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Abstract. We present a statistical framework for estimating

global navigation satellite system (GNSS) non-ionospheric

differential time delay bias. The biases are estimated by

examining differences of measured line-integrated electron

densities (total electron content: TEC) that are scaled to

equivalent vertical integrated densities. The spatiotemporal

variability, instrumentation-dependent errors, and errors due

to inaccurate ionospheric altitude profile assumptions are

modeled as structure functions. These structure functions de-

termine how the TEC differences are weighted in the linear

least-squares minimization procedure, which is used to pro-

duce the bias estimates. A method for automatic detection

and removal of outlier measurements that do not fit into a

model of receiver bias is also described. The same statisti-

cal framework can be used for a single receiver station, but it

also scales to a large global network of receivers. In addition

to the Global Positioning System (GPS), the method is also

applicable to other dual-frequency GNSS systems, such as

GLONASS (Globalnaya Navigazionnaya Sputnikovaya Sis-

tema). The use of the framework is demonstrated in prac-

tice through several examples. A specific implementation

of the methods presented here is used to compute GPS re-

ceiver biases for measurements in the MIT Haystack Madri-

gal distributed database system. Results of the new algorithm

are compared with the current MIT Haystack Observatory

MAPGPS (MIT Automated Processing of GPS) bias deter-

mination algorithm. The new method is found to produce es-

timates of receiver bias that have reduced day-to-day vari-

ability and more consistent coincident vertical TEC values.

1 Introduction

A dual-frequency global navigation satellite system (GNSS)

receiver can measure the line-integrated ionospheric electron

density between the receiver and the GNSS satellite by ob-

serving the transionospheric propagation time difference be-

tween two different radio frequencies. Ignoring instrumental

effects, this propagation delay difference is directly propor-

tional to the line integral of electron density (Davies, 1965).

This is derived, e.g., by Vierinen et al. (2014).

Received GNSS signals are noisy and contain system-

atic instrumental effects, which result in errors when deter-

mining the relative time delay between the two frequencies.

The main instrumental effects are frequency-dependent de-

lays that occur in the GNSS transmitter and receiver, arising

from dispersive hardware components such as filters, ampli-

fiers, and antennas. Loss of satellite signal can also cause

unwanted jumps in the measured relative time delay and

cause unwanted nonzero mean errors in the relative time de-

lay measurement. Because line-integrated electron density is

determined from this relative time delay, it is important to

be able to characterize and estimate these non-ionospheric

sources of relative time delay.

The non-ionospheric relative time delay due to hardware is

commonly referred to as bias in the literature. For the specific

case of GPS measurements, the bias is often separated into

two parts ordered by the source of delay: satellite bias and

receiver bias.

A GNSS measurement of relative propagation time delay

difference including the line-integrated electron density ef-

fect can be written as

m= b+ c+

∫
S

Ne(s)ds+ ξ, (1)
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where m is the measurement, b is the receiver bias, c is

the satellite bias, S is the path between the receiver and the

satellite, Ne(s) is the ionospheric electron density at posi-

tion s, and ξ is the measurement noise. The measurement is

scaled to total electron content (TEC) units, i.e., 1016m−2,

and therefore bias terms also have units of TEC. See Dyrud

et al. (2008) and references therein for a more detailed dis-

cussion.

For ionospheric research with GNSS receivers that per-

form measurements of the form shown in Eq. (1), the quan-

tity of interest is usually the three-dimensional electron den-

sity function Ne(s). However, this quantity is challenging

to derive from just GNSS measurements alone, as we only

observe one-dimensional line integrals through the iono-

sphere. The problem is an ill-posed inverse problem called

the limited-angle tomography problem (Bust and Mitchell,

2008). The difficulty arises from the fact that line integrals

are measured only at a small number of selected viewing

angles, and this information is not sufficient to fully de-

termine the unknown electron density distribution without

making further assumptions about the unknown measurable

Ne(s). These assumptions often impose horizontal and verti-

cal smoothness, as well as temporal continuity.

