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Abstract. Laser absorption spectroscopy (LAS) has been

used over the last several decades for the measurement of

trace gasses in the atmosphere. For over a decade, LAS mea-

surements from multiple sources and tens of retroreflectors

have been combined with sparse-sample tomography meth-

ods to estimate the 2-D distribution of trace gas concentra-

tions and underlying fluxes from point-like sources. In this

work, we consider the ability of such a system to detect and

estimate the position and rate of a single point leak which

may arise as a failure mode for carbon dioxide storage. The

leak is assumed to be at a constant rate giving rise to a plume

with a concentration and distribution that depend on the wind

velocity. We demonstrate the ability of our approach to detect

a leak using numerical simulation and also present a prelim-

inary measurement.

1 Introduction

Carbon capture and geological storage (Bachu, 2008; Le-

ung et al., 2014) is one candidate to reduce the concentra-

tion of carbon dioxide in the atmosphere. It is well known

that the total annual increase in CO2 is in excess of 1 part

per million in volume (Keeling et al., 1995) which is 7.8 Pg

(7.8 gigatonnes) of carbon dioxide. Geological sequestration

at 30 kg m−3 of CO2 is possible (Silva et al., 2015). To have a

significant effect on the course of climate change, on the or-

der of 1 part per million in volume of CO2 must be removed

annually; hence, an enormous volume scaled to 260 km3 of

storage would need to be added every year for at least the

next few decades.

One obvious objection to geological repositories is that the

CO2 could leak. How much leakage is acceptable? Because

of the various geological processes for removing CO2 from

the atmosphere that take place over a timescale of hundreds

to thousands of years, it is not possible to specify a single

time constant (Archer et al., 2009). Still, leakage below 0.1 %

per year is required so that even slow geological processes

can act to avoid most of the environmental effects of CO2 in

the atmosphere (Hepple and Benson, 2005). An inexpensive

method of monitoring storage sites is required.

Remote sensing of atmospheric gasses, frequently for pol-

lution control goes back several decades (Sabins Jr., 1997).

One of the principal methods is differential optical absorp-

tion spectroscopy (DOAS). As implemented by Pundt et al.

(2005), two optical sources send light across a field in vari-

ous directions to allow for spatially resolved measurements,

making what we call quasi-tomographic measurements. A

similar technique to understand a vertically oriented slice of

the atmosphere has been studied in the context of the plumes

of volcanoes (Johansson et al., 2009).

Long-baseline DOAS has been used to measure trace

gasses in the atmosphere tomographically. Whereas in medi-

cal tomography, the number of individual projections can be

in the millions, the practice in tomographic DOAS has been

to make tens of measurements in two dimensions (Pundt

et al., 2005). For order of magnitude estimation, the spa-
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tial resolution is proportional to both the square root of the

number of measurements and the area of the sample re-

gion (Natterer, 1986). In particular, using the filtered back-

projection algorithm (Kak and Slaney, 2001) with a first gen-

eration tomographic set up in two dimensions (i.e., parallel

rays entering a circular region), the spatial resolution is a

factor of
√
π/2 worse than one would obtain by taking the

square root of the number of measurements and applying the

Nyquist sampling criterion.

In the case of the verification of the integrity of structures

dedicated to the sequestration of carbon dioxide, we may sus-

pect a single point leak in the presence of a reasonably steady

wind. The sequestration region might be on the order of 1 km

square, so using roughly 36 measurements as considered by

Hartl et al. (2006) leads to an estimated spatial resolution just

below 200 m. Measurements are typically made a few meters

above the ground. Hartl et al. (2006) concluded that mea-

surements with more than two light sources were highly ad-

vantageous. Olaguer (2011) argued that the use of two light

sources could be sufficient if plume models were used in a

reconstruction. Modeling studies include those of Verkruysse

and Todd (2005) and Chang and Wu (2012).

