 202← 101 line of H16
2

O from Pico-SDLA H2O measurements on 10 February 2013

during the descent of the balloon. The top panel shows three experimental spectra (black line) and the results from fitting procedure (red

line). These spectra were recorded at 25.2 km (24.24 mbar), 18.4 km (73.6 mbar) and 16.5 km (101.05 mbar) of altitude. The bottom panel

shows the fit residuals for each spectrum.

The absorption spectrum is extracted from the atmospheric

spectra by removing structure in the baseline which is in-

duced by optical components and vibrations of the optical

cell. The baseline is interpolated using a polynomial com-

bined with a sinusoid term which takes into account com-

monly observed interference fringes caused by Fabry–Pérot

effects between optics. The quality of the fitting procedure is

influenced by the spectrum SNR, the polynomial order and

the number of points chosen for the interpolation. The com-

bined uncertainty introduced by these different factors varies

with the peak absorbance of the line and consequently with

the pressure level from 4.5 % at 50 hPa to 0.7 % at 150 hPa.

The air pressure is measured using a Honeywell abso-

lute pressure transducer (model PPT0020AWN2VA) which

operates between −40 ◦C and +85 ◦C with a manufacturer-

specified relative uncertainty of 0.05 % full scale (0.7 hPa).

The pressure measurements are corrected for drift caused

by changes in temperature. During the TRO-Pico campaign

flights, the atmospheric temperature ranged from −85 ◦C to

+35 ◦C. In order to eliminate measurement error caused by

being outside the instrument’s temperature operating range,

the pressure sensor is placed inside an enclosure having a

minimum temperature of 0 ◦C. The uncertainty in the fitted

water vapor concentration caused by temperature-dependent

sensitivity of the pressure sensor is estimated to be∼ 0.05 %.

The temperature is measured using three SIPPICAN ther-

mistors which are coated to limit solar radiation effects.

These sensors are located on each end and at the center of the

optical cell, providing an average temperature for the mea-

surements. The rotation of the optical cell during the flight in-

duces a temperature difference between the three thermistors,

which varies from 0 to 5 ◦C. This depends on the solar expo-

sure of the thermistors (in the case of daytime flights). For

this reason, we select the lowest measured temperature for

the data processing. It has to be noted that the two measure-

ments discussed in this paper were performed during night-

time, so this latter effect should not play a role here. Each

sensor was calibrated independently by the manufacturer be-

tween −90 and +50 ◦C. The uncertainty of the temperature

is specified to be 0.3 ◦C, yielding a 0.25 % uncertainty in the

measured mixing ratio.

By taking into account all sources of error that we can es-

timate (i.e., spectroscopic and experimental errors as well

as errors due to spectra processing), the combined relative

standard uncertainty ranges from 7.5 % to 3.5 % in the TTL

and the lower stratosphere, depending on the local condi-

tions. Since temperature and pressure are input variables for

the mixing ratio retrievals, we investigated the consistency of

these measurements. We compared the Pico-SDLA measure-

ments with those of a Vaisala RS-92 radiosonde during one

coincident flight on 18 January 2013. Details of this work are

provided in the next section.

2.1.2 Temperature and pressure measurement

comparison on 18 January 2013

On 18 January, Pico-SDLA was launched at 22:11 UTC un-

der a 1500 m3 balloon. The time is recorded in UTC using a

GPS-disciplined clock located on board the Pico-SDLA. One

measurement is made every 300 to 500 ms depending on the

SNR of the measurements and on the vertical speed of the

payload during the flight. The measurements start as soon as

they are requested by the operator, independently of launch

time. The RS-92 radiosonde, attached to the same balloon,

detects the launch time and records it as t = 0. Thereafter, it

takes one measurement every 10 s.

The data were synchronized by applying a small tempo-

ral offset to the time stamps. This offset was determined

from the cross-correlation of the temperature profiles from

Atmos. Meas. Tech., 9, 1207–1219, 2016 www.atmos-meas-tech.net/9/1207/2016/
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both sensors and corresponded to the maximum of the cross-

correlation.

We calculated the mean temperature difference (mean

1T ), the mean pressure difference (mean 1P ) as well as

the standard deviations of the differences σ(1T) and σ(1P ).

We only used the ascent measurements for the comparison.

It has to be noted that a part of the ascent was made during

daytime. Although the descent of the Pico-SDLA occurs un-

der parachute, this is not the case of the radiosonde which

remains attached to the balloon. The vertical speeds of both

sensors are consequently different therefore precluding cor-

relation with time. Since only the descent measurements of

Pico-SDLA are usable, the radiosonde is never attached to

Pico-SDLA during this time. Indeed, the RS-92 telemetry

system at 403 MHz induces a modulation of the laser emis-

sion, which creates two sidebands on the spectrum rendering

them unusable.