A considerable number of prior studies have attempted to

solve this tomographic inversion problem in three dimen-

sions for beacon satellites as well as for GPS satellites (see,

e.g., Bust and Mitchell (2008) and references therein). Be-

cause of the large computational costs and complexities as-

sociated with full tomographic solvers, much of the practical

research is done using a reduced quantity called the vertical

total electron content (VTEC). As we will describe in more

detail below, VTEC in essence results from a reduced param-

eterization of the ionosphere that is used to simplify the to-

mography problem and make it more well-posed. VTEC pro-

cessing is only concerned with the integrated column density,

and therefore the measurements are reported in TEC units.

The fundamental assumption for vertical TEC processing

is that a slanted line integral measurement of electron den-

sity can be converted into an equivalent vertical line integral

measurement with a parameterized scaling factor v(α):

∫
V

Ne(s)ds ≈ v(α)

∫
S

Ne(s)ds, (2)

where “V” is a vertical path, “S” is the associated slanted

path, α is the elevation angle, and v(α) is the scaling factor

that relates a slanted integral to a vertical line integral.

There are several ways that v(α) can be derived without

resorting to full tomographic reconstruction of the altitude

profile shape. Typically, the ionosphere above a certain ge-

ographic point is assumed to be described with some verti-

cal shape profile p(h)multiplied by a scalarNe(h)=Np(h).

One example of an often-used shape profile is the Chapman

Figure 1. A scaled altitude profile model of the ionosphere assumes

that the ionosphere locally has a fixed horizontally stratified altitude

profile shape multiplied by a scalar. This makes it possible to relate

slanted line integrals to equivalent vertical line integrals using an

elevation-dependent scaling factor called the mapping function. The

pierce point is located where the ray pierces the peak of the electron

density profile.

profile:

p(h)= exp
(

1− z(h)− e−z(h)
)
, (3)

where z(h)= (h−hm)/H , hm is the peak altitude of the

ionosphere, and H is the scale height (Feltens, 1998). An-

other example is a slab with exponential top and bottom side

ramps as described by Coster et al. (1992) and Mannucci et

al. (1998). Figure 1 depicts the geometry and profile shape

assumptions in vertical TEC processing.

In more advanced models, the mapping function can be

parameterized not only by elevation angle but also by factors

such as time of day, geographic location, solar activity, and

the azimuth of the observation ray. In practice, this can be

done by using a first-principles ionospheric model to derive

a more physically motivated mapping function.

Although the vertical TEC assumptions described above

are not as flexible as a full tomographic model that attempts

to determine the altitude profile, they provide model-to-data

fits that are to first order good enough to produce measure-

ments that are useful for studies of the ionosphere. The utility

of this simplified model derives from the fact that it results in

an overdetermined, well-posed problem that can be inverted

with relatively stable results. The main practical difficulties

in data reduction using the simplified model are estimating

the receiver and satellite biases b and c, as well as handling

possible model errors.

In this paper, a novel statistical framework for deriving

these GNSS measurement biases is described. The method

is based on examining large numbers of differences between

slanted TEC measurements that are scaled with the mapping

function v(α). The differences between pairs of measure-

ments are assumed to be Gaussian normal random variables

with a variance that is determined by the properties of the two

measurements, i.e., spacing in time, geographic distance, and

elevation angle. While the Gaussian assumption results in a

numerically efficient system of equations, this assumption is

also supported by numerical evidence, which suggests that
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the distribution of the differences of vertical TEC measure-

ments is close to a zero mean normal random distribution,

with the standard deviation increasing when the geographic

distance between pierce points is increased, the temporal dis-

tance is increased, or the elevation angle of the measurement

is decreased.

We will show how this general statistical framework can

be used to estimate biases in multiple special cases and fi-

nally compare the newly presented method with an exist-

ing bias determination scheme within the MIT Haystack

MAPGPS (MIT Automated Processing of GPS) algorithm

(Rideout and Coster, 2006). We will refer to this new method

for bias determination as weighted linear least squares of in-

dependent differences (WLLSID).