Typically, it is assumed that the measurement is taken

quickly enough so that the plume does not vary due to chang-

ing winds. Here, we consider a different constraint: if we as-

sume that the leak rateQ is constant during the course of the

measurement, and that the wind velocity is measured during

the measurement, we may seek a plume which shifts direc-

tion with the wind and whose density is inversely propor-

tional to the wind speed. Recently, other authors have con-

ducted similar studies (Humphries et al., 2012; Luhar et al.,

2014). Other proposals for finding small leaks include con-

sideration of the N2, O2, and CO2 concentrations including

isotopic ratios, as carbon dioxide sources are not associated

with oxygen depletion.

2 Ermak’s plume model

If we assume that the concentration of gas is due to a single

steady leak, the strong constraints of a plume model can be

imposed. If the speed and direction of the wind are known

throughout the measurement then a given leak strength will

give rise to a characteristic plume. We adopt coordinates in

which xp is downwind, zp is up, and yp is chosen to form

a right-handed coordinate system. We also make use of the

frame of the Earth, with x being east, y being north, and

z= zp being up. The coordinates x, y, and z are fixed, but

xp and yp depend on the wind direction.

If the emission is continuous at a constant rate, making the

standard approximation of the advection–diffusion equation,

i.e., ignoring diffusion parallel to the wind direction (Stockie,

2011), we may assume that the plume amplitude is propor-

tional to the plume basis function specialized to ground-level

emission (Ermak, 1977):

ψ
(
xp,yp,zp

)
=

[
πσ 2

(
xp

)]−1

exp
{
−

(
y2

p + z
2
p

)
/[

2σ 2
(
xp

)]}
2
(
xp

)
2
(
zp

)
, (1)

where 2 is the Heaviside step function. The normalization

in zp is over the half-space zp≥ 0; zp= 0 is the level of the

ground which is taken to be flat. We represent the plume as a

basis function times a constant c which depends on the leak

rate Q and the wind speed. The coordinate origin is at the

point of the leak. The width parameter is given by

σ 2
(
xp

)
= σ 2

0

(
v0

v

xp

x0

)γ
, (2)

where γ is a positive constant and σ0, v0, and x0 are redun-

dant constants which we also refer to, more compactly, with

the variables k0= k1 v
−γ
= σ 2

0 [v0/(v x0)]
γ , which is defined

so that σ 2(xp)= k0 x
γ
p = k1(xp/v)

γ . In the plume model we

adopt, a single width governs the dispersion in both yp and

zp. However, some models suggest using two different func-

tions for yp and zp (Turner, 1994). Three constants are in-

troduced to emphasize scaling from a reference condition:

the width is σ 2
0 at the downwind position xp= x0 with a

wind speed of v= v0. The constants k0 and γ are posi-

tive and depend on the weather conditions. Although ideal

molecular diffusion implies γ = 1, in practice γ takes on a

value near 1, depending on the atmospheric stability (Ermak,

1977), with 0.9 being a typical value. The scaling with v oc-

curs in Ermak’s model because the transverse diffusion de-

pends on time but is independent of the wind speed v.

The plume basis function is normalized such that

1=

∞∫
0

dzp

∞∫
−∞

dypψ
(
xp,yp,zp

)
, (3)

reflecting the conservation of mass as the plume undergoes

lateral and upward diffusion. The dimensions of ψ are thus

inverse area, which may also be seen from Eq. (1).

The actual concentration is given by cψ . The physical

meaning of c is the following: there is a certain leak rate Q

which may be expressed in the SI units of kg s−1. Because

longitudinal diffusion is neglected in Ermak’s plume model,

the gas crossing each plane with constant xp must have

an area-integrated concentration of Q/v so that the gas is

“swept out” at the equilibrium rate. Given that the physical

plume function is cψ(xp, yp, zp), Eq. (3) leads to the identi-

fication

c =
Q

v
, (4)

with units of kg m−1. (The dimensions of cψ are kg m−3;

it is a concentration.) In our actual case, we will have sev-

eral values of v, each representing a plume formed from the

same leak. We will estimate a single Q and derive values

Atmos. Meas. Tech., 9, 1627–1636, 2016 www.atmos-meas-tech.net/9/1627/2016/



Z. H. Levine et al.: Quasi-tomographic LAS 1629

for c for each wind condition based on the known v using

Eq. (4). In practice, CO2 concentrations are usually quoted

as µmol mol−1 of the dry atmosphere, with 400 µmol mol−1

of CO2 corresponding to 0.786 g m−3 of CO2. (The unit

µmol mol−1 is the same as the unit ppmv; here µmol refers to

the CO2 concentration and mol refers to the concentration of

dry air.)