The temperature uncertainty on the RS-92 is 0.5 ◦C while

the pressure uncertainty is quoted by the manufacturer for

two pressure ranges: 1080 to 100 hPa and 100 to 3 hPa, for

which the combined standard uncertainty is 1.5 and 0.6 hPa,

respectively.

Within the overall altitude range of the flight, the mean1T

for this flight is 0.12 ◦C with a standard deviation σ(1T ) of

0.28 ◦C. The mean 1T is less than both uncertainties. The

1T is always lower than 0.5 ◦C except above 23 km where

the RS-92 exhibited large spikes in the measured tempera-

ture. Therefore, for this flight we concluded that the RS tem-

perature was unreliable above this altitude. The SIPPICAN

and the RS-92 measurements agree well with the observa-

tions of Nash et al. (2011) and Bower and Fitzgibbon (2004),

which were obtained by comparing different types of tem-

perature sensors. In these studies, the comparison of tem-

perature measurements, using corrected data, led to tempera-

ture differences up to 0.4 ◦C during night flights and 1 ◦C for

daytime flights. The differences are usually higher above the

tropopause, which is probably due to icing of the sensor.

The mean pressure difference (mean 1P ) and the stan-

dard deviation of this difference σ(1P ) are −0.024 and

0.163 hPa, respectively. This pressure difference is below the

uncertainties of both the Pico-SDLA and RS-92 pressure sen-

sors. Between the ground and 2.6 km, the pressure differ-

ences are as large as 0.5 hPa. This behavior was also observed

in the 8th WMO High Quality Radiosonde Intercomparison

(Nash et al., 2011). During this campaign, the performance

of radiosonde systems’ pressure measurements was investi-

gated. It was found that the pressure differences ranged from

0 to 1.4 hPa and correlated with the altitude of the balloon.

The biggest differences occurred near the ground.

We determined the consistency of measurement pairs us-

ing the GRUAN (Reference Upper-Air Network) analysis ap-

proach detailed by Immler et al. (2010). Given two indepen-

dent measurements, m1 and m2, and their respective uncer-

tainties, u1 and u2, these two measurements can be consid-

ered consistent if |m1−m2|< k

√
u2

1+ u
2
2. Here, k is the sta-

tistical significance factor. For k = 1, if the condition is true,

the measurements are consistent.

For measurements of temperature and taking into account

each sensor uncertainty, we find that k

√
u2

1+ u
2
2 = 0.58.

Thus, to be consistent, the measurements of absolute dif-

ference, expressed as |m1−m2|, must be lower than 0.58.

The mean temperature difference, calculated from in situ

measurements, is 0.05± 0.15 ◦C. Likewise for pressure, the

mean 1P has to be less than 0.92 hPa. In our case, the mean

pressure difference is (0.02± 0.11) hPa. For both parameters,

the condition is satisfied and, therefore, the measurements are

consistent following the GRUAN approach.

2.1.3 Water vapor outgassing

Contamination of water vapor measurements caused by out-

gassing from the balloon envelope or instrument surfaces was

first observed in the in situ measurements of Mastenbrook

(1968) and Zander (1966). For the TRO-Pico campaign, the

use of small-volume weather balloons (1500 or 500 m3) is

expected to reduce the water vapor outgassing from the bal-

loon envelope. We found that the ascent mixing ratio reached

as high as 25 ppmv, whereas the mean stratospheric mix-

ing ratio was 4 ppmv. Therefore, we used only the measure-

ments obtained during descent. We compared these measure-

ments from Pico-SDLA with those of FLASH-B to deter-

mine whether or not outgassing of water vapor contaminated

the data. As described in detail in the following section, we

found that the FLASH-B descent measurements did not suf-

fer from outgassing contamination. During the beginning of

the descent, a small contamination (up to 0.5 ppmv and vis-

ible up to 3 km in average below the float altitude) of the

Pico-SDLA data was observed. Therefore, we considered the

Pico-SDLA data below the altitude where the contamination

is observed.

2.2 The FLASH-B hygrometer

The balloon version of FLASH is a compact lightweight

sonde developed at the Central Aerological Observatory,

Russia, for balloon-borne water vapor measurements in the

upper troposphere and stratosphere (Yushkov et al., 1998).