2 Receiver bias estimation

Let us denote Eq. (1) in a more compact form, but now with

indexing i to denote the index of a measurement, j to denote

receiver, and k to denote the satellite:

mi = bj (i)+ ck(i)+ ni + ξi . (4)

Here ni is the line integral of electron density through the

ionosphere for measurement i. The receiver and satellite in-

dex associated with measurement i is given by j (i) and k(i).

Receiver noise is represented with ξi .

Now consider subtracting slanted TEC measurements i

and i′, which are scaled with corresponding mapping func-

tion values vi and vi′ , which convert slanted TEC to equiva-

lent vertical TEC. In this analysis, it does not matter if these

measurements are associated with the same receiver or the

same satellite, or even if they occur at the same time.

vimi − vi′mi′ =(vini − vi′ni′)+ vibj (i)− vi′bj (i′)

+ vick(i)− vi′ck(i′)+ viξi − vi′ξi′ (5)

This type of a difference equation has several benefits. If

measurements i and i′ are performed at a time close to each

other ti ≈ ti′ and have closely located pierce points xi ≈ xi′ ,

then we can make the assumption that vini ≈ vi′ni′ , i.e., that

the vertical TEC is similar.

We can statistically model this similarity by assuming that

the difference of equivalent vertical line-integrated electron

content between two measurements is a normally distributed

random variable with variance

vini − vi′ni′ = ξ̃i,i′ ∼N
(
0,Si,i′

)
, (6)

where Si,i′ is the structure function that indicates what we

assume to be the variance of the difference of the two mea-

surements i and i′. This structure function would be our best

guess of how different we expect these two measurements to

be.

We assume the structure function depends on the follow-

ing factors: (1) geographic distance between pierce points

di,i′ = |xi − xi′ |, (2) difference in time between when the

measurements were made τi,i′ = |ti − ti′ |, (3) receiver noise

of both measurements ξi + ξi′ , and (4) modeling errors that

are dependent on elevation angles αi and αi′ of the measure-

ments. The modeling errors in (4) are caused by inaccuracies

in the assumption that we can scale a slanted measurement

into an equivalent vertical measurement.

The following subsections describe the structure function

behaviors for each dependent variable.

2.1 Geographic distance

In order to model the variability of electron density as a func-

tion of geographic location, we assume the difference be-

tween two measurements to be a random variable:

vini − vi′ni′ ∼N
(
0,D(di,i′)

)
, (7)

where in this work we use
√
D(d)= 0.5d in units of

(TECu/100km). This implies that we assume the standard

deviation of difference of two vertical TEC measurements to

grow at a rate of 0.5 TEC units per 100 km of spacing be-

tween pierce points.

For the results in this paper, we use the functional form

above, but this can be improved in future work by a

more complicated spatial structure function D(xi,xi′ , ti, ti′),

which is a function of pierce point locations xi and xi′ , as

well as the time of the measurements ti and ti′ . This function

could for example be derived experimentally from vertical

TEC measurements themselves. This would allow more ac-

curate modeling of sunrise and sunset phenomena, as well as

meridional and zonal gradients.

2.2 Temporal distance

Two measurements do not necessarily have to occur at the

same time, but one would expect the two measurements to

differ more if they have been taken further apart from one

another. This difference can also be modeled as a normal ran-

dom variable:

vini − vi′ni′ ∼N
(
0,T (τi,i′)

)
, (8)

where T (τi,i′) is a structure function that statistically de-

scribes the difference in vertical TEC from one measurement

to the other when the time difference between the two mea-

surements is τi,i′ = |ti − ti′ |.

In this work, we use
√
T (τ)= 20τ in units of TECu/hour.

This makes the assumption that the standard deviation of the

difference of two vertical TEC measurements grows at the

rate of 20 TEC units for each hour.

