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Abstract. Doppler lidars are frequently operated in a mode

referred to as arc scans, wherein the lidar beam scans across

a sector with a fixed elevation angle and the resulting mea-

surements are used to derive an estimate of the nminute hor-

izontal mean wind velocity (speed and direction). Previous

studies have shown that the uncertainty in the measured wind

speed originates from turbulent wind fluctuations and de-

pends on the scan geometry (the arc span and the arc orienta-

tion). This paper is designed to provide guidance on optimal

scan geometries for two key applications in the wind energy

industry: wind turbine power performance analysis and an-

nual energy production prediction. We present a quantitative

analysis of the retrieved wind speed uncertainty derived us-

ing a theoretical model with the assumption of isotropic and

frozen turbulence, and observations from three sites that are

onshore with flat terrain, onshore with complex terrain and

offshore, respectively. The results from both the theoretical

model and observations show that the uncertainty is scaled

with the turbulence intensity such that the relative standard

error on the 10 min mean wind speed is about 30 % of the

turbulence intensity. The uncertainty in both retrieved wind

speeds and derived wind energy production estimates can be

reduced by aligning lidar beams with the dominant wind di-

rection, increasing the arc span and lowering the number of

beams per arc scan. Large arc spans should be used at sites

with high turbulence intensity and/or large wind direction

variation.

1 Introduction

Coherent Doppler lidars (hereafter called lidars) have been

used to probe a range of atmospheric boundary layer (ABL)

phenomena, including nocturnal low level jets in the Great

Plains (Banta et al., 2008), spatial variability of wind in the

marine ABL (Pichugina et al., 2012), structures of the urban

ABL (Calhoun et al., 2006; Frehlich et al., 2006) and turbu-

lent properties and flow patterns over complex terrain (Krish-

namurthy et al., 2011; Choukulkar et al., 2012). Lidars also

have applications in wind energy resource estimation and

wake characterization (Banta et al., 2013; Barthelmie et al.,

2013) due to their ability to accurately and precisely measure

flow structures both in front of and in the wake of a wind

turbine (Simley et al., 2013; Aitken et al., 2014) and spatial

variability of wind speeds over prospective wind farms (Kr-

ishnamurthy et al., 2013).

Lidar measurements usually involve operating the instru-

ment with a scan geometry to acquire radial velocities from

at least three directions and estimating wind velocity accord-

ing to the following equation:

vr(s)= dT u, (1)

where dT = [cosφ sinθ,cosφ cosθ,sinφ] and uT =

[u,v,w, ]. The radial velocity vr is the projection of the wind

velocity u on the line of sight (LOS) at the location s = sd

for which s is the distance from the lidar along the LOS and

d is the unit directional vector determined by the elevation

angle φ and the azimuth angle θ of the LOS from north.

The uncertainty or standard error of the estimated wind

velocity has great importance to wind energy applications
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and is a function of the atmospheric turbulence structure

and the specific lidar scanning geometry (Banakh et al.,

1995). Two common scanning geometries applied in wind

energy are the velocity-azimuth-display (VAD) scan and

the arc scan. VAD scans apply a full-azimuth conical scan

(i.e., θ from 0 to 360◦) with a constant elevation angle (φ)

and the wind velocity is estimated by solving Eq. (1) under

the assumption of a horizontally homogeneous wind field.

When the assumption is met VAD scans are reliable and well

understood and can meet the stringent accuracy requirement

for wind energy applications (Gottschall et al., 2012). The

arc scan involves φ being held constant and θ varied to

sample a conical sector (e.g., Henke and Clive, 2015). VAD

scans are commonly used for wind resource assessment

because in homogeneous terrain or under a constant wind

gradient the function used to derive the wind velocity should

have the smallest errors, while arc scans can potentially

have large errors if the fit is distorted by a small number

of erroneous points. However, arc scans “are less affected

by inhomogeneities in the wind field on scales of the scan

diameter than are the full circle scans” (Schwiesow et al.,

1985). Arc scans have a role, especially if heterogeneous

conditions exist, because the scan can be focused on the

region of interest. For example, a VAD scan centered at

the hub of an operating wind turbine will be affected by

inhomogeneity because of the wind turbine wake. If the

purpose of measurement is the freestream wind speed,

a smaller sector scan or arc scan upwind of the wind turbine

can be more suitable than a full conical scan. Arc scans

also have the advantage that by only sampling the area

of interest, the number of sample repetitions in a given

time can be increased, decreasing the statistical uncertainty

in solving Eq. (1). Use of arc scans adds two additional

parameters to the scanning geometry: (1) the arc span

(i.e., the width of the scan sector, 1θ ) and (2) the angle

between the center of the arc and the wind direction, which

is a measure of the orientation of the arc scan and will be

called hereafter the relative direction and denoted as β.

The selection of these parameters have implications for

the accuracy of the retrieved wind speed (Courtney et al.,

2014; Wang et al., 2015). Here we extend prior work on

optimizing scan geometry to minimize the uncertainty in the

estimated wind speeds. We present a quantitative analysis

of the dependence of the retrieved wind speed uncertainty

on scanning geometry and turbulence intensity, and provide

a tool for use in planning lidar deployments for wind

energy applications such as power performance tests. The

analysis uses both a theoretical turbulence model and real

arc scan measurements from a pulsed lidar deployed in three

different geographic locations characterized by different

surface roughness and turbulence regimes. We conclude by

demonstrating how the wind speed uncertainty from lidar

arc scan measurement is propagated to the uncertainty in

predicting annual energy production (AEP).

Table 1. Galion G4000 Doppler wind lidar specification1.

Parameter Value

Wave length 1.56 µm

Pulse energy 30 µJ

Pulse duration2 200 ns (30 m)

Range gate size 30 m

Spatial Resolution3 60 m

Aperture diameter 75 mm

Pulse repetition frequency 20 kHz

Sampling frequency 100 MHz

Dwell time 1 s

Radial velocity accuracy 0.1 ms−1

1 This specification is provided by SgurrEnergy. 2 Full

width at half maximum. 3 Spatial resolution is the sum of

the pulse duration and the range gate size (Frehlich, 1997).

2 Uncertainty in the lidar radial velocity

Uncertainties in measured radial velocities from a pulsed li-

dar (e.g., Sgurr’s Galion lidar from which measurements are

presented herein, Table 1) are well characterized (Frehlich

and Yadlowsky, 1994; Frehlich, 1997) and can be described

as follows:

vR = vR0+ e+ δ, (2)

where vR is the measured radial velocity, vR0 is the true radial

velocity in the sensing volume, δ is the bias due to systematic

errors and e is the random error which has zero mean and

variance σ 2
e . The magnitude of σ 2

e is a function of both the

signal-to-noise ratio (SNR) and the radial velocity variance

(σ 2
vr

) in the sensing volume. The true radial velocity from

a range gate is well approximated by the weighted average of

radial velocities in the sensing volume as (Frehlich, 1997):

vR0(r)=

∞∫
0

vr(s)W(r − s)ds, (3)

where r is the lidar range gate location on the LOS, and

W(r−s) is a weighting function with its peak value at s = r .