The instrument is based on the fluorescent method (Kley and

Stone, 1978; Bertaux and Delannoy, 1978), which uses the

photodissociation of H2O molecules exposed to vacuum ul-

traviolet radiation (λ< 137 nm) followed by the measurement

of the fluorescence of excited OH radicals using a Hama-

matsu photomultiplier in photon-counting mode. The inten-

sity of the fluorescent light sensed by the photomultiplier

is directly proportional to the water vapor mixing ratio un-

der stratospheric conditions (10–150 hPa). The H2O mea-

surement range is limited to pressures lower than 300 hPa

because of strong Lyman-α absorption in the lower tropo-

sphere. The instrument uses an open optical layout, where

www.atmos-meas-tech.net/9/1207/2016/ Atmos. Meas. Tech., 9, 1207–1219, 2016
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the analyzed volume is located outside the instrument. This

design allows reduction of the instrument size to that of a

small sonde with a total mass (including batteries) of about

1 kg. This arrangement restricts the use of the instrument to

nighttime only.

Each FLASH-B instrument is calibrated in the laboratory

against a reference dew-point hygrometer, MBW 373L. A

description of the procedure can be found in Vömel et al.

(2007b). The detection limit for a 4 s integration time at

stratospheric conditions is approximately 0.1 ppmv, while the

accuracy is limited by the calibration error amounting to a

relative uncertainty of 4 %. The typical measurement preci-

sion in the stratosphere is 5 to 6 %, whereas the combined

relative uncertainty in water vapor concentration is less than

10 % throughout the stratosphere. The FLASH-B has been

successfully used in a number of balloon campaigns (e.g.,

LAUTLOS-WAVVAP, SCOUT-AMMA, TC4, LAPBIAT-II)

which included simultaneous measurements of stratospheric

water vapor by different measurement techniques. In par-

ticular, point-by-point comparison with the frost-point hy-

grometer from the NOAA/CMDL showed a mean deviation

of 2.4 with 3.1 % standard deviation (1σ ) (Vömel et al.,

2007a), and comparison with CFH showed a mean deviation

of 0.8 % with a 4 % relative standard deviation (Khaykin et

al., 2013a).

The flight configuration of the FLASH-B, in which the

analyzed volume is located beneath the downward-looking

optics 2–3 cm away from the lens, caused noticeable self-

contamination during balloon ascent because of water out-

gassing from the instrument surfaces and balloon. The con-

tamination effect is observed as a quasi-exponential growth

of water vapor readings above about 70 hPa level during the

ascent. This occurs because the relative contribution of water

carried on the sounding equipment surfaces becomes more

significant as the number density of ambient water molecules

decreases with altitude. In contrast, the FLASH-B measure-

ments during the descent at the bottom of the flight train in

undisturbed air are free of contamination as shown by the re-

duction in water vapor readings immediately after the burst

of balloon. Here we use the contamination-free descent pro-

files along with the clean ascent profiles below 75 hPa.

3 Balloon flight trains

The flights have been realized under small zero-pressure bal-

loons of 500 and 1500 m3 volume for Pico-SDLA instru-

ments and 1.2 kg rubber balloons for the FLASH instru-

ments. The launch of these balloons was realized by the

French scientific team, assisted by staff from IPMet.

During the SMOP, regular soundings of the upper tropo-

sphere/lower stratosphere using the Pico-SDLA H2O spec-

trometer were conducted by the technicians of IPMet without

the presence of the French scientific teams. The hygrometer

operation was simplified to permit its deployment by non-

specialists. During this period, the hygrometer was deployed

under 500 m3 zero-pressure Aerostar balloons.

For all flights, the flight train includes a parachute, a cut-

ter device and a balloon telemetry/remote control system (E-

track iridium), a strobe light and a radar reflector. The cut-

ter device is used to separate the payload from the balloon,

with the payload descending under the parachute. The E-

track iridium allows one to follow the flight train during the

ascent and the descent and to initiate separation from the bal-

loon. The scientific instrument is connected to the flight train

by a nylon rope. The flight trains were easy to implement and

permitted quick deployment of the instruments with respect

to larger balloons.

For the water vapor flights of Pico-SDLA, the instrument

was located at least 15 m below the balloon to limit out-

gassing from the balloon envelope. On 13 March 2012, the

instruments of the flight train, from bottom to top, were the

Pico-SDLA H2O, and the LOAC Optical Particle Counter

(Renard et al., 2015). The total payload weight for this flight

was 15 kg under a 500 m3 balloon. On 10 February 2013, the

instruments of the flight train, from bottom to top, were the

Pico-SDLA H2O and the Pico-SDLA CH4 (Ghysels et al.,

2011). The total payload mass was 25 kg under a 1500 m3

balloon.