At a given distance downwind, the total concentration in a

line of observation orthogonal to both the wind direction and

the direction of gravity is given by

F
(
xp,zp

)
=

∞∫
−∞

dypψ
(
xp,yp,zp

)
=

(
2

π

)1/2
1

σ
(
xp

)
exp

(
−

z2
p

2σ 2
(
xp

)) . (5)

Examining Eq. (5), there is a singularity as xp→ 0 if zp= 0

(physically, the point of emission is at ground level), but

limxp→0
F(xp, zp)= 0 for zp> 0. Downwind, for small val-

ues of xp there is a very rapid increase for xp� (z
2
p/k0)

1/γ

followed by a gentle decrease for xp� (z
2
p/k0)

1/γ . There is

a peak at xp= (2 z2
p/k0)

1/γ . The physical implication is that

the largest concentration of observable gas will be located

slightly downwind of the gas source. Just above the leak, the

gas has not yet entered the line of observation; far downwind

from the leak, the gas has dissipated upward too much.

Another property of interest is the peak observed value

of the concentration for a given value of zp. By inspection

of Eq. (1), this maximum occurs for yp= 0. The problem

reduces to a 1-D maximization of Eq. (1) specialized by

Eq. (2). The position of the maximum is

x(max)
p =

(
z2

p

2σ 2
0

)1/γ
v

v0

x0, (6)

while its value is given by

cmax =
2Q

πvz2
p

e−1. (7)

The standard deviation at the maximum concentration obeys

the simple relation

σ
(
x(max)

p

)
=
zp
√

2
. (8)

In Ermak’s formulation, the transverse diffusion is inde-

pendent of the wind speed when considered as a function of

time. The proportionality constant between time and down-

wind position is simply the wind speed. If downwind dis-

tances which are comparable to the length scale for pressure

and density differences in the atmosphere are considered, this

approximation will break down. However, for distances up to

500 m, it is a reasonable approximation (Turner, 1994).

3 Maximum likelihood formulation

The famous filtered back-projection method of tomography

requires regular sampling. In Bayesian tomography (Sauer

and Bouman, 1993) there is no such restriction. There,

we calculate the posterior probability distribution of the

model parameters, which indicate likely parameter values

for the given data set by regions of high probability. Be-

cause we are using a formulation from tomography with far

fewer measurements, we characterize the method as “quasi-

tomographic”. We take the prior distribution on the recon-

structed parameters to be flat; thus, the mode of the poste-

rior distribution corresponds to the maximum likelihood es-

timate.

Assuming the measurements, denoted nJ , are indepen-

dent, the likelihood is

L(n)=
∏
J

P (nJ |µJ ) , (9)

where n= (n1, . . . , nN ) are the observed counts whose ex-

pected values are (µ1, . . . , µN ). Since we assume a flat

prior distribution, Eq. (9) is proportional to the posterior dis-

tribution. Thus, normalizing Eq. (9) so that it integrates to

unity (over the reconstructed parameters) yields the posterior

distribution. In what follows, we refer to the unnormalized

posterior and the likelihood interchangeably. Assuming each

source follows Poisson statistics, the measurements, i.e., the

counts of light intensity after undergoing some mean atten-

uation, also follow Poisson statistics (Haus, 2000; Hu et al.,

2007). In this case, the likelihood is given by a product of

independent Poisson distributions:

L(n)=
∏
J

e−µJ
µ
nJ
J

nJ !
. (10)

Below, each µJ is determined by the set of parameters f .