Note that we use vr to denote a radial velocity at a point lo-

cation and vR a measured (volumetrically averaged) radial

velocity.

The precision of vR is bounded by the Cramer–Rao Bound

(CRB) which is a function of SNR (Pearson and Collier,

1999). The relationship between CRB and SNR derived from

Eq. (5) in Pearson and Collier (1999), and that estimated

from radial velocity measurements using the autocorrelation

method from Frehlich (2001) are shown in Fig. 1 for the

Galion lidar. Both show that CRB decreases exponentially

with increasing SNR, and for the Galion lidar, σ 2
e has the

lower bound of 0.01 m2 s−2 when SNR>−20 dB.

The uncertainty in vR scales with turbulence intensity due

to fluctuations of both wind speed and backscattering parti-
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Figure 1. The relationship between the signal-to-noise ratio (SNR)

and the radial velocity random error variance (σ 2
e ). The gray dots

show the observed radial velocity variance approximated by the dif-

ference between the variance and the autocovariance at one time lag

of the radial velocities collected in an experiment in which the lidar

was operated with a staring mode at the US National Renewable

Energy Laboratory (Wang et al., 2015), and the observed Cramer–

Rao Bound (CRB) (filled dark circles) is approximated by the mean

of the lowest 5 % of the gray dots (Frehlich, 2001). The empirical

relationship between the SNR and the CRB is denoted by the dark

solid line and is based on Eq. (5) in Pearson and Collier (1999).

cle locations in the sensing volume can broaden the signal

spectrum and thus increase the uncertainty in vR (Banakh

et al., 1995; Frehlich, 1997). When the turbulence is suffi-

ciently strong (σvr ≥ 0.5wR where wR is the spectrum width

of lidar signal in velocity space that is ∼ 0.877 ms−1 for the

Galion lidar), the random error variance σ 2
e becomes propor-

tional to σvr . If σvr is extremely large, the spectrum width

will be such that the peak is indistinguishable from the noise

and thus the radial velocity selected by an estimator can be

any value within the velocity search space (±39 ms−1 for the

Galion lidar).

Other sources of error in vR include non-linear vertical

wind shear which can introduce a bias in radial velocity mea-

surement (Lindelöw et al., 2008), and lidar misalignment

which results in incorrect azimuth and elevation angles so the

measured radial velocity does not represent the wind field at

the intended location. For a well-secured ground-based lidar

pitch (displacement from the horizontal) and roll (i.e., “tilt”)

angles can be measured and are usually much lower than 1◦,

causing negligible errors.

The synthesis given above thus indicates that when SNR

is reasonably high, the uncertainty in vR is small (σ 2
e <

0.01 m2 s−1), and makes a much smaller contribution to the

overall uncertainty in the derived horizontal wind speed than

turbulent wind fluctuations in the sampling volume (as shown

in the next section). Hence, the uncertainty in vR will not be

considered further in calculating the uncertainty in the esti-

mated mean wind speed from arc scans.

3 Uncertainty in wind speeds derived from lidar arc

scan measurements

As in other Eulerian measurement systems (e.g., a network

of anemometers deployed on meteorological masts), a lidar

conducting arc scans measures the wind velocity by sam-

pling the wind field with a specified sampling frequency and

spatial coverage, but the lidar only measures the radial ve-

locity, and wind velocity needs to be estimated using an in-

verse method applied under certain assumptions about the

wind field. When the radial velocity has negligible errors,

the uncertainty in the estimated wind velocity is controlled

by (1) the spatial statistics of the wind field that determine

the variation of and the correlation between the samples (and

hence effective sample size, and the representativeness of the

wind field), (2) the scanning geometry that determines the

temporal and spatial resolution of the samples and (3) the

stability of the inverse method. In this section, we describe

how the uncertainty in the estimated mean horizontal wind

speed from arc scans (denoted as Vl) is related to the char-

acteristics of the wind field and the scanning geometry. The

method used follows that of Banakh et al. (1995) which was

developed to evaluate the uncertainty of wind velocities esti-

mated from VAD scans.

In a homogeneous and stationary wind field, the covari-

ance between the ith and j th radial velocities, which are

measured by a lidar at the range gates centered at r i = rid

and rj = rjd , respectively, is a function of the relative loca-

tion between these two measurements. With the assumption

of frozen turbulence, the relative location between the two

measurements is pij = r i − rj −1pij where 1pij = [(i−

j)δt]u0 is the separation distance induced by the mean wind

velocity u0 = (u0,v0,w0) during a time interval (i− j)δt .

The covariance between the two radial velocity measure-

ments (aij ) then can be written as follows:

aij (pij )=

∫ ∞∫
0

[W(si − ri)W(sj − rj )Kr(qij )]dsidsj , (4)

where qij = si − sj −1pij . The term Kr(qij ) is the covari-

ance between the point radial velocities (vr) separated by qij
that is related to the covariance matrix C(qij ) of wind veloc-

ities with the same separation distance:

Kr(qij )= dTi C(qij )dj . (5)

The entries in the covariance matrix C are the ensemble vari-

ance and covariance between three orthogonal wind compo-

nents. Note no summation is assumed over repeated indices

in Eqs. (4) and (5). Let A denote the covariance matrix for

all measured radial velocities within a 10 min period. The
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Figure 2. An example of the spatial distribution of air parcels

sampled in two consecutive arc scans by a lidar at range distance

s = 315 m for four different wind directions (westerly, easterly,

northerly, and easterly) under the following assumptions: (1) frozen

turbulence, (2) the lidar is located at the origin (the dark triangle)

scanning from θ = 75 to 105◦ with 5◦ increments with elevation

angle φ = 17◦, (3) the mean wind speed is 7 ms−1 and (4) the sam-

pling interval is 3 s.

entry of A at ith row and j th column is defined by Eq. (4).

For a given scanning geometry, Eqs. (4) and (5) show that,

apart from the atmospheric turbulence structure, the statis-

tics of the measured radial velocities are controlled by the

mean wind field because the separation distance 1pij or

1qij varies with the mean wind speed and direction (as il-

lustrated in Fig. 2). When the relative direction of the lidar

beam β = 0◦/180◦ (westerly/easterly in Fig. 2), the samples

are located in a rectangular area swept by the wind over the

arc. When β =±90◦, the samples are from a line aligned

with the arc. If the scan direction is the same as the wind (i.e.,

β =+90◦), the samples from one arc scan are clustered and

almost from the same location (northerly in Fig. 2). When

β =−90◦, the locations sampled by one arc are more spa-

tially extended (southerly in Fig. 2).