For flights of the FLASH-B, the E-track box and cut-

ter device were not included in the flight train. The in-

struments of the flight train were, from bottom to top, the

FLASH-B and the COBALD (Compact Optical Backscatter

and Aerosol Detector) backscatter sonde (Brabec et al., 2012)

on 13 March 2012 and FLASH-B, COBALD and LOAC on

11 February 2013. The overall payload masses were 7.4 and

9.4 kg, respectively.

4 Comparison of mixing ratio retrievals

4.1 Flight conditions

The flights of 10–11 February 2013 and 13 March 2012 were

intended to capture the signature of the overshoots in wa-

ter vapor profiles. The launch site was located on the UN-

ESP Bauru Campus, at the outskirts of town (coordinates:

22.36◦ S, 49.03◦W).

On 10 February 2013, the Pico-SDLA was launched at

21:03 UTC with overshooting conditions observed by the

IPMet S band radar located 200 km east of Bauru. Subse-

quently, a convective cell reached an altitude of > 16 km,

which was about 150 km east of the launch site position.

On this day, the most intense convective events occurred be-

tween 18:06 and 21:15 UTC. The FLASH-B hygrometer was

launched at 00:09 UTC, 3 h later than Pico-SDLA.

On 13 March 2012, Pico-SDLA H2O was launched at

19:20 UTC in convective conditions and FLASH-B was

launched 3 h later. On this day, strong convection was ob-

served until 21:00 UTC east and southeast of Bauru with con-

vective cells reaching altitudes exceeding 18 km. Both instru-
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ments were able to catch the signature of an overshooting cell

reaching 19.2 km.

During the descent, the vertical speed of the instruments

ranged from 60 m s−1 (just after the flight train separates

from the balloon) to 20 m s−1 in the TTL. In this condition,

the Pico-SDLA spectra were recorded without any averag-

ing or a maximum average of five spectra in order to achieve

good vertical resolution and to avoid excessive overlapping

of mixing ratio measurements from different layers of the

TTL.

4.2 13 March 2012 flight

Figure 3 shows the trajectory plot for Pico-SDLA and

FLASH flights on 13 March 2012. The altitude of the tra-

jectories is color-coded and the time is in UTC. Altitudes be-

tween 15 and 28 km are considered, representing the TTL

and lower stratosphere, which are our regions of interest.

Pico-SDLA flew 22 km to the west of FLASH. The ascent of

Pico-SDLA lasted 1 h 49 min followed by a float of 14 min

at 23.6 km (30.5 hPa) before a 40 min long descent. The as-

cent of FLASH-B lasted 1 h 15 min followed by a descent of

1 h 12 min. The maximum altitude reached by FLASH was

21.6 km (45 hPa).

The comparison of water vapor mixing ratio profiles from

FLASH and Pico-SDLA between 21.3 km (44.5 hPa) and

15 km (131 hPa) is shown in Fig. 4. Up to 21.3 km, Pico-

SDLA measurements do not show any outgassing effects. In

this figure, the CPT altitude from Pico-SDLA (orange dashed

line) and FLASH (brown dashed line) is located at 17.95 km

(78.5 hPa) and 17.44 km (86.6 hPa), respectively. The CPT

altitude of each instrument is determined from the descent

temperature profiles. This altitude corresponds to the level of

the minimum temperature and has an important role in the

troposphere-to-stratosphere coupling and exchange. The wa-

ter vapor transport from the troposphere to the stratosphere is

partially dependent on the thermal characteristics of the CPT

(Holton et al., 1995; Mote et al., 1996; Kim and Son, 2012;

Randel and Jensen, 2013). The lower boundary of the TTL

is defined in Fueglistaler et al. (2009) as the area above the

level of the mean convective outflow (∼ 14 km). The upper

boundary is set at 70 hPa (18.6 km), above which the atmo-

sphere is governed mainly by stratospheric processes (green

dash line in Fig. 4). The temperature profiles are also shown

in orange and brown lines. The CPT is much colder in this

case than for the 10 February flight (−79 ◦C in average in-

stead of −74.6 ◦C).