We next introduce the log-likelihood L= ln L given by

L(f ;n)=
∑
J

(−µJ (f )+ nJ lnµJ (f )− lnnJ !) . (11)

Later in the paper, we will take f = (Q, x, y), three variable

plume parameters described below. The function µJ (f ) re-

lates the plume parameters to the observations of the column

density of CO2. We take the distance–transmission relation

to be Beer’s Law:

µJ = µ
(0)
J e
−PJ , (12)

where µ
(0)
J is the mean of a Poisson distribution giving the

source strength for observation J , and PJ is the projection

through the concentration of gas, i.e., the integral of the con-

centration times the absorption cross section (Robinson et al.,

2014) along the straight-line path of the light.
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Putting Eq. (12) into Eq. (11) yields

L(f ;n)=
∑
J

(
−µ

(0)
J e
−PJ (f )− nJPJ (f )+ nJ lnµ

(0)
J − lnnJ !

)
.

(13)

The constant terms nJ ln µ
(0)
J − ln nJ ! do not contribute to

the derivatives ∂L/∂fi and will be normalized away when a

probability density is formed.

The projections are related to the concentration cψ(r; f )

by

PJ (f )=
c

`c

∫
1J

dsψ(r(s),f ). (14)

The constant `c is the attenuation length for a given concen-

tration of gas and r is a position. The units of `c are thus

m2 kg−1, i.e., the inverse of a concentration times a length.

The path r(s) is given by the domain of integration 1J , a

line integral, also known as a projection in tomography.

The posterior distribution p(f ) for the parameters f given

the data n is given by

p(f ;n)=
L(f ;n)∫
dfL(f ;n)

, (15)

i.e., the likelihood normalized by its integral over all possi-

ble values of the parameters. Let the parameters which max-

imize p be denoted by f 0, which is assumed to be unique.

We take f 0 to be the estimator of f .

In performing the maximization, the most time-consuming

step is the calculation of the projections in Eq. (14). We adopt

a strategy of maximizing over the leak rate Q with the loca-

tion of the leak fixed and maximizing again over Q when-

ever the leak position is varied. Here, we present the single-

source case, although for several sources, several concentra-

tions may be optimized over without recalculating the pro-

jections. Using Eq. (4), we may write PJ =
Q
vJ
P
(1)
J :

L(f ;n)=
∑
J

[
µ
(0)
J exp

(
−
QP

(1)
J

vJ

)
−
QnJP

(1)
J

vJ

+ lnµ
(0)
J − lnnJ !

]
. (16)

We takeQ≡ f1 (and also x≡ f2 and y≡ f3). This allows us

to write the derivative as

∂L

∂Q
=

∑
J

[
−
µ
(0)
J P

(1)
J

vJ
exp

(
−
QP

(1)
J

vJ

)
−
nJP

(1)
J

vJ

]
. (17)

We use Eq. (17) in maximizingL by picking a given point (x,

y) for the gas source and setting ∂L/∂Q= 0. We maximize

over the leak rateQ for each candidate position (x, y). Maxi-

mizing overQ for each (x, y) allows us to make the most effi-

cient use of the projections which are relatively expensive to

compute. The log likelihood maximized over Q is itself then

maximized over (x, y) by Mathematica’s NMaximize with

default parameters. Up to 25 draws from a random search

drawn uniformly from a square slowly expanding about the

candidate maximum point are made until a higher value of

the log likelihood was found. Then, Mathematica’s local op-

timizer FindMaximum was used and the maximum found by

it was subject to additional sets of up to 25 draws seeking

further improvement. After one invocation of NMaximize,

10 iterations of the further process were permitted.

While we have formulated Eq. (11) in terms of counts, we

may obtain the information in the form of a transmission fac-

tor TJ and an estimate of the signal-to-noise ratio SJ . These

representations are connected by the simple relations

nJ = S
2
J (18)

and

µ
(0)
J = nJ /TJ . (19)

We consider the log likelihood to be a continuous function

of the real numbers nJ , although strictly speaking the deriva-

tion requires each nJ to be an integer. In practice, to obtain

simulated measurements, we use the model parameters to set

the forward model. Next, given the signal-to-noise ratio, we

derive expected mean counts for each measurement using

Eq. (19). A particular measurement is simulated by taking

that mean value to be a parameter in a Poisson distribution

and taking a single sample.