Again, an improved version of this time structure function

could also be obtained by estimating it from data, but this is

the subject of a future study.
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2.3 Model and receiver errors

There are modeling errors that are caused by our assumption

that we can scale a slanted line integral to a vertical line inte-

gral as shown in Eq. (2). First of all, this assumption does not

correctly take into account that the slanted path cuts through

different latitudes and longitudes and thus averages vertical

TEC over a geographic area. In addition to this, our mapping

function assumes an altitude profile for the ionosphere that is

hopefully close to reality, but never perfect. The ionosphere

can have several local electron density maxima and can have

horizontal structure in the form of, e.g., traveling ionospheric

disturbances, or typical ionospheric phenomena such as the

Appleton anomaly at the Equator or the ionospheric trough

at high latitudes.

In addition to this, GNSS receivers often have difficulty

with low-elevation measurements arising from near-field

multi-path propagation, which is different for both frequen-

cies. These errors can in some cases severely affect vertical

TEC estimation and thus also bias estimation.

To first order, the errors caused by the inadequacies of the

model assumptions or anomalous near-field propagation in-

crease proportionally to the zenith angle. It is useful to in-

clude this modeling error in the equations as yet another ran-

dom variable. We have done this by assuming the elevation-

angle-dependent errors to be a random variable of the follow-

ing form:

vini − vi′ni′ ∼N (0,E(αi)+E(αi′)) . (9)

Here E(αi) is the structure function that indicates the mod-

eling error variance as a function of elevation angle. In this

work, we use a structure function where the variance grows

rapidly as the elevation angle approaches the horizon, ex-

pressed as
√
E(αi)= 20(cosαi)

4. This form penalizes lower

elevations more heavily.

The structure function that takes into account vertical TEC

scaling errors and receiver issues at low elevations can also

be determined from vertical TEC estimates, e.g., by doing a

histogram of coincident measurements of vertical TEC:

E(α)≈ 〈|〈vini〉− vi′ni′ |
2
〉 (10)

for all i, i′, where |xi − xi′ |< εd and |αi′ −α|< εα . Here εd

determines the threshold for distance between pierce points

that we consider to be coincidental, and εα determines the

resolution of the histogram on the α axis. Here the angle

brackets 〈·〉 denote a sample average operator.

3 Generalized linear least-squares solution

If we assume that all random variables in the structure func-

tions of the previous section are independent random vari-

ables, we can simply add them together to obtain the full

structure function

Si,i′ =D(di,i′)+ T (τi,i′)+E(αi)+E(αi′). (11)

The differences in Eq. (5) can be expressed in matrix form

as

m= Ax+ ξ , (12)

where

A =




. . .
...

...
... . .

.

· · · vi · · · vi · · ·
. .
. ...

...
...

. . .


−




. . .
...

...
... . .

.

· · · vi′ · · · vi′ · · ·
. .
. ...

...
...

. . .



, (13)

with the measurement vector containing differences between

vertically scaled measurements

m= [· · ·,vimi − vi′mi′ , · · ·]
T , (14)

and the unknown vector x contains the receiver and satellite

biases

x = [b0, · · ·,bN ,c0, · · ·,cM ]T . (15)

For x, N indicates the number of receivers and M indicates

the number of satellites.

The random variable vector ξ ∼N(0,6) has a diagonal

covariance matrix defined by the structure function of each

measurement pair used to form differences:

6 = diag
(
Si,i′ , · · ·

)
. (16)

The theory matrix A forms the forward model for the mea-

surements as a linear function of the receiver biases.

This type of a measurement is known as a linear statistical

inverse problem (Kaipio and Somersalo, 2005), and it has a

closed-form solution for the maximum-likelihood estimator

for the unknown x, which in this case is a vector of receiver

and satellite biases:

x̂ = (AT6−1A)−1AT6−1m. (17)

This matrix equation is often not practical to compute di-

rectly due to the typically large number of rows in A. How-

ever, because the matrix A is very sparse, the solution can

be obtained using sparse linear least-squares solvers. In this

work, we use the LSQR package (Paige et al., 1982) for min-

imizing |Ãx− m̃|2, where Ã and m̃ are scaled versions of

the matrix A and vector m. Each row of A and m are scaled

with the square root of the variance of the associated mea-

surement
√
Si,i′ in order to whiten the noise. In practice, this

performs a linear transformation with matrix P that projects

the linear system into a space where the covariance matrix is

an identity matrix PT6P= I.