The RS-92, integrated into FLASH, measures the geopo-

tential altitude whereas the GPS on board Pico-SDLA mea-

sures the geometric altitude, inducing a shift of 378 m in al-

titude. To correct for this difference, we used the altitude

measurements from the COBALD sonde, which are obtained

from a GPS. Thus, we were able to reconstruct the FLASH

altitude scale by interpolating the COBALD data with re-

spect to the time into flight. The same operation has been

Figure 3. Balloon trajectories of Pico-SDLA and FLASH flights on

13 March 2012. The trajectories are color-coded with altitude. The

time is given in UTC. The ascent and descent time stamps corre-

spond to times when the balloon passed an altitude of 15 km. The

burst altitude is localized using a “©” marker.

applied for the 10–11 February 2013 flight for which no shift

remains. In the case of 13 March 2012, a (188± 7) m altitude

difference is still observed between Pico-SDLA and FLASH

water vapor mixing ratio profiles. Although the origin of the

shift is not fully understood, one possible explanation is an

initialization on FLASH or COBALD error at launch time.

Because the Pico-SDLA and the E-track iridium GPS mea-

surements agree to ±20 m between the CPT and 21.3 km,

this excludes an error coming from Pico-SDLA GPS altitude

measurements. In Fig. 4, a 188 m shift was applied to the

FLASH profile. This shift was determined to maximize the

correlation coefficient between both profiles. We emphasize

that the 13 March 2012 case was the only one where such a

high difference in altitude was observed.

Table 1 gives the mean difference between the Pico-

SDLA and FLASH descent profiles for the 13 March 2012

flight within three different altitude ranges: 15 to 21.3 km,

CPT to 21.3 km and TTL upper level to 21.3 km. Applying

the 188 m shift leads to a mean mixing ratio difference of

(0.02± 0.21) ppmv between 15 and 21.3 km between descent

profiles. In this case, Pico-SDLA H2O is dryer by 0.02 ppmv.

Considering the mean mixing ratio, around 4.3 ppmv, the rel-

ative difference represents ∼ 0.5 % (with 1σ standard de-

viation of 4.6 %). Restricting our comparison to above the

CPT, the mean difference is then (0.06± 0.18) ppmv (with

1σ standard deviation of 4.2 %). Then, if we consider only

the altitude range above the TTL, the mean difference is

(0.02± 0.16) ppmv (with 1σ standard deviation of 3.7 %).

This shows the excellent agreement between the FLASH and

Pico-SDLA measurements, which were always within instru-

mental uncertainties despite the fact that both instruments

were flown 3 h apart.

This profile comparison showed identical structures (at

18.1 and 18.7 km of altitude) and mostly with a similar am-
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Figure 4. Comparison of water vapor in situ measurements from Pico-SDLA H2O and FLASH-B hygrometers in the TTL and lower

stratosphere for the flight on 13 March 2012. The descent water vapor vertical profile of Pico-SDLA is represented by a solid black line. The

ascent and descent water vapor profiles from FLASH-B are shown in solid blue and red lines, respectively. The temperature profiles from

Pico-SDLA and FLASH are shown in solid orange and brown lines. The CPT altitude is given by the orange and brown dashed lines for

Pico-SDLA and FLASH, respectively. The upper boundary of the TTL is shown by the green dashed line.

Table 1. Mean differences between water vapor descent measurements from Pico-SDLA and FLASH-B on 13 March 2012 within three

altitude ranges: 15 to 21.3 km, CPT to 21.3 km and TTL upper level to 21.3 km.

Date of flight 15–21.3 km CPT–21.3 km TTL upper level–21.3 km

13 Mar 2012 (0.02± 0.21) ppmv (0.06± 0.18) ppmv (0.02± 0.16) ppmv

plitude. Also, the altitude ranges of these structures are very

close. The local maximum at 18.1 km (76.6 hPa) stands out

with a mixing ratio of 4.09 ppmv in both Pico-SDLA and

FLASH measurements (Fig. 4). The structure is a little bit

thicker for Pico-SDLA (300 m) than for FLASH (200 m).

Also, besides the maximum value being identical for both

instruments, the amplitude of the water vapor enhancement

is slightly higher for Pico-SDLA (about 0.8 ppmv) whereas

FLASH-B shows a 0.65 ppmv enhancement. An air-mass tra-

jectory analysis by Khaykin et al. (2013b) shows that this en-

hancement is caused by a hydration from overshooting con-

vection, which is about 65 km away from the balloons. The

differences in the amplitude of the signal by both instruments

can easily be explained by the difference of time of the flights

with respect to very local/short duration process. As a result,

the instruments cannot sample the same process amplitude.