4 Results

4.1 Experimental setup

Field measurements from the Greenhouse gas Laser Imag-

ing Tomography Experiment or GreenLITE (Dobler et al.,

2015) motivated our tomographic reconstruction approach.

GreenLITE is a prototype system of hardware and software

intended to measure, monitor, and estimate 2-D distributions

of CO2 concentration at carbon sequestration sites (or else-

where). The hardware component consists of two laser-based

differential absorption transceivers and tens of corner-cube

retroreflectors used to collect CO2 transmission measure-

ments in a crisscross pattern such that lines of sight from

transceivers to reflectors intersect as shown in Fig. 1. The

software component includes algorithms to convert transmis-

sion measurements into CO2 concentrations in µmol mol−1

along each line of sight. These concentration values can be

used to validate our approach.

The GreenLITE system was deployed at a farm outside

of Fort Wayne, IN, in February of 2015 in the configura-

tion shown in Fig. 1. A full set of transmission measure-

ments – for all transceiver–reflector pairs – were collected

approximately every 5 min on 5 February from 13:00 to

Atmos. Meas. Tech., 9, 1627–1636, 2016 www.atmos-meas-tech.net/9/1627/2016/
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Table 1. Parameters used in the calculation. Units are omitted for dimensionless quantities.

Variable Value Units

Attenuation constant of beam 6 183 630 µmol mol−1 m 12 200 g m−2 (Robinson et al., 2014)

Number of traversals 2

Initial background 390.0 µmol mol−1 0.766 g m−3

Final background 397.5 µmol mol−1 0.781 g m−3

Number of wind measurements 24

Number of optical sources 2

Number of retroreflectors 27

Number of optical measurements 1162 of 1296= 2× 27× 24 possible

Signal : noise 4000 constant for all observations

Minimum wind speed 1.6 m s−1

Maximum wind speed 3.5 m s−1

Minimum wind bearing 193 degree meteorological convention

Maximum wind bearing 226 degree meteorological convention

γ 0.9 m plume parameter (Turner, 1994)

σ0 9 m plume parameter (Turner, 1994)

x0 100 m plume parameter (Turner, 1994)

v0 5 m s−1 plume parameter (Turner, 1994)

z0 1 or 10 m plume parameter

-100 0 100 200
-300

-200

-100

0

100

200

300

x (m)

y
(m

)

Figure 1. The lines of observation in both the experiment and the

simulation are shown here, with up being north and right being east.

Each of the two light sources starts 27 line segments which end on

each of the 27 reflectors. The pale blue ellipse represents the region

in which carbon dioxide sources were simulated. The red dot repre-

sents the position of the leak found in the experiment as calculated

by maximizing the likelihood using the Ermak plume model.

21:00 EST (local). Transmission measurements were then

converted to CO2 concentration in µmol mol−1 and averaged,

per transceiver–reflector pair, over 20 min time intervals to

minimize the impact of short-term variations in wind ve-

locity and variability in local source and sink contributions,

such as automobile traffic, that are not representative of a

persistent leak at a sequestration site. Wind was also mea-

sured and reported during this time at 2 min intervals. Ac-

cordingly, wind was averaged over 20 min periods to coin-

cide with µmol mol−1 averaging and is shown in Fig. 2. The

8 h time interval and 20 min averaging results in 24 sets of

concentration values and corresponding wind measurements.

Table 1 shows that 1162 transmission measurements were

used in our study, and Table 2 shows the break down of

transmission measurements per 20 min time window. Some

measurements are missing due to routine optimization of the

northern transceiver scan pattern during the early portion of

the 8 h interval, as well as low return signal on multiple mea-

surements due to snow that had accumulated on some of the

reflectors.

Because no source of CO2 was placed in the field, we were

not expecting to detect a source. As reported in Sect. 4.3, if

all the data were taken into account, in particular the shifting

winds, there was an apparent detection. This motivated us to

see whether such a detection was plausible in simulation.