3.1 Outlier removal and bad receiver detection

When a maximum-likelihood solution has been obtained, a

useful diagnostic examines the residuals r = |Ãx̂−m̃|. If the

Atmos. Meas. Tech., 9, 1303–1312, 2016 www.atmos-meas-tech.net/9/1303/2016/



J. Vierinen et al.: Statistical framework for estimating GNSS bias 1307

residuals are larger than a certain threshold, they can be de-

termined to be measurements that do not consistently fit the

model, i.e., outliers.

Outliers can be caused by several different mechanisms.

They can be of ionospheric origin, where vertical TEC gra-

dients are sharper than our structure function expects them

to be. They can also be simply caused by a loss of lock in

the receiver, which can result in a large erroneous jump in

slanted TEC.

These outlying measurements can be detected and re-

moved by a statistical test, for example |Ãx̂− m̃|> 4σ ,

where σ is the standard deviation of the residuals estimated

with σ =median
(
|Ãx̂− m̃|

)
. After the removal of problem-

atic measurements, another improved maximum-likelihood

solution, one not contaminated by outliers, can be obtained.

The procedure for outlier removal can be repeated over sev-

eral iterations to ensure that no problematic data are used for

bias estimation.

4 Special cases

The previous section described the general method for esti-

mating bias by using differences of slanted TEC measure-

ments scaled by the mapping function. However, in practice

this general form rarely needs to be used. In the following

sections we describe several important and practical special

cases, including known satellite bias, single receiver bias es-

timation, and multiple biases for each receiver.

4.1 Known satellite bias

If satellite bias is known a priori to a good accuracy, then it

can be subtracted from the measurements and the difference

equation. This reduces Eq. (5) to

vimi − vi′mi′ =(vini − vi′ni′)+ vibj (i)

− vi′bj (i′)+ viξi − vi′ξi′ . (18)

This form results in the same linear measurement equations,

except that the satellite biases are not unknown parameters.

In this case, the theory matrix will only have at most two

nonzero elements for each row.

For GPS receivers, satellite biases are known to a good

accuracy using a separate and comprehensive analysis tech-

nique (Komjathy et al., 2005), and therefore this special case

is appropriate for bias determination for GPS receivers.

4.2 Single receiver and known satellite bias

For the case that the satellite bias is known a priori and there

is furthermore only one receiver, then the matrix only has one

column with the unknown bias for the receiver.

This still results in an overdetermined problem that can be

solved. The solution of this special case mathematically re-

sembles a known analysis procedure that is often referred to

as “scalloping” (P. Doherty, personal communication, 2003;

Carrano and Groves, 2006). This latter technique depends on

the assumption that the concave or convex shape of all zenith

TEC estimates collected by a single receiver observed over a

24 h period should be minimized. This same goal is obtained

when time differences are minimized. The main difference

in this work is that the statistical framework uses a structure

function that weights differences of measurements based on

time between the measurements, the elevation angle, and the

pierce point distance.

Figure 2 shows an example receiver bias that is deter-

mined using only data from a single receiver. In this case,

time differences with τi,i′ less than 2 h were used, in order to

keep the number of measurements manageable. We also used

differences of measurements between different satellites. A

comparison of results with measurements obtained with the

standard MAPGPS algorithm shows quite similar results be-

tween the two techniques.

4.3 Multiple biases

There are several reasons for considering the use of multiple

biases for the same satellite and receiver. This special case

can also be handled by the same framework.

If there is a loss of phase lock on a receiver, this might re-

sult in a discontinuity in the relative time-of-flight measure-

ment, which appears as a discrete jump in the slanted TEC

curve. Rather than attempting to realign the curve by assum-

ing continuity, it is possible, using our framework, to sim-

ply assign an independent bias parameter to each continuous

part of a TEC curve. As long as there are enough overlapping

measurements, the biases can be estimated.