Figure 5 shows the trajectory of both balloons, highlighting

the relatively close trajectories which are slightly shifted in

space. This helps account for the slight differences between

the two profiles. Investigating another large water vapor en-

hancement at 18.7 km (69 hPa), both instruments measure the

same local maximum of 4.19 ppmv. Both the vertical ampli-

tude of the signal (500 m) and the amplitude of the enhance-

ment based on the difference between the bottom of this layer

and the local maximum are very similar ∼ 1 ppmv. Khaykin

et al. (2013b) show that this enhancement is due to large-

scale mid-latitude air intrusion, bringing higher mixing ratios

of water into the tropical regions. However, it should be noted

that the shape of this enhancement is sharper for Pico-SDLA

than for FLASH-B. No significant patterns are highlighted

above this layer (∼ 19 km, 65 hPa) and both instruments re-

port very similar mixing ratios.

4.3 10–11 February 2013

Figure 5 shows the balloon trajectories of both instruments.

On this plot we show the descent trajectory of Pico-SDLA

and both the ascent and descent trajectory of FLASH-B

wherever the ascent measurements of FLASH can be con-

sidered. Like for 13 March 2012, the altitude of the trajec-

tories is color-coded. For both instrument trajectories, the

time is indicated in UTC. The ascent of Pico-SDLA lasted

1 h 41 min followed by a float of 7 min at 27.4 km (18 hPa)

before a 37 min long descent. The ascent of FLASH-B lasted
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Table 2. Mean differences between water vapor descent measurements from Pico-SDLA and FLASH-B on 10 and 11 February 2013 within

three altitude ranges: 15 to 23 km, CPT to 23 km and TTL upper level to 23 km.

Date of flight 15–23 km CPT–23 km TTL upper level–23 km

10–11 Feb 2013 (0.08± 0.39) ppmv (−0.13± 0.15) ppmv (−0.11± 0.13) ppmv

Figure 5. Balloon trajectories of Pico-SDLA and FLASH flights

on 10 and 11 February 2013. The trajectories are color-coded with

altitude. The time is given in UTC. The ascent and descent time

stamps correspond to the times when the balloon passed an altitude

of 15 km. The burst altitude is localized using a “©” marker.

1 h 31 min followed by a descent of 47 min. The maximum

altitude reached by the balloon was 28.75 km. We can see in

Fig. 5 that Pico-SDLA flew 25 km south of FLASH-B, which

resulted in some small differences in the observed water va-

por enhancements.

In the case of Pico-SDLA, we use the water vapor mea-

surements below 23 km (33 hPa) because a small outgassing

effect (∼ 0.4 ppmv) is observed above this height. The bal-

loon carrying the FLASH-B flight train is much smaller

than the 1500 m3 balloon used for Pico-SDLA. Since the

smaller balloon reduces the amount of water vapor out-

gassing, we are able to consider the FLASH-B ascent pro-

file up to approximately 18 km (77 hPa) of altitude, above

which a small outgassing effect starts to be observed. This

leads to the comparison shown in Fig. 6. In this figure, we

present in situ water vapor measurements between 15 km

(131 hPa) and 23 km (34 hPa) from Pico-SDLA H2O and

FLASH-B. The upper boundary of the TTL corresponds to

an altitude of 18.8 km (70 hPa level) and is shown by a

green dotted line. In the case of Pico-SDLA, the CPT is

16.63 km (P = 99.9 hPa, T =−74.15 ◦C) and for FLASH it

is 16.98 km (P = 92.2 hPa, T =−75.2 ◦C). The difference

between the CPT altitudes from Pico-SDLA and FLASH ob-

served for the two flights can be attributed to three different

factors: a natural temporal and spatial temperature variabil-

ity in the TTL, the measurement uncertainties and how the

temperature structures are resolved. For both flights the CPT

is not well pronounced, which makes its determination dif-

ficult. However, even though both CPT values are different

by∼ 300 m, the overall temperature profile is similar and the

CPT altitudes are comparable.