4.2 Simulations

First, we simulate measurements assuming that the true leak

position is exactly at the estimated position from the exper-

imental data. Simulated measurements suggest that the sig-

nal can be recovered well at both the measurement height

of z0= 1 m as well as z0= 10 m. Due to the complex struc-

ture of the log-likelihood function at z0= 1 m, we shift to

the value of z0= 10 m for most of the following discussion.

www.atmos-meas-tech.net/9/1627/2016/ Atmos. Meas. Tech., 9, 1627–1636, 2016
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Table 2. Number of optical observations for each wind measure-

ment, with the value for the first six wind measurements given in

the first row, the value for the second six wind measurements in the

second row, etc. The maximum possible entry is 54= 2× 27.

23 24 25 27 49 50

51 54 54 54 54 54

54 54 54 53 54 54

54 54 53 53 53 53

0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0

East-going wind (m s )

N
or
th
-
go

in
g
w
in
d

(m
s

)

1

24

avg

–1

–1

Figure 2. The measured wind velocity during the experiment at

20 min intervals. The first and last measurements are labeled “1”

and “24”, respectively, which represent 5 February 2015 from

13:00 to 21:00 EST (local time). The average velocity is also given.

This allowed us to find the maxima in hundreds of cases

without searching interactively or developing a maximization

routine which takes account of the cell structure which ap-

pears with the 1 m observation–height reconstruction. From

Eq. (8), σ(x
(max)
p )= z0/

√
2. A glance at Fig. 1 shows that

7 m is closer to the scale length of the irregular grid formed

by the light paths than 0.7 m. However, the value of z0= 10 m

is somewhat arbitrary and does not represent an attempt to

optimize the height at which measurements are to be taken.

We simulated 389 cases of a gas leak with

strength Q= 105 µmol mol−1 s−1 and 109 cases with

Q= 5× 104 µmol mol−1 s−1, with the leak position given

by sampling from a uniform distribution of the pale blue

ellipse shown in Fig. 1. Four cases with Q= 0 were also

simulated.

We were able to find the maximum of the log likelihood

in 380 of 389 cases with the higher leak strength and 103 of

109 cases with the lower leak strength using the algorithm

described in Sect. 3. Cases for which the reported maximum

was less than the log likelihood of the known true value were

discarded. However, the known true value was not otherwise

used in the analysis.

A typical example of the log likelihood and its maximum

is given in Fig. 3. The function is smooth enough for au-

Figure 3. Contour plot of log likelihood for a source at (−10.30,

99.25) m with Q= 105 µmol mol−1 m3 s−1 at a height z0= 10 m

with x, y positions as in Fig. 1. In this figure, the log likelihood

is referenced to that of the known true position. The maximum is

shown with a black dot. The light paths are also shown.

tomatic optimization yet the alignment of the peak of the

log likelihood with the light paths shows that the detailed

pattern of measurement exerts a considerable influence over

the function. The peak lies thousands of log-likelihood units

above the log likelihood evaluated at 0 leak rate. A typical

case of the log-likelihood function computed without a gas

leak is shown in Fig. 4. Although there is a superficial re-

semblance to Fig. 3, the key point is that the full range of the

log-likelihood function is reduced by 3 orders of magnitude

– enough that the hypothesis of no leak is consistent with the

data.

Our simulated measurements are created from the pro-

jection of the CO2 density derived from the plume model

and the attenuation constant from Table 1 and the signal-to-

noise ratio also from Table 1 to form Poisson means, which

are sampled. For each set of simulated measurements, we

may form a credible region for the true parameter values.

