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1 Repeated wafer tests

In the table below the raw data and calculated relative and weighted errors for repetitious tests of
wafers are presented. Eighteen wafers were measured with between two and ten repetitions at eight
temperature and saturation conditions (7', RH; = —15°C, 110 %; —20°C, 120 %; —25°C, 119 %;
—25°C, 126 %; —30°C, 130 %; —30°C, 132 %; —32°C, 127 %; —32°C, 134 %). This series of
measurements resulted in 226 individual measurements, representing 87 wafer—saturation condition
subsets. One wafer, saturation condition subset represents a single wafer repeatedly measured at a
single saturation condition. For example, the measurement of wafer #1 at -15°C and RH;=110%
was repeated three times (see table below).

Relative error Er is the percentage represented by the standard deviation o; of the mean INP
counts I N P; per subset 7. Thus for n repetitions per wafer within a subset

E— "INP
INP; = 217, (1)
n
where I N P is the number of counts for an individual repetition and,
g
Er=—— x100. 2
R= 7 2 ()

The weighted error Eyy is the relative error normalized by the mean INP counts relative to the
total INP counts for all subsets IN P,;;, where

87
INP,, = ZINP,» and (3)
i=1
INP;
= — E . 4
WoINp, " «@

A total weighted error is calculated and presented at the conclusion of the table and within the text
by summing the contributions from all of the individual subsets. In this case we have treated all of
the available data and made no attempt to eliminate outliers, etc. We have chosen this approach in
an attempt to maintain the broadest interpretation of reproducibility and to ensure wafers with low
total counts cannot skew the error to be very large given small changes in absolute count. However,
in other measurement contexts (e.g., a subset of the analyzed thermodynamic conditions) it may be
valuable to re-examine and/or use some subset of the data. Thus we provide the entirety of the data
set below.
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2 Saharan dust event

On April 16, 2015 a Saharan dust event was observed at the Taunus Observatory, Mt. Kleiner Feld-
berg (826 m msl, 50.221879° N, 8.446297° E). Figures|[I]and 2] show the temporal evolution of the
dust transport event in six hour increments. In Fig.[I] (a) and (b) the dust layer is primarily west of
the Spanish and French coast and by 00 UTC on April 16 (Fig.[I] (c)) dust begins to pervade wide
areas of central Europe. Figures 2] (d), (e) and (f) confirm that dust is present throughout the entire
day, albeit within the RGB product the dust layer is superimposed with cold thick high-level clouds
(red) and low-level clouds (yellow) and thus is not always clearly visible.

Figureis the BSC-DREAMSD| (vid BSC-DREAMSD ref., and Basart et al., |2012)) modeled ver-
tical profile of dust on April 16, 2015 above Taunus Observatory. It highlights that dust was present
throughout the day, even in the lowest kilometer of the atmosphere. Thus it is reasonable to con-
clude that atmospheric samples taken at Taunus Observatory on April 16, 2015 included Saharan
dust. Back trajectories from 12 UTC April 16, 2015 computed using HYSPLIT (Draxler and Rolph|
2015} |Rolph, 2015) and arriving at the Taunus Observatory, confirm the observation that the local
air mass advanced from the Saharan region (Fig.d).



(a) BSC-DREAMSb v2.0 Dust Load (g/m® ) and 3000m Wind

10°N |

f] : i i
40°E 50°E BO0°E

20mifs

BSC-DREAMSb v2.0 Dust Load (g/m? ) and 3000m Wind
(b) 06h forecast for 18UTC 15 Apr 2015

L fwwwbsc.es pro ctsfearthscignc-BSC—DRE;'lM

25

15

0.5

0.25

0.05

20m/fs

BSC-DREAMSb v2.0 Dust Load (g/m? ) and 3000m Wind
(C) 12h forecast for 00UTC 16 Apr 2015

Rttp:ffww bsces/pro. ctsfearthscienc-BSC—.DRE;'h\-f

30°N
200N [ 7T

10°N

20m/fs

Figure 1. Temporal evolution of the Saharan dust event from (a) 12 UTC April 15, 2015 to (c) 00 UTC April
16, 2015. The lefthand panels show the dust load (g/m?, calculated using BSC-DREAMSb), while the right-
hand panels show the EUMETSAT RGB dust product, with the intensity of the magenta corresponding to dust
intensity.
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Figure 2. Continuation of Fig. [T[s temporal evolution of the Saharan dust event from (d) 06 UTC April 1,
2015 to (f) 18 UTC April 16, 2015. Again the lefthand panels show the dust load (g/m?, calculated using
[DREAMSDb), while the righthand panels show the EUMETSAT RGB dust product, with the intensity of the
magenta corresponding to dust intensity.
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Figure 3. Vertical profile of dust concentration above Taunus Observatory on April 16, 2015 calculated using
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Figure 4. Back trajectories originating from Taunus Observatory at 1000 m (red), 2000 m (blue) and 3000 m
(green) amsl. Trajectories were initiated at 12 UTC April 16 2015 and run for 240 hours.
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