Analyzing the profile comparison in more detail, we find

that the main structures are well captured by both instruments

above and around the CPT, although the amplitude of the

local maxima/minima sometimes varies slightly. Three wa-

ter vapor enhancement structures appear on the descent pro-

file of Pico-SDLA at altitudes of 16.5 km (102 hPa), 17.2 km

(90.7 hPa) and 18 km (78.5 hPa). The structure at 16.5 km is

captured by FLASH during the ascent but not during the

descent and is shifted downwards by about 90 m in alti-

tude compared to the Pico-SDLA. The amplitude of the en-

hancement is, in the case of FLASH, about 0.5 ppmv and

around 0.68 ppmv for the Pico-SDLA. During the descent,

the structure at 17.2 km shifted upward by 50 m as captured

by FLASH-B. The ascent profile of FLASH-B also shows the

structure at the same altitude but the noise amplitude is larger

rendering the structure much harder to distinguish. For both

instruments, the amplitude of the enhancement is similar but

the structure is slightly thicker in the case of FLASH (nomi-

nally 560 m) instead of 500 m for Pico-SDLA. The structure

at 18 km was captured by FLASH-B during the ascent and

during the descent. The ascent profile of FLASH-B shows

only one structure at 18 km whereas the descent profile shows

two structures at 17.8 and 18.1 km of 280 and 300 m thick-

ness, respectively. Because of a small amount of outgassing,

the ascent profile of FLASH-B above 17.7 km cannot be con-

sidered for analysis. Nevertheless, structures are visible. The

small altitude difference is of the same order of magnitude as

the GPS height uncertainty. It also must be considered that

the hygrometers did not fly at exactly the same time.

The mean difference between the Pico-SDLA and FLASH

descent measurements is given in Table 2 within several

altitude ranges. Over the altitude range between 15 and

18 km, comparison between the ascent of FLASH-B and

the descent of Pico-SDLA leads to a mean difference of

(0.13± 0.33) ppmv. In the altitude range between 15 and

23 km, the comparison between the descent profiles of

both instruments yields a mean mixing ratio difference of

(0.08± 0.39) ppmv. FLASH-B is dryer than Pico-SDLA by

0.08 ppmv at the descent. Considering the 4.1 ppmv mean

mixing ratio over the 15 to 23 km altitude range, the dif-

ferences observed correspond to 1.9 % (with a 1σ standard

deviation of 9.5 %). Restricting our comparison to above the
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Figure 6. Comparison of water vapor in situ measurements from Pico-SDLA H2O and FLASH-B hygrometers in the TTL and lower

stratosphere for the flight of 10 February 2013. The descent water vapor vertical profile of Pico-SDLA is represented by the solid black line.

The ascent and descent water vapor profiles from FLASH-B are shown as solid blue and red lines, respectively. The temperature profiles

from Pico-SDLA and FLASH are shown in orange and brown lines. The CPT altitude is given by the orange and brown dashed lines for

Pico-SDLA and FLASH, respectively. The upper boundary of the TTL is shown is given by the green dashed line.

CPT, the mean difference is then (−0.13± 0.15) ppmv (1σ

standard deviation of 3.7 %). We clearly see the impact of the

humidity variability in the lower TTL region on the statistical

results. The strong humidity variability induces a larger stan-

dard deviation and therefore less precise results. To obtain a

purely stratospheric comparison, it is generally better to con-

sider data above the TTL upper limit (i.e., 19 km). In this

case, the mean difference is then (−0.11± 0.13) ppmv (1σ

standard deviation of 3.2 %). We notice that the above CPT

and the above TTL statistical results are not very different.

Since the maximum altitude usable in this case is 23 km, we

can consider the data above the CPT to test the consistency

of Pico-SDLA and FLASH measurements. Then, we obtain

a larger altitude range for comparison. Although both instru-

ments were flown 3 h apart, the measurements are in good

agreement.

5 Pico-SDLA/FLASH-B correlation

Figure 7 shows a scatter plot comparison of Pico-SDLA ver-

sus FLASH water vapor measurements for the flights on 13

March 2012 and 10 February 2013. The data are color-coded

by pressure in the altitude range from the CPT altitude up to

the altitude free of outgassing for each flight. A linear fit of

the Pico-SDLA versus FLASH data is shown as a solid line

and the equations of the fits are given. The bias (b̂) has been

calculated using the following equation:

b̂ =

n∑
i=1

mix.ratioi(P-SDLA)−mix.ratioi(FLASH)

n
. (1)

Here, n represents the number of measurements. For these

two flights, between the CPT and the maximum altitude

usable, the maximum bias visible is ∼ 0.12 ppmv (10–11

February 2013 flight). For the 13 March 2012 flight, this

bias is ∼−0.06 ppmv. Both biases are the same amplitude

of those in Weinstock et al. (2009), obtained from coinciding

flights. Since the bias varies from one flight to the other, no

systematic bias has been demonstrated between Pico-SDLA

and FLASH.

We have calculated the Pearson’s r coefficient from 15 km

and from the CPT altitude. This coefficient is calculated from

the linear least-squares fitting of the scatter plot data and rep-

resents the correlation coefficient.