For GNSS implementations other than GPS, it is possible

that satellite biases are not known or cannot be treated as a

single satellite bias. For example, the GLONASS (Global-

naya Navigazionnaya Sputnikovaya Sistema) network uses a

different frequency for each satellite, which means that any

relative time delays between frequencies caused by the re-

ceiver or transmitter hardware will most likely be different

for each satellite–receiver pair. Because of this, it is natural to

combine the satellite bias and receiver bias into a combined

bias, which is unique for each satellite–receiver combination.

Receiver biases are also known to depend on temperature

(Coster et al., 2013), because dispersive properties of the dif-

ferent parts of the receiver can change as a function of tem-

perature. If an independent bias term is assigned to, e.g., each

satellite pass, this also allows temperature-dependent effects

to be accounted for, as a single satellite pass lasts only part

of the day.

Multiple bias terms can be added in a straightforward man-

ner to the model using Eq. (18). This is the same equation that

is used for the known satellite bias special case. Here, bj (i)
can be interpreted as an unknown relative bias term that can

vary from one continuous slanted TEC curve to another. The

meaning of j (i) in this case is different. It is a function that

assigns bias terms to measurements i. Each receiver does not

www.atmos-meas-tech.net/9/1303/2016/ Atmos. Meas. Tech., 9, 1303–1312, 2016



1308 J. Vierinen et al.: Statistical framework for estimating GNSS bias

Figure 2. Bias estimation using time differences of measurements obtained with a single receiver. Top panel shows the residuals of the

maximum likelihood fit to the data. The points shown with red are automatically determined as outliers and not used for determining the

receiver bias. These mostly occur during daytime at low elevations. The center panel shows vertical TEC estimated with the original MAPGPS

receiver bias determination algorithm, while the bottom panel shows vertical TEC measurements obtained using only time differences using

the new method described in this paper, assuming constant receiver bias and known satellite bias. The VTEC results do not differ significantly.

necessarily need to have one unknown bias parameter; it can

have many.

An example of a measurement where the same satellite is

observed using a single receiver is shown in Fig. 3. In this

case, the satellite is measured in the morning first, and dur-

ing the pass there is a discontinuity in the TEC curve, most

likely due to loss of lock. We give the measurements before

∼ 05:00 UTC and from ∼ 05:00 to 06:00 UTC an indepen-

dent bias term b0 and b1. The same satellite is seen again in

the evening at 19:00 UTC, and we again assign a new bias

term to it: b2.

Another multiple-bias example is shown in Fig. 4, which

displays measurements from 19 neighboring receivers in

China. A few of these receivers have discrete jumps in the

slanted TEC curves that make it impossible to assume a con-

stant receiver bias during the course of the entire day. This

can be seen as a poor fit using the standard MIT Haystack

MAPGPS algorithm. When multiple bias terms are intro-

duced (in the same way as depicted in Fig. 3), the measure-

ments from these stations can be recovered.

5 Comparison

In order to test the framework in practice for a large network

of GPS receivers, we implemented the framework described

in this paper as a new bias determination algorithm for the

MIT Haystack MAPGPS software, which analyzes data from

over 5000 receivers on a daily basis. We used the MAPGPS

Figure 3. An example of a measurement of a single satellite col-

lected by a single receiver. A loss of phase lock occurs during the

first pass of the satellite, resulting in two receiver biases for that pass

(b0: blue curve; b1: green curve). During the next pass, a drift in the

receiver bias could have occurred, so another receiver bias (b2: red

curve) is determined when the satellite is measured during the end

of the day.

program to obtain slanted TEC estimates. Then, instead of

using the MAPGPS routines for determining receiver biases,

we used the new methods described in this paper. We label

Atmos. Meas. Tech., 9, 1303–1312, 2016 www.atmos-meas-tech.net/9/1303/2016/
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Figure 4. Vertical TEC with satellite bias estimated using the current version of the MIT Haystack Observatory MAPGPS algorithm (Rideout

and Coster, 2006) shown above. Multiple receivers have problems with receiver stability, which makes the assumption of unchanging receiver

bias problematic and causes the receiver bias determination to fail. Vertical TEC with receiver biases obtained using the multiple-biases

assumption is shown below. The new method produces a more consistent baseline. The red dots show stations that are plotted. The algorithm

uses all of the data from the 19 stations marked with orange and red dots. The stations marked with orange are used to assist in reconstruction

by using a larger geographic area.

results obtained using the new bias determination algorithm

with WLLSID.