The uncertainty in the wind velocity estimated from arc

scans can be derived from the covariance matrix A of the

measured radial velocities. Assuming a horizontally homo-

geneous wind field with zero mean vertical wind speed (i.e.,

w0 = 0), the solution of the ordinary least squares (Vl) based

on Eq. (1) is the estimate of horizontal wind velocity (Wang

et al., 2015):

V l =GvR, (6)

where G= (DTD)−1DT and vR is a vector including N

radial velocities measured in, for example, 10 min. The

matrix D is a N × 2 matrix with its ith row given by

[cosφ sinθi,cosφ cosθi]. The estimated wind velocity V l

comprises horizontal components, V l = (ul,vl). The uncer-

tainty in V l is characterized by its covariance matrix (Cl)

given by

Cl =GAGT, (7)

assuming zero random error for radial velocity (Wang et al.,

2015). The variance of the random error σ 2
e is ∼ 0.01 m2 s−2

(see Sect. 2) which is much smaller than the diagonal terms

of A (> 0.1 m2 s−2 given wind speed > 4 ms−1 and turbu-

lence intensity ≈ 10 %); therefore, it can be neglected. For

most applications, the desired output from arc scans is the

horizontal wind speed (Vl) that is estimated as

Vl =

√
u2

l + v
2
l . (8)

The uncertainty in Vl as quantified by the standard error (σl)

can be approximated as (Lyons, 1991):

σl =

[
(ulσlu)

2
+ (vlσlv)

2
+ 2(ρuvσluσlv)(ulvl)

]0.5

/Vl, (9)

where σ 2
lu and σ 2

lv represent the variance of ul and vl and can

be found from the diagonal of Cl, respectively. The term ρuv
in Eq. (9) is the correlation between ul and vl, and ρuvσluσlv

is the covariance that is given by the only non-diagonal term

in Cl. The value of σl can be estimated from the observational

data using Eq. (7) with the diagonal terms in A being approx-

imated by vR variance derived from measurements and the

off-diagonal terms being zero (i.e., assuming no correlation

between the measured radial velocities) (Wang et al., 2015).

4 Uncertainty computed from an isotropic turbulence

model

Following the background presented in Sect. 3 above, the un-

certainty in a 10 min mean wind speed estimated from lidar

arc scans is analyzed as a function of (1) turbulence inten-

sity, (2) mean wind speed and direction, and (3) scanning

geometry using an isotropic turbulence model. For isotropic

turbulence the covariance of the measured radial velocities

in Eq. (4) can be calculated as follows: the entry at the lth

row and kth column (l, k = 1, 2, 3) of the covariance matrix

C(q) in Eq. (5) is given by the following equation (Monin

and Yaglom, 1965)

clk(q)= cu(q)δlk +
1

2
q

dcu

dq

(
δlk−

qlqk

q2

)
, (10)

where q = |q|, q1, q2 and q3 are the separation distances

in the streamwise, transverse and vertical directions, respec-

tively, and δlk is the Kronecker delta. The streamwise wind

component spatial covariance function cu(q) can be approx-

imated by the exponential decay function

cu(q)= σ
2
u exp

(
−
q

Lu

)
, (11)
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where σ 2
u is the streamwise velocity variance, and Lu is

the turbulence integral length scale which can be calculated

from turbulence intensity (TI= σu/V0) in a neutrally strat-

ified atmospheric boundary layer (see Appendix A). Note

that Eq. (11) misrepresents properties of turbulence of small

scales and thus is not consistent with the von Kármán model

used to calculate Lu in Appendix A, but it has similar accu-

racy to the von Kármán model in predicting the uncertainty

of wind speed from conical scans (Banakh et al., 1995). Thus,

Eq. (11) is used here for its simplicity and effectiveness. For

a given wind speed and direction, the separation distance

vector q can be calculated from φ, δθ and r , and the point

radial velocity covariance defined in Eq. (5) can be derived

from Eqs. (10) and (11). Then the covariance of the measured

radial velocities can be calculated by defining a weighting

function in Eq. (4). In this analysis the weighting function is

approximated by a triangular weighting function defined as

W(r − s)=max

[
0,

2

1R

(
1−

2

1R
|r − s|

)]
, (12)

where 1R is the spatial extent of vR along the LOS, which

is a function of the lidar pulse length and hence the illumi-

nated volume at the time of measurement. For the Galion

1R = 60 m according to Frehlich (1997) and the lidar pa-

rameters in Table 1. The radial velocity covariance matrix A

in Eq. (7) is calculated for N measured radial velocities and

used in Eq. (9) for calculation of the associated uncertainty

in Vl which is presented here as the relative standard error

(abbreviated as lidar RSE and denoted by εl) defined as the

ratio of the standard error of the estimated mean horizontal

wind speed (σl) to the true mean horizontal wind speed (V0):

εl =
σl

V0

. (13)

The magnitude of εl is a function of TI, mean wind speed and

direction. Note that εl is inversely proportional to 1R/Lu
which determines the amount of averaging taken for vR (see

Eq. 3). For a given Lu, a larger 1R implies an average over

a bigger area, and therefore less variation in the measured

radial velocity and less uncertainty in the estimated wind ve-

locity. Because Lu is defined as a function of TI and height

(see Appendix A) and only one lidar with a constant 1R is

investigated here, the dependence of εl on1R/Lu is not con-

sidered hereafter.

The relative importance of these functional dependencies

and relevance to wind energy applications can be demon-

strated using an example in which a lidar is used for a power

performance test of a turbine. This type of test is undertaken

to determine if the turbine is operating according to the spec-

ified power curve (i.e., production of electricity as a func-

tion of the inflow wind speed) and thus it involves mea-

surements of the incident flow into the turbine rotor (Wag-

ner et al., 2011). When lidars are used for this purpose they

are typically deployed to measure with arc scans at the hub
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Figure 3. Dependence of the relative standard error (εl) of wind

speed estimated from arc scans on (a) turbulence intensity (TI) and

(b) wind speed (V0) and direction (expressed as the relative direc-

tion (β)) based on the isotropic turbulence model given in Eq. (10)

for the following scan geometry: φ = 16.7◦, 1θ = 30◦, δθ = 6◦

and r = 313 m. The Coriolis parameter f0 = 0.0001 s−1.