For the 10 February 2013 flight results, r = 0.92 for the

15 to 23 km range and r = 0.95 for the CPT (16.7 to 23 km)

range. In this case, the water vapor enhancements at 17.2 and

18 km, which are seen by Pico-SDLA but not by FLASH,

and the humidity variability in the lower TTL region have a

significant impact on the correlation.

In the case of the 13 March 2012 flights, the correlation

coefficient is mainly affected by the two large water vapor

enhancements observed at 18.1 and 18.7 km which do not

have exactly the same thickness and amplitude. Within 15 to

21.2 km, the r is equal to 0.98. Surprisingly, r decreases to

0.89 between the CPT (17.7 km) and 21.2 km. The statistical

weight of the two structures at 18.1 and 18.7 km is larger in

the calculation when only altitudes above CPT are consid-

ered.
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Figure 7. Scatter plot comparison of Pico-SDLA versus FLASH

water vapor measurements between the CPT and the free-of-

outgassing altitude (21.3 km on 13 March 2012 and 23 km on 10

February 2013). The linear fit of the data is represented with solid

blue and black lines for the 13 March 2012 and 10 February 2013

flights, respectively. The data are color mapped by the pressure.

Because the two sensors did not fly at the same time, the

correlation is strongly affected by the variability in the water

vapor enhancement structures shown by the two different hy-

grometers. This effect is clearly visible through the changes

in r between the two altitude ranges. In the case of 13 March

2012 r is strongly affected by the two enhancement struc-

tures (one is even present above the TTL upper limit). De-

spite the evident impact of the vertical structures on the re-

sults, the present comparison exhibits some of the best agree-

ment found in the literature for studies realized from coinci-

dent flights (Weinstock et al., 2009; Khaykin et al., 2013a). In

each case, the water vapor enhancements are of much larger

amplitude than the difference between the two instruments.

FLASH and Pico-SDLA are therefore able to see, with good

accuracy, the impact of dynamical process on water vapor

concentrations.

6 Summary and conclusions

This work compares in situ water vapor measurements from

two hygrometers: Pico-SDLA H2O and FLASH-B, obtained

during the TRO-Pico balloon campaign held in Brazil be-

tween 2012 and 2013. It serves as the basis for a future paper

(S. M. Khaykin, personal communication, 2015), centered on

the meteorological analysis of the measurements.

The hygrometers were deployed on 13 March 2012 and

10 February 2013 when an overshooting convection event

was observed in the vicinity of the flight paths. The impact

of overshoots on water vapor mixing ratios is visible on 13

March 2012 by the presence of two vertical structures at 18.1

and 18.7 km. A detailed analysis of this profile will be given

in the forthcoming paper (S. M. Khaykin, personal commu-

nication, 2015).

The water vapor profiles were compared within two

altitude ranges: above 15 km and above the CPT. The

comparison above 15 km shows larger deviations (up to

9.5 %≡ 0.39 ppmv) than those above the CPT (around

4 %≡ 0.16 ppmv) because of humidity variability in the up-

permost troposphere. On 13 March 2012 and 10 Febru-

ary 2013, the mean difference of mixing ratios is 0.5 %

((0.02± 0.21) ppmv) and 1.9 % ((0.08± 0.39) ppmv), re-

spectively, above the CPT altitude, differences which are

well below both instrument uncertainties. The differences

are then much lower than the amplitude of the water va-

por enhancements (between 0.5 and 0.8 ppmv), permitting

us to reliably detect these overshoot signatures. Because the

hygrometers were not flown at the same time, the humidity

variability through the TTL had an important impact on the

correlation coefficient and on the mixing ratio differences be-

tween the two instruments. Nevertheless, the differences ob-

served in this study are well below the majority of in situ

comparisons in the TTL and constitute one of the best inter-

comparison results by comparison to the work of Weinstock

et al. (2009) and Khaykin et al. (2013a). In these previous

studies, the mixing ratio differences for in situ measurements

ranged between 0.8 and 5 % and were obtained for coincident

flights. In the context where persistently large disagreements

exist between in situ measurements, the present work shows

that Pico-SDLA H2O and FLASH-B are suitable for accu-

rate in situ water vapor measurements over a variety of con-

ditions, such as those including strong convection and high

vertical speed. Furthermore, given the small differences ob-

served among the profiles of each instrument, it can be con-

cluded that the H2O data provided by the TRO-Pico cam-

paign made of Pico-SDLA and FLASH-B measurements are

mutually consistent. The compactness of these instruments

permits their deployment under small weather balloons and

therefore allows frequent soundings of the upper troposphere

and lower stratosphere to be performed.
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