When fitting for receiver bias, we assumed a fixed receiver

bias for each station over 24 h. We also assumed a known

satellite bias, which was removed from the slanted measure-

ment. To keep the size of the matrix manageable, we selected

sets of 11 neighboring receiver stations and considered each

combination of measurements across receiver and satellites

occurring within 5 min of each other as differences that went

into the linear least-squares solution. For this comparison, we

did not use time differences.

To estimate the goodness of the new receiver bias de-

termination, we compared the method with the existing

MAPGPS algorithm for determining receiver bias, which uti-

lizes a combination of scalloping, zero-TEC, and differen-

tial linear least-squares methods (Rideout and Coster, 2006;

Gaposchkin and Coster, 1993). At latitudes higher than 70◦,

the zero TEC method is used. This method finds the value

of bias in such a way that the minimum value of TEC is 0.

At low and midlatitudes scalloping is first used. Scalloping

finds the bias by finding the optimally flat vertical TEC ±2 h

around local noon. After finding the bias with either zero

TEC or scalloping, the values are refined by using the dif-

ferential TEC method described by Gaposchkin and Coster

(1993).

5.1 Self-consistency comparison

As a measurement of goodness, we used the absolute dif-

ference between two simultaneous geographically coincident

measurements of vertical TEC |vini − vi′ni′ |. The two mea-

surements were considered coincident if the distance be-

tween the pierce points was less than 50 km and the measure-

ments occurred within 30 s of each other. We also required

that the two measurements were not obtained using the same

receiver. As a figure of merit, we used the mean value of the

absolute differences:

F =
1

N

∑
i 6=i′

|vini − vi′ni′ |. (19)

This figure of merit measures the self-consistency of the

measurements, i.e., how well the vertical TEC measurements

obtained with different receivers agree with one another. The

smaller the value, the more consistent the vertical TEC mea-

surements are.

All in all, we found 192 360 such coincidences for the

5220 GPS receivers in the database over a 24 h period start-

ing at midnight 15 March 2015. Biases for the measurements

were obtained both with the new and existing MAPGPS bias

determination methods (MAPGPS and WLLSID). The fig-

ure of merit for the existing MAPGPS method was 2.25 TEC
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1310 J. Vierinen et al.: Statistical framework for estimating GNSS bias

Figure 5. Probability density function and cumulative density functions for 192 360 coincidences where vertical TEC was measurement

within the same 30 s time interval and have pierce points less than 50 km apart from one another. The new method (labeled as WLLSID) has

significantly more < 1 TEC unit differences than the old method.

units, and the WLLSID method has a figure of merit of 1.62

TEC units, which is about 30 % better.

The probability density function and cumulative density

function estimates for the coincident vertical TEC differ-

ences are shown in Fig. 5. The new method results in signifi-

cantly more< 1 TEC unit differences than the old method. It

is evident from the cumulative distribution function that both

methods also result in some coincidences that are in large dis-

agreement with each other. The result occurs at least in part

due to our inclusion of elevations down to 10◦ in the com-

parison, and it is therefore expected that some low-elevation

measurements will be significantly different from one an-

other.

5.2 Receiver bias day-to-day change

We also investigated receiver bias variation from day to day.