Since posterior distributions may be approximated by Gaus-

sian distributions centered at the mode of the posterior dis-

tribution (Gelman et al., 2014), credible regions may be ap-

proximated by the set of parameters with a log-likelihood

value within half of the appropriate χ2 quantile of the max-

imum value of the log likelihood. In the simulation, we use

the convention that the value of the log likelihood at the true

parameters is 0, so a plot of the ordered maximum values of

the log likelihood vs. the quantiles of a chi-square distribu-

tion with 3 degrees of freedom (corresponding to the three

parameters) will ideally form a straight line. Figure 5 depicts

such a plot. The 0 of the scale is the log likelihood at the

true values of (Q, x, y). The ordered log-likelihood values

are shown on the y axis. The x axis is obtained as follows:

Atmos. Meas. Tech., 9, 1627–1636, 2016 www.atmos-meas-tech.net/9/1627/2016/
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Figure 4. Typical contour plot of the log likelihood when Q= 0

with x, y positions as in Fig. 1. The values range from 0 to 3.55.

Since the 95th percentile of a 1
2
χ -square distribution with 3 degrees

of freedom is about 3.9, Q= 0 is contained in the 95 % credible

region for the parameters. Thus, the data are consistent with the

hypothesis of no leak.
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Figure 5. Maximum log-likelihood values were acquired

from n= 380 of 389 simulations with a leak rate of

Q= 105 µmol mol−1 m3 s−1 and a position chosen with uni-

form probability from the pale blue ellipse in Fig. 1. CDF refers

to the cumulative distribution function. The red line represents or-

dered random deviates that align perfectly with their corresponding

χ2 quantiles. If the points wander outside of the bounds given by

the green lines, the assumption that the random deviates follow a

χ2 distribution is less tenable.

the ith point is assigned the probability value from the quan-

tile rule Pi = (2i− 1)/(2n). The value of the inverse function

[χ2
3 ]
−1(Pi) is given. If the procedure for creating credible re-

gions based on the χ2 distribution leads to credible regions

that envelope the true parameters with the frequency we ex-

pect, the points will form a straight line. Since the plot is
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-100
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Figure 6. Positions of 380 simulations with

Q= 105 µmol mol−1 m3 s−1 measured at a height of z0= 10 m,

with the true positions sampled uniformly from the pale blue ellipse

in Fig. 1 with the x, y positions given there. The reconstructed

position is shown with a dot. Each line segment runs from the

reconstructed position to the true position. (Many of these line

segments are very short and appear as small black dots.) The blue

dots represent the lowest one-sixth predicted leak rates, and the red

dots represent the highest one-sixth predicted leak rates. The green

dots represent the middle two-thirds.

subject to noise (because of the Poisson sampling), the 95 %

simultaneous bounds help to judge deviations from the ideal.

Since the points of that plot all fall within 95 % simultaneous

bounds, we are able to make two conclusions: first, the ap-

proximate credible regions work well in the sense that they

cover the true parameters the frequency of times we expect;

second, the maximization performed by our algorithm is sub-

stantially complete.

The ability to predict the position of the leak is shown in

Figs. 6 and 7. The localization, typically to within 1 or a

few meters, is quite good. Moreover, although the distance

of the predicted leak position to the true leak position has

an observable tail, there are no outliers. No obvious pattern

emerges from considering separately points with a low or

high predicted leak rate. The means and standard deviations

of these discrepancies are summarized in Table 3. There is

www.atmos-meas-tech.net/9/1627/2016/ Atmos. Meas. Tech., 9, 1627–1636, 2016
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Table 3. Results of calculations. Units of Q are

µmol mol−1 m3 s−1. Ncalc is the number of cases calculated

for each leak rate, and Nsolv is the number for which likelihood

maximization was successfully performed.Q is the mean predicted

leak rate and σQ is the standard deviation. 1 is the mean distance

from the predicted to the true values in the simulation, and σ1 is

the standard deviation.

Q Ncalc Nsolv Q σQ 1 σ1
(m) (m)

5× 104 113 107 50 073 1692 3.6 2.9

105 389 380 100 109 2180 1.8 1.6
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-200
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Figure 7. Similar to Fig. 6, with 103 simulations with

Q= 5× 104 µmol mol−1 m3 s−1.

no detectable bias in the estimates of the leak rates. Not sur-

prisingly, the spatial localization is better at the higher leak

rate.

4.3 Experimental results

The data were reconstructed with the model given above.