height 2–4 rotor diameters in front of the wind turbine (IEC,

2005). Assuming that the hub height is 90 m, the rotor di-

ameter is 90 m, and the lidar placed at the base of the tur-

bine is operated with a fixed elevation angle of 16.7◦ to mea-

sure wind velocities 3 rotor diameters in front of the turbine

at hub height (i.e., r = 313 m). The arc scan is defined us-

ing a span of 1θ comprising Mθ azimuth angles. It takes

δt s to finish one measurement at one azimuth angle and

move δθ to the next azimuth angle, so the sampling inter-

vals are δt in time and δθ in space. As a result, one arc

scan takes Mθδt s and the total number of arc scans con-

ducted in 10 min is M10 = 600/Mθδt . For the power per-

formance test scenario described above typical parameters

would be: δt = 3 s, 1θ = 30◦ and δθ = 6◦. For reasonable

values of TI and V0, using the isotropic turbulence model and

the definition of the dominant length scaleLu in Appendix A,

RSE (εl) shows strongest dependence on TI (Fig. 3a), and

increases from about 1.5 % for V0 = 7–9 ms−1 at TI= 5 %

(a low turbulence environment such as might be experienced

offshore) to 6–9 % for TI> 20 % (i.e., a high turbulence en-

www.atmos-meas-tech.net/9/1653/2016/ Atmos. Meas. Tech., 9, 1653–1669, 2016
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vironment). RSE also increases with increasing wind speed

through its relationship with the variance. The RSE (εl) for

TI= 12 %, for a range of wind speed (V0) and relative di-

rection (β) from −180 to 180◦, indicates that under the as-

sumption of isotropic turbulence εl varies with β but the

variation is no more than ±2 % for the range of conditions

shown in Fig. 3b. The relationships shown in Fig. 3b are

expected because the sample locations and resulting spatial

correlations between the samples are determined by wind

speed and direction (see Fig. 2). RSE reaches its minimum

at β = 0 and 180◦ and exhibits the lowest dependence on

wind speed. The maximum εl occurs at β =±45 and ±135◦

and exhibits a much stronger dependence on wind speed.

When β =±90◦, εl reaches local minima and has a rela-

tively large difference between β =−90◦ and β =+90◦ be-

cause of the different spatial distribution and thus spatial cor-

relation of samples between β =−90◦ and β =+90◦ (see

Fig. 2). The effect of scanning geometry on εl is such that

εl decreases with increasing arc span (1θ ) and decreasing

beam number (or azimuth angles) per arc scan (Fig. 4). En-

larging 1θ increases the spatial coverage, and lowering the

number of beams per arc scan increases the separation dis-

tance between samples, both of which reduce the correlation

between samples and consequently the uncertainty in the es-

timated horizontal mean wind speed. Additionally, when 1θ

increases and beam number decreases, the condition num-

ber of the matrix G in Eq. (6) decreases and, as a result, the

uncertainty introduced by the inverse method (least squares

method) decreases (Wang et al., 2015). The effect of scan-

ning geometry on εl naturally exhibits a dependence on the

relative direction (β). When the wind direction is parallel

to the beams (β = 0◦), εl is weakly dependent on both arc

span and beam number (Fig. 4a). For example, with a fixed

beam number, εl decreases by only 0.4 % when increasing

1θ from 30 to 120◦. When β =±45◦, εl is less sensitive to

beam number than arc span (Fig. 4b). When β =±90◦, εl is

more sensitive to beam number than arc span (Fig. 4c and d).

Sensitivity is highest when β =+90◦ and 1θ < 60◦. When

β =+90◦, there is a band of local minima with εl < 4 %

starting at 1θ = 30◦ and beam number 8. The beam num-

bers and the arc spans associated with those minima are such

that the distance between two adjacent azimuth angles is

equal to the distance that wind travels when the lidar changes

from one azimuth angle to the next one. In other words, un-

der the frozen turbulence assumption the lidar samples the

same location repetitively, causing the uncertainty to reduce.

The uncertainty in wind speed derived from arc scans natu-

rally causes uncertainty in determining the wind speed cor-

responding to a power output and consequently uncertainty

in the measured power curve. If the power coefficient of the

wind turbine is invariant with wind speed, the uncertainty in

the measured power curve is 3εl (because wind power is pro-

portional to the cube of wind speed). Hence, neglecting other

sources of uncertainty and error in wind turbine power per-

formance test, such as shear across the swept area (Wagner
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Figure 4. Dependence of relative standard error (εl) of wind speed

(V0) on arc span (1θ ) and beam number per arc scan for relative

directions (a) β = 0◦, (b) β =+45◦, (c) β =+90◦, and (d) β =

−90◦ with φ = 16.7◦ and r = 313 m. The results are calculated for

V0 = 7 ms−1 and TI= 12 % over a 10 min period. The Coriolis pa-

rameter f0 = 0.0001 s−1. The contour interval is 0.2 %.

et al., 2011), the analyses presented above imply that if the

lidar beam is well aligned with the incoming “free stream”,

the uncertainty in the measured power curve derived from the

wind speed measurement by lidar for this example turbine

and wind speeds of 7–9 ms−1 is about ±4 % for a site with

low turbulence intensity (TI= 5 %) and ±20 % for a high

turbulence intensity environment (TI= 20 %). Though these

values of uncertainty resulting from lidar arc scans are simi-

lar to the uncertainties in the power curve measured with cup

anemometers with the same turbulence characteristics (Wyn-

gaard, 2010), using lidar arc scans can eliminate the uncer-

tainty of cup anemometer measurements caused by meteo-

rological mast flow distortion, which has a typical value of

±1 % in wind speed and therefore±3 % in wind power (IEC,

2005).

5 Observed arc scan uncertainty

The theoretical uncertainty from the isotropic turbulence

model presented in the previous section is a useful tool for

decomposing the uncertainty by source, and potentially to

aid in planning lidar scan geometries prior to on-site de-

ployment. It is used here to contextualize empirical analy-

ses of the uncertainty on the mean wind velocity, turbulence

statistics and scanning geometry using observational data de-

rived from arc scans at three sites. Site names are not re-

vealed because of confidentiality, but the site characteristics
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Figure 5. Plan views of the scanning geometries used at (a) Site A,

(b) Site B and (c) Site C. The dark squares indicate the lidar lo-

cations, and the hatched areas indicate the wind direction sectors

without flow distortions. Locations of meteorological masts are de-

noted by the solid gray circles. The elevation angle (φ) and the arc

span (1θ ) used at each of the sites are also given.

are provided below and the scan geometries are summarized

in Fig. 5. In all cases the analysis is based on the estimated

10 min horizontal mean wind speed (Vl) from the Galion

measurements as derived using the ordinary least squares

method. The RSE of Vl will be evaluated through the relative

difference (ed) between Vl and the measurement (Vc) from

cup anemometers installed on nearby meteorological masts

(in compliance with the standard, IEC, 2005):

ed =
Vl−Vc

Vc

. (14)

Periods with Vc < 4 ms−1 or lidar SNR<−20dB are ex-

cluded from the analysis. To quantify the measurement un-

certainty, the observed RSE (ε̂d) is defined as the standard

deviation of ed binned by wind direction or turbulence inten-

sity, and the 95 % confidence interval, CI95, of ε̂d is estimated

by (Ahn and Fessler, 2003):

CI95 = ε̂d± 1.96ε̂d/
√

2(n− 1), (15)

where n is the number of samples in a bin. Note that this

definition means that only the spread of values is evaluated

and bias is not considered.