We arbitrarily selected two consecutive quiet days: days 140

and 141 of 2015. We calculated the sample mean day-to-day

change in receiver bias across all receivers:

δb =
1

N

N∑
i=0

bi,140− bi,141, (20)

where N is the number of receiver. In addition to this, we

calculated the standard deviation using sample variance:

σb =

√√√√ 1

N − 1

N∑
i=0

(
(bi,140− bi,141)− δb

)2
. (21)

For the MAPGPS method, we found overall that δb =−0.2±

0.05(2σ) TEC units and σb = 1.6 TEC units. With the new

WLLSID method, we found that δb = 0.02± 0.05(2σ) TEC

units and σb = 1.3 TEC units. This indicates not only that

the day-to-day variability is slightly smaller with the new

method but also that the old method has a statistically signifi-

cant nonzero mean day-to-day change in receiver bias, which

is not seen with the new method. When the data are broken

down into high and equatorial latitudes, the result is similar.

5.3 Qualitative comparison

In order to qualitatively compare the MAPGPS bias deter-

mination method with the WLLSID method, we produced a

global TEC map with the WLLSID method and the exist-

ing MAPGPS bias determination method. The processing in-

volved with making these TEC maps is described by Rideout

and Coster (2006).

To highlight the differences between the two methods, we

chose a geomagnetic storm day (17 March 2015), where we

would expect large gradients and more issues with data qual-

ity. Because of this, the bias determination problem is more

challenging than on a geomagnetically quiet day.

The two maps are shown in Fig. 6. The two TEC maps

show no major differences in broad general features, which

is to be expected. The main differences between the two

images is that there are visibly fewer outliers produced by

the new method. For example, the Asian and European sec-

tors are significantly smoother with the new method. The

ionospheric trough associated with the sub-auroral ioniza-
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Figure 6. Global TEC map produced using two different methods for the St. Patrick’s Day storm on 17 March 2015. Top: a map produced

with the MAPGPS method. Bottom: a map produced with the new WLLSID bias determination method.

tion drift (SAID) stretching from Asia to northern Europe

is much more clearly seen with the new method. Probably

due to the strong gradients associated with the storm, the old

method fails to derive good bias values for a large number of

receivers in China, resulting in negative TEC values, which

are not plotted. The new method finds these values of bias

more reliably.

The polar regions have slightly more TEC when using

WLLSID. This is because the MAPGPS uses the zero-TEC

method for receiver bias determination at high latitudes,

whereas the WLLSID method is applied in the same way

everywhere.

6 Conclusions

In this paper, we describe a statistical framework for esti-

mating bias of GNSS receivers by examining differences be-

tween measurements. We show that the framework results

in a linear model, which can be solved using linear least

squares. We describe a way that the method can be effi-

ciently implemented using a sparse matrix solver with very

low memory footprint, which is necessary when estimating

receiver biases for extremely large networks of GNSS re-

ceivers.

We compare our method for bias determination with the

existing MIT Haystack MAPGPS method and find the new

method results in smaller day-to-day variability in receiver

bias, as well as a more self-consistent vertical TEC map.

Qualitatively, the new method reproduces the same general

features as the existing MAPGPS method that we compared

with, but it is generally less noisy and contains fewer outliers.

The weighting of the measurement differences is done us-

ing a structure function. We outline a few ways to do this, but

these are not guaranteed to be the best ones. Future improve-

ments to the method can be obtained by coming up with a

better structure function, which can possibly be determined

from the data themselves, e.g., using histograms, empirical

orthogonal function analysis, or similar methods.

While we describe how differences result in a linear

model, we do not explore to a large extent in this work

the possible ways in which differences can be formed be-

tween measurements. Because of the large number of mea-
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surements, obviously all the possible differences cannot be

included in the model. In this study, we only explored two

types of differences: (1) differences between geographically

separated, temporally simultaneous measurements obtained

with tens of receivers located near each other and (2) differ-

ences in time less than 2 h performed with a single receiver.

There are countless other possibilities, and it is a topic of

future work to explore what differences to include to obtain

better results.

We describe several important special cases of the method:

known satellite bias, single receiver and known satellite bias,

and the case of multiple bias terms per receiver. The first two

are applicable for GPS receivers, and the last one is appli-

cable to GLONASS measurements, as well as measurements

where a loss satellite signal has caused a step-like error in the

TEC curve.
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