Before reconstruction, we subtracted a background of

390 µmol mol−1 (766 mg m−3 of CO2) at the beginning

of the measurement, rising linearly to 397.5 µmol mol−1

Figure 8. Contour plot of the log likelihood of a source at a given

position (in meters, with +x representing east and +y representing

north) with the detectors at the height z0= 1 m, maximized over

the leak rate Q, and referenced to Q= 0. (This convention implies

that all values will be non-negative.) The maximum is in the red

region at (−124, −85). The secondary maximum near (−190, 100)

is hundreds of log-likelihood units lower, even if the region to the

left of the displayed area is considered. The structure in the figure

is aligned with the light paths shown in Fig. 1.

(781 mg m−3) at the end. Because the measurements were

taken from 13:00 to 21:00 EST (local time) on 5 Febru-

ary 2015, given the sun set at 18:02 EST it is reasonable that

the diminution of photosynthesis would lead to an increase

in the CO2 background. For the experimental data, we found

the maximum manually from the likelihood shown in Fig. 8.

We find, as shown in Figs. 8 and 9, there is a very large

peak in the log likelihood. The peak is 9537 log-likelihood

units above the value for a leak rate of 0. This allows us to

estimate that the presence of a leak at that location is roughly

e9537
≈ 104142 times more likely than the absence of a leak

considering only statistical uncertainties. We emphasize that

we did not verify the presence of this source in this prelimi-

nary study.

We find that with a measurement height of z0= 1 m, the

log-likelihood distribution is strongly affected by the exact

positions of the light paths again as illustrated in Figs. 8

and 9. Also, in Fig. 10 the likelihood is shown considering

the results of the first complete set of 54 measurements taken

with a single value for the wind. While a source is definitely

detected, the localization region is on the order of 100 times

larger than if all measurements are taken into account. Hence,

we conclude that following the wind is an effective way to

increase the sensitivity of the experiment.
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Figure 9. A close-up of the plot shown in Fig. 8. The maximum

is shown with a black dot. The colors are scaled to the minimum

and maximum in the graphed region, namely 5960 to 9535 log-

likelihood units. The light paths which cross the region are also

shown.

5 Conclusions

The challenge of carbon sequestration required the develop-

ment of a technology to ensure that sequestration sites are not

leaking substantial amounts of gas into the atmosphere. The

required measurements have certain undesirable characteris-

tics, namely the detection of a small signal against a much

larger background and the variability of that background.

Laser absorption spectroscopy, combined with the Ermak

plume model, can be used to observe relatively small isolated

sources of CO2 in the presence of variable wind. Whereas

much of the discussion of quasi-tomographic LAS obser-

vations has assumed that the measurements could be made

faster than the wind could shift, here we measure the wind

velocity and use that as part of the model. It would be diffi-

cult if not impossible for an external gas source to emulate

the shifts required by the changing wind which greatly sup-

presses the effect of these external sources.

We have made a preliminary measurement of a gas source,

giving both its position and strength. While we did not inde-

pendently verify the nature and strength of the source, we

did show that the strength of the detection was consistent

with what would be expected given the correctness of the

model and the experimental signal-to-noise value. Using ac-

tual wind data and a physically realized experimental pro-

tocol, we have found through simulation that the ability to

localize both the strength and the spatial position of the leak

is quite good.

Data availability

Experimental observations and simulated observations used

in this paper are available in the Supplement as text files

which are described in the file README.txt.
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Figure 10. Contour plot of the log likelihood with detectors at

z0= 1 m based on considering only the data acquired in the eighth

20 min period with x, y positions as in Fig. 8. These results are rep-

resentative of how well the plume parameters can be determined

with a traditional measurement. Although localization is good in

one dimension, there is an uncertainty of roughly 100 m in the other.

The estimated leak location from Fig. 8 is shown with a dot. The re-

sult is in marginal disagreement with these measurements, lying be-

tween the 95th and 99th percentile contours of given by the χ2
2

dis-

tribution divided by 2.

The Supplement related to this article is available online

at doi:10.5194/amt-9-1627-2016-supplement.
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