The value of ε̂d has contributions from random errors re-

lated to both instrument and turbulence. The lidar instrument

errors are not considered; hence, the expected RSE (εd) based

on the relative difference between lidar and cup anemometer

measurements has the following definition:

ε2
d = ε

2
l + ε

2
c − 2ρlcεlεc+ ε

2
cup. (16)

Table 2. Uncertainty classification of the cup anemometers used at

the three sites.

Site Cup Anemometer IEC Class1 Class Number

Site A NRG 40C A 2.402

Site B Vector L100 A 1.802

Site C WindSensor P2546A B 3.713

1 Class A is for sites with flat terrain and Class B is for sites with complex terrain

(IEC, 2005). 2 Pedersen et al. (2006). 3 Cup anemometer manufacturer.

Terms on the right hand side (RHS) of Eq. (16) represent

sources of errors and will be estimated as follows in order to

differentiate the lidar RSE from the difference between lidar

and cup anemometer measurements:

– εl is the lidar RSE due to turbulence defined in Eq. (13)

that can be estimated with the isotropic turbulence

model.

– εc is the cup RSE due to turbulence, which is a func-

tion of the integral time scale and the sampling dura-

tion (Lenschow et al., 1994). Equation (13) in Lenschow

et al. (1994) will be used to estimate εc by assuming

that the streamwise velocity autocorrelation decays ex-

ponentially. The integral time scale is derived from the

integral length scale (Lu) in Eq. (A12) and the observed

mean wind speed. The sampling duration is 10 min.

– ρlc is the correlation between the turbulence-related er-

rors of lidar and cup anemometers that depends on the

spatial structure of turbulence and the distance between

cup and lidar measurement locations. Estimating ρlc is

difficult because lidar measures a volume and cup mea-

sures a point (or a line assuming frozen turbulence). A

simple approximation is used here to estimate ρlc. The

separation distance is the distance between the center of

an arc and the cup location which are 150 m for both

Site A and Site B and 120 m for Site C. The correlation

decays exponentially with the same integral length scale

that is used to estimate εl and εc at each site.

– εcup is the instrument error that can be found from the

following equation:

εcup =

(
k
√

3

)
·

(
0.05ms−1

V0

+ 0.005

)
, (17)

where k is the cup anemometer class number that rep-

resents the maximum relative error of a cup anemome-

ter in turbulent wind fields (IEC, 2005; Pedersen et al.,

2006). The k values for cup anemometers used at the

three sites are listed in Table 2.
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Figure 6. Variation of the standard error (RSE) with the relative direction (β) at Site A at 80 m height in (a, c, e) and 60 m height in (b, d,

f). The RSE is given in (e, f) for the 95 % confidence interval of the observed difference between the cup and lidar measurements (ε̂d), the

predicted difference between the cup and lidar measurements (εd), the predicted cup error (εc), and the predicted lidar error (εl). The input

for the RSE predictions include the mean wind speeds (V0) shown in (c, d) and the mean wind speed variance (σ 2
u ) shown in (a, b) for 80 m

height and 60 m height, respectively.

5.1 Site A

Site A is a wind farm on a flat barren land, approximately

20 km from a coastline and at latitude 27◦ N. The Galion lidar

was operated for 20 days with arc scans centered at θ = 150◦

with 1θ = 120◦, δθ = 30◦ and φ = 18.32◦ (Fig. 5a). Wind

speeds estimated from arc scan measurements at range gate

6 and 8 are evaluated against the concurrent data from cup

anemometers installed on booms aligned southwest (227◦)

at 60 m height and 80 m height on a meteorological mast east

of the lidar, respectively (Fig. 5a). Because of flow distor-

tions from the wind turbines and the meteorological mast,

the uncertainty evaluation is conducted only in the wind di-

rection sector 90–165◦ (based on the wind vane measurement

at 77 m on the meteorological mast), resulting in 952 and 775

measurements of 10 minute mean wind speeds at 80 and 60 m

height, respectively, and 100 % recovery rate at both heights.

The observed RSE of relative difference (ε̂d) is calculated

for 10◦ bins of β with Vc between 4 and 16 ms−1, and all

terms on the RHS of Eq. (16) are estimated using the mean

and variance of wind speed in each bin. The cup (εc) and

lidar (εl) RSE show similar dependence on the relative di-

rection (Fig. 6), which is solely the result of variation of the

mean and variance of wind speed with the relative direction.

The directional dependence of arc scan RSE mentioned in

Sect. 4 should be negligible because of the large arc span ap-

plied here. The fact that εl < εc in all direction bins (Fig. 6)

supports the advantage of using large 1θ for arc scans. A

large 1θ allows averaging over a large area, reducing the

random error of mean wind speed. The expected RSE (εd),

which combines both εl and εc based on Eq. (16), agrees

well with the observed RSE (ε̂d) except for some overestima-

tion when β <−20◦ at 80 m height (Fig. 6). The consistency

between ε̂d and εd at Site A indicates that turbulent wind

fluctuations are the main source of uncertainty and those as-

sumptions made in applying the isotropic turbulence model

are largely realized.

5.2 Site B

Site B is an offshore wind farm at latitude 54.0◦ N at which

the Galion lidar made arc scans for three months cen-

tered at θ = 323.25◦ with1θ = 30◦, δθ = 6◦ and φ = 5.75◦.

Wind speeds retrieved from range gate 25 are evaluated

against concurrent cup anemometer measurements collected

on a boom oriented at 135◦ at 90 m on the meteorologi-

cal mast north-northwest of the lidar (Fig. 5b). Observa-
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Figure 7. Variation of the standard error (RSE) with the relative direction (β) at Site B for the wind speed bin 8–12 ms−1 in (a, c, e) and

the wind speed bin 12–16 ms−1 in (b, d, f). The RSE is given in (e, f) for the 95 % confidence interval of the observed difference between

the cup and lidar measurements (ε̂d), the predicted difference between the cup and lidar measurements (εd), the predicted cup error (εc), and

the predicted lidar error (εl). The input for the RSE predictions include the mean wind speeds (V0) shown in (c, d) and the mean wind speed

variance (σ 2
u ) shown in (a, b) for the wind speed bin 8–12 and 12–16 ms−1, respectively.

tions within a wind direction sector 185–270◦ (2954 mea-

surements of 10 min mean wind speeds with 97 % data re-

covery rate) are used for analysis because of flow distortion

from the wind turbines and the meteorological mast in the

other sectors.

Data are stratified into two wind speed bins 8–12 and 12–

16 ms−1 (based on Vc), and are sampled in 10◦ bins of β. In

general there is a good agreement between the observed (ε̂d)

and expected (εd) RSE (Fig. 7). Due to the small arc span

applied at Site B, εl has higher dependence than εc on the

relative direction (β), and εl > εd (Fig. 7). It seems that ε̂d

follows εl when β changes, while εc has little variation with

β (Fig. 7). The high ε̂d when β >−70◦ is likely caused by

the high values of εl, although there could be other contribu-

tors such as wind turbine wakes and low sample size.

5.3 Site C

Site C is a wind farm located at latitude 38.1◦ N in relatively

complex terrain. Arc scans were performed over 25 days cen-

tered at θ = 270◦ with 1θ = 60◦, δθ = 10◦ and φ = 18.05◦

(Fig. 5c). Wind speeds retrieved from range gate 8 are evalu-

ated against measurements from a cup anemometer deployed

on a boom oriented to 247.5◦ at 80 m on the meteorological

mast southwest of the lidar (Fig. 5c). There is no flow distor-

tion in the wind direction sector 205–290◦. However, because

of orographic channeling, 95 % of observations are associ-

ated with wind directions between 260 and 290◦. Thus, this

sector, which contains 2167 measurements of 10 min mean

wind speed (93 % data recovery rate), is chosen for the un-

certainty analysis.

Both observed (ε̂d) and expected (εd) RSE for 2◦ bins of

β and wind speed between 6 and 14 ms−1 indicate a depen-

dence on wind direction which derives largely from the di-

rectional variability of the mean and variance of wind speed

(Fig. 8). ε̂d increases from 2 % for β ∼−10◦ to nearly 4 %

at β ∼+12◦ in large part due to the decrease in mean wind

speed (from 11 to ∼ 9 ms−1) and increase in variance (from

< 0.6 to nearly 1 m2 s−2). Though the agreement between ε̂d

and εd is good, both εl and εc are much lower than ε̂d. It is the

instrument error of cup (εcup) that contributes the most to the

difference between the lidar and cup measurements. The val-

ues of εl and εc are very close. Note that εl and εc should be

lower than the actual values because non-homogeneous hor-

izontal wind fields and non-zero vertical wind speeds over

complex terrain violate assumptions in the theoretical mod-

els (Bingöl et al., 2009).
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Figure 8. Variation of the standard error (RSE) with the relative

direction (β) at Site C at 80 m height. The RSE is given in (c) for

the 95 % confidence interval of the observed difference between the

cup and lidar measurements (ε̂d), the predicted difference between

the cup and lidar measurements (εd), the predicted cup error (εc),

and the predicted lidar error (εl). The input for the RSE predictions

include the mean wind speeds (V0) shown in (b) and the mean wind

speed variance (σ 2
u ) shown in (a).

6 Discussion

The isotropic turbulence model is not a true representation

of the turbulent wind field in the atmosphere. The three wind

components rarely have equal variance and the same turbu-

lence integral length scale. Further, the exponential decay

function is only an approximation of the turbulence autocor-

relation function. Nevertheless, the analyses presented above

indicate that when properly constrained, the isotropic turbu-

lence model reproduces the uncertainty in wind speed esti-

mated from arc scans with different scanning geometries at

different sites, and the predicted relationship between RSE

and turbulence intensity is also consistent with the observed

relationship (Fig. 9). The effect of the arc span on the uncer-

tainty of wind speed estimated from arc scans as presented

based on the theoretical approach can also be verified by ob-

servations after they have been normalized to remove the ef-

fect of sample number, turbulence intensity and wind speed

on the uncertainty to allow comparison across the sites. Thus

the relative errors (ed) are scaled using (Wyngaard, 2010):

edN =
ed

S1 · S2 · S3

, (18)


    

















d

Figure 9. The relationship between the RSE of the relative differ-

ence between lidar and cup measurements (εd) and the turbulence

intensity (TI) at the three sites. The 95 % confidence interval for

each observed RSE (ε̂d) is denoted by the marker size. The solid

lines with matching colors are the predicted relationships at the

sites. Prediction at Site A uses wind speed 8 ms−1 and wind direc-

tion 150◦, at Site B wind speed 10 ms−1 and wind direction 323◦,

and at Site C wind speed 10 ms−1 and wind direction 270◦. Values

of εd here are derived from the cup errors related to the turbulence

(εc) and instrument (εcup), and the predicted lidar RSE (εl) accord-

ing to Eq. (16) and Table 2.

where

– S1 = (M10)
−1/2 represents the relationship between the

uncertainty and the sample number M10 used to derive

the mean horizontal wind speed.

– S2 =TI accounts for the fact that the uncertainty scales

with turbulence intensity.

– S3 = V0 ·Lu/600s represents the spatial coverage of

a measurement over 600 s (10 min) relative to the tur-

bulence integral length scale.

The standard deviations of the errors, when edN is rescaled

back to ed with V0 = 9 ms−1, TI= 12 % (Lu = 209 m ac-

cording to Appendix A) and M10 = 40 using Eq. (18), are

2.0, 2.0 and 6.8 % after being corrected for εc and εcup ac-

cording to Eq. (16) for Site A, Site C and Site B, respectively.

In other words, the uncertainty increases when1θ decreases

from 120◦ at Site A to 30◦ at Site B, which is consistent

with the predicted relationship between 1θ and RSE given

in Fig. 4. This implies that the approach presented in Sects. 3

and 4 may be of great use for lidar scan geometry optimiza-

tion for a given site. Note that the effect of β has not been

removed in the rescaling because an overlapping bin of β

with a sufficient sample number cannot be found at the three

sites; therefore, the rescaling may change if β is considered.
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Figure 10. The relative standard error (RSE) in annual energy production (AEP) arising from arc scan velocity retrieval uncertainty as

a function of turbulence intensity (TI) and surface roughness length (z0), assuming that wind speed follows a Rayleigh distribution with

a mean of 7 ms−1, and wind direction follows the von Mises distributions with a mean of 90◦ and standard deviations (SDdir) of 57.3◦

in (a) and 9.1◦ in (b). Four arc spans and a full azimuth conical scan (see the legend) are used for AEP prediction with six beams, φ = 15◦

and r = 315 m. The normalized AEP RSE, which is the ratio of predicted AEP RSE from arc scans to that from the conical scan, is shown

in(c) for SDdir = 57.3◦ and in (d) for SDdir = 9.1◦.

7 Implications for applications in wind energy

If wind speed measurements deriving from arc scans of a li-

dar are used to predict annual energy production (AEP) at

a given site, naturally, the uncertainty in wind speeds will

propagate into AEP prediction and contribute to the uncer-

tainty in wind resource assessment. The annual AEP is pre-

dicted as follows:

Ey =

J∑
j=1

I∑
i=1

(TyFV,iFD,j )Pi, (19)

where FV,i and FD,j are the probabilities of the ith wind

speed bin and j th wind direction bin, respectively, Pi is the

power production of a wind turbine at wind speed Vi , and

Ty is the total hours in a year. Assuming statistical indepen-

dence between lidar measurements, the contribution of the

arc scan measurement uncertainty to the uncertainty of Ey is

quantified by the standard error (σy) defined as follows (IEC

2005):

σ 2
y =

J∑
j=1

I∑
i=1

(TyFV,iFD,j )c
2
i σ

2
l,ij , (20)

where σl,ij is the lidar measurement standard error (see

Eq. 9) for the ith wind speed bin and j th direction bin, and

ci is the sensitivity factor determined by

ci =

∣∣∣∣Pi −Pi−1

Vi −Vi−1

∣∣∣∣ . (21)

A scenario analysis of the resulting uncertainty in AEP

prediction is commenced under the following assumptions:

(1) the wind speed follows a Rayleigh distribution with

a mean of 7 ms−1, (2) the wind direction follows a von Mises

distribution with a mean of 90◦ (see Appendix B for the prob-

ability density functions), (3) arc scans centered at θ = 90◦

with 6 beams, and φ = 15◦, and (4) the hub-height is 80 m.

Turbulence intensity and turbulence integral length scale are

estimated from surface roughness length using Eqs. (A3)

and (A12) in Appendix A, respectively.

The uncertainty in AEP prediction calculated using

Eq. (20) and a power curve from a commercial wind tur-

bine is shown in Fig. 10 for different arc spans, wind direc-

tion distributions, and surface roughness length values. Be-

cause of the large number of samples used for AEP predic-

tion (Ty = 8760), the AEP RSE defined as σy/Ey is very low

(0.05–0.2 %). The uncertainty in AEP increases linearly with
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TI (and hence z0) and decreases with increasing arc span,

but is not sensitive to the wind direction variation. The nor-

malized AEP RSE, which is the ratio of the AEP RSE of

arc scans to that of 6-beam conical scans (or 1θ = 360◦),

has the highest value of about 1.4 for 1θ = 30◦ (Fig. 10c

and d). Note the uncertainty of conical scans is the minimum

value of uncertainty that arc scans can achieve (as a result of

1θ→ 360◦).

8 Conclusions

Wind speeds measured by lidars are subject to uncertainties

that originate from prevailing atmospheric conditions, lidar

scanning geometry and wind velocity retrieval method. The

analyses presented herein assume horizontal homogeneity

and zero mean vertical speed, and thus neglect their roles in

dictating optimal lidar operation. The effects of atmospheric

turbulence properties and scanning geometry on the uncer-

tainty in the wind speed estimated from lidar arc scans are in-

vestigated with both theoretical predictions and actual obser-

vations. The theoretical predictions are based on the frozen

turbulence hypothesis and an isotropic turbulence model, and

the actual observations include arc scan measurements from

different scanning geometries both onshore and offshore.

The predictions and the observations are consistent, and may

be summarized as follows.

– The uncertainty can be scaled with the turbulence inten-

sity.

– The lowest uncertainty can be achieved by aligning the

line of sight with the wind direction. The highest un-

certainty occurs when the wind direction is 45◦ relative

to the line of sight. There is a local minimum of un-

certainty when the line of sight at the center of arc is

orthogonal to the wind direction. However, it should be

noted that radial velocities measured from orthogonal

scans are zero.

– The uncertainty can generally be reduced by increasing

arc span and decreasing beam number, although a min-

imum number of beams is required to characterize the

wind velocity. The reduction is most significant when

the relative angle between wind direction and line of

sight is 45◦. If the relative angle is close to zero, ad-

justing scan geometry will not change the uncertainty

significantly. With orthogonal scans, the uncertainty is

more sensitive to beam number than arc span.

– When arc scans are used for wind resource assessment,

the uncertainty in annual energy production prediction

arising from uncertainty in arc scan velocity retrieval

is negligible. The uncertainty decreases with decreasing

surface roughness and turbulence intensity, and increas-

ing arc span.

The uncertainty estimation approach developed in this pa-

per on the basis of the isotropic turbulence model, though

is subject to limits and caveats, is able to predict the effect

of wind velocity, turbulence intensity and scan geometry on

the arc scan uncertainty at the three sites presented herein.

Thus, this approach, although it needs to be further validated

by more measurements, may have great utility for a priori

optimization of lidar scan geometries for a given site.

Atmos. Meas. Tech., 9, 1653–1669, 2016 www.atmos-meas-tech.net/9/1653/2016/



H. Wang et al.: Lidar arc scan uncertainty reduction through scanning geometry optimization 1665

Appendix A: Atmospheric boundary layer turbulence

characteristics

In the neutrally stratified surface layer of the atmospheric

boundary layer (ABL), the vertical profile of horizontal wind

speed is given by the logarithmic wind profile (Stull, 1988):

V0(z)=
u∗

κ
ln

(
z

z0

)
, (A1)

where u∗ is surface friction velocity, z0 is surface roughness

length, κ = 0.4 is the von Kármán constant and z is height

above the ground. The standard deviation of the horizontal

wind speed (σu) normalized by the friction velocity is a con-

stant; that is,

σu

u∗
= cn, (A2)

where constant cn = 2.5 (Stull, 1988). Hence, according to

Eqs. (A1) and (A2), turbulence intensity, defined as TI=

σu/V0 can be estimated using the following equation:

TI=
cnκ

ln(z/z0)
. (A3)

The turbulence integral length scale is defined as

Lu =
1

σ 2
u

+∞∫
0

cu(p)dp, (A4)

where cu is the spatial covariance function of streamwise

velocity. Based on the von Kármán model and the Kol-

mogorov’s 5/3 law, for turbulence with high wave numbers

(e.g., turbulence in the inertial subrange), Lu in the atmo-

spheric surface layer (Lus) is defined as

Lus = c1

σ 3
u

εT

, (A5)

where c1 = 0.7 (Banakh et al., 1995; Frehlich and Cornman,

2002). The turbulence kinetic energy dissipation rate (εT) is

related to the dimensionless dissipation rate (φε) via the fol-

lowing equation:

εT =
φεu

3
∗

κz
. (A6)

For a neutrally stratified atmosphere φε = 1 (Panofsky and

Dutton, 1984). Thus, combining Eqs. (A2), (A5) and (A6)

yields a linear relationship between the turbulence integral

length scale and height in the neutrally stratified surface

layer:

Lus = c1c
3
nκz. (A7)

The actual turbulence integral length scale in the ABL is con-

strained by the ABL height (zi) and the following equation

can be used to account for the effect of zi on Lu:

Lu(z)=
Lus(z)

1+ c2
Lus(z)
zi

, (A8)

where c2 = 2.5 (Blackadar, 1962; Banakh et al., 1995). The

height of the neutrally stratified ABL can be determined us-

ing the following equation:

zi = cz
u∗

f0

, (A9)

where the coefficient cz = 0.07–0.3 in the literature (Seibert

et al., 2000) and we use cz = 0.3 in this paper. The term f0

is the Coriolis parameter and defined as

f0 = 2�sinφL, (A10)

where φL is the latitude and �= 7.292× 10−5 rad s−1 is

the angular speed of the Earth. Combing Eqs. (A2), (A7)

and (A8) yields the following formula:

Lu =
c1c

3
nκz

1+
κc1c2c

4
n

cz

f0z
σu

. (A11)

Using the values assigned to these empirical coefficients,

Lu can be calculated using the following equation:

Lu =
4.375zσu

σu+ 91.146f0z
. (A12)

Appendix B: Wind speed and direction probability

distributions

The wind speed distribution can be modeled using the

Rayleigh distribution with the following probability density

function (Forbes et al., 2011):

fV(V )=
2V

A2
exp

[
−

(
V

A

)2
]
, (B1)

where A is the scale factor.

The wind direction distribution can be modeled by the

von Mises distribution with the following probability density

function (Forbes et al., 2011):

fD(D)=
exp[bcos(D−D)]

2πI0(b)
, (B2)

where D ∈ [0,2π ] is wind direction, D is the mean wind

direction, b is the concentration parameter, and I0(·) is the

modified Bessel function of the first kind of order zero. The

circular standard deviation (σ 2
D) of the wind direction is then

defined as

σ 2
D = 1− I1(b)/I0(b), (B3)

where I1(·) is the modified Bessel function of the first kind

of order one.
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Appendix C

Table C1. Nomenclature.

A Covariance matrix of the measured radial velocities [m2 s−2]

A Rayleigh distribution scale factor [ms−1]

C Wind velocity covariance matrix [m2 s−2]

Cl Covariance matrix of the estimated horizontal wind vector [m2 s−2]

CI95 95 % confidence interval

D Wind direction [◦]

D A N × 2 matrix with its ith row given by [cosφ sinθi cosφ cosθi ]

D Annual mean wind direction [◦]

Ey Annual energy production [J]

FD Wind direction probability

FV Wind speed probability

G A 2 ×N matrix defined as (DTD)−1DT

I Identity matrix

Ik Bessel function of the first kind of order k

Kr Covariance between two point radial velocities [m2 s−2]

Lu Turbulence integral length scale in the atmospheric boundary layer [m]

Lus Turbulence integral length scale in the surface layer [m]

M10 Number of arc scans over a 10 min period

Mθ Number of azimuth angles per arc scan

N Number of radial velocities measured over a 10 min period

P Wind turbine power production [W]

Ty Total hours in a year

V l Estimated mean horizontal wind velocity vector from arc scans [ms−1]

V0 Horizontal mean wind speed [ms−1]

Vl Estimated horizontal mean wind speed from arc scans [ms−1]

Vc Horizontal mean wind speed from cup anemometers [ms−1]

W Lidar weighting function

a Covariance between two measured radial velocities [m2 s−2]

b von Mises distribution concentration parameter

c Wind power sensitivity factor due to wind speed uncertainty [kgms−2]

clk An entry of C [m2 s−2]

cu Spatial covariance of the streamwise wind component [m2 s−2]

d Unit directional vector of the line-of-sight of lidar

e Radial velocity measurement random error [ms−1]

ed Relative difference between lidar and cup anemometer measurements

erd Normalized ed

f0 Coriolis parameter [s−1]

fD Wind direction probability density function

fV Wind speed probability density function

k Cup anemometer classification number

n Number of samples

p Separation distance vector between two measured radial velocities [m]

q Separation distance vector between two point radial velocities [m]

q Separation distance between two point radial velocities [m]

q1 Separation distance in the streamwise direction [m]

q2 Separation distance in the transverse direction [m]

q3 Separation distance in the vertical direction [m]

r Lidar range gate position vector [m]

r Lidar range gate location on the LOS [m]

s Point radial velocity position vector [m]

s Point radial velocity location on the LOS [m]
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Table C1. Continued.

u Instantaneous wind velocity vector [ms−1]

u Instantaneous west–east wind component [ms−1]

u0 Mean wind velocity vector [ms−1]

u0 Mean west–east wind component [ms−1]

ul Estimated mean west–east wind component [ms−1]

u∗ Surface friction velocity [ms−1]

v Instantaneous south–north wind component [ms−1]

v0 The mean south–north wind component [ms−1]

vl Estimated mean south–north wind component [ms−1]

vR Vector of the measured radial velocities over a 10 min period [ms−1]

vR Volumetrically averaged lidar radial velocity (measured) [ms−1]

vR0 Volumetrically averaged lidar radial velocity (expected) [ms−1]

vr Point lidar radial velocity [ms−1]

w Instantaneous vertical wind component [ms−1]

w0 Mean vertical wind component [ms−1]

wR Lidar signal spectrum width in velocity space [ms−1]

z Height [m]

zi Atmospheric boundary layer height [m]

1R Spatial extent of a radial velocity measurement [m]

1p Separation distance vector induced by the mean wind velocity [m]

1θ Arc scan azimuth span [◦ ]

� Earth rotational speed [s−1]

β Arc scan relative direction [◦ ]

δ Radial velocity measurement bias [ms−1]

δlk the Kronecker delta

δt Time interval between two radial velocity measurements [s]

δθ Arc scan azimuth angle interval [◦]

εc Relative standard error of cup anemometer due to turbulence

εcup Relative standard error of cup anemometer due to instrument

εd Relative standard error of the lidar and cup measurement difference

ε̂d Observed εd

εl Relative standard error of lidar arc scan due to turbulence

εT Turbulence kinetic energy dissipation rate [m2 s−3]

θ Lidar azimuth angle [◦]

ρuv Correlation between ul and vl

ρlc Correlation between lidar and cup measurements

σD Wind direction standard deviation [◦ ]

σe Standard deviation of radial velocity measurement random errors [ms−1]

σl Standard deviation of the estimated horizontal wind speed [ms−1]

σlu Standard deviation of the estimated west–east wind component [ms−1]

σlv Standard deviation of the estimated south–north wind component [ms−1]

σ 2
u Variance of the streamwise wind component [m2 s−2]

σvr Standard deviation of radial velocities in the lidar probe volume [ms−1]

σy Standard deviation of annual energy yield prediction [J]

φ Lidar elevation angle [◦ ]

φL Latitude [◦ ]

φε Dimensionless dissipation rate
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