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Abstract. This paper presents a novel model, based on neural
network techniques, to produce short-term and local-specific
forecasts of significant instability for flights in the terminal
area of Galeão Airport, Rio de Janeiro, Brazil. Twelve years
of data were used for neural network training/validation and
test. Data are originally from four sources: (1) hourly mete-
orological observations from surface meteorological stations
at five airports distributed around the study area; (2) atmo-
spheric profiles collected twice a day at the meteorological
station at Galeão Airport; (3) rain rate data collected from a
network of 29 rain gauges in the study area; and (4) light-
ning data regularly collected by national detection networks.
An investigation was undertaken regarding the capability of a
neural network to produce early warning signs – or as a now-
casting tool – for significant instability events in the study
area. The automated nowcasting model was tested using re-
sults from five categorical statistics, indicated in parentheses
in forecasts of the first, second, and third hours, respectively,
namely proportion correct (0.99, 0.97, and 0.94), BIAS (1.10,
1.42, and 2.31), the probability of detection (0.79, 0.78, and
0.67), false-alarm ratio (0.28, 0.45, and 0.73), and threat
score (0.61, 0.47, and 0.25). Possible sources of error related
to the test procedure are presented and discussed. The test
showed that the proposed model (or neural network) can grab
the physical content inside the data set, and its performance
is quite encouraging for the first and second hours to nowcast
significant instability events in the study area.

1 Introduction

Aviation is negatively or positively influenced by the atmo-
spheric conditions at any place and time (Ahrens, 2008). In
particular, the terminal area (TA) of an airport is the area
where the aircraft are waiting for landing or take-off and,
thus, is quite sensitive to weather conditions. The air traf-
fic controllers and pilots require precise information about
the weather conditions at the TA to make short-term deci-
sions that fall into the timescale of nowcasting, which ranges
from the interval of a few minutes up to 6 h. During the last
few decades, various works associated with nowcasting – for
example, Wilson (1966), Wilk and Gray (1970), and others
– have initially proposed nowcasting approaches based on
extrapolations of radar data to generate nowcasting of thun-
derstorms. To follow up this idea, the convective tracking
approaches were improved by including the cell evolution
in time and intensity using radar data (Dixon and Wiener,
1993). Wilson et al. (1998) presented a review of the now-
casting techniques developed during the 1960s and 1970s.
The advancement of parallel computing and data availability
allowed a numerical weather model to assimilate mesoscale
data such as satellite and/or radar data to nowcast convective
systems via rapid update cycle (and, more recently, via rapid
refresh method). Several authors have addressed the latter in
the last 2 decades or so, e.g. Xue et al. (2003), Sun and Wil-
son (2003), Schroeder et al. (2006), Liu et al. (2008), and
others. Mueller et al. (2003) proposed a sophisticated sys-
tem to nowcast (up to 1 h) thunderstorm locations based on a
combination of surface meteorological, radar, satellite data,
and numerical modelling, which considers the storm stages.
Mass (2012) provided a comprehensive review of nowcasting
including current developments and future challenges. Con-
sidering the aviation application, Isaac et al. (2006, 2011,
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Figure 1. Satellite image of Rio de Janeiro’s metropolitan area. Yellow triangles (red squares) indicate location of the 29 rain gauges
from the Alerta Rio System that belongs to the City Hall of Rio de Janeiro (five airport meteorological stations). Source: adapted from
www.google.com.br/maps.

2014) presented a sequence of works that resulted in a re-
fined nowcasting system for aviation that uses data from
numerical models, surface observations, radar, satellite, and
a microwave radiometer to generate nowcasts for principal
airports in Canada up to approximately 6 h. In contrast, in
Brazil, a meteorologist is currently using his experience to
integrate different in situ meteorological observations and/or
atmospheric model outputs using conceptual models on how
the atmosphere works to generate nowcast at principal air-
ports. In particular, the TA of Rio de Janeiro, the focus of this
study, has five airports (see Fig. 1) whose flights are signifi-
cantly affected (by delays and trajectory changes), especially
during the approximations for landing or take-off, by signifi-
cant instability events (SIEs), which are normally associated
with convective weather. Groisman et al. (2005) presented
evidence that the incidence of convective weather has in-
creased approximately 58 % per year in south-eastern Brazil
– where the Rio de Janeiro TA is located – since the 1940s.
Therefore, the objective here is to present an automated now-
cast model (ANM) to generate short-term and local-specific
predictions of SIEs, based on neural network techniques, for
the flight TA of Rio de Janeiro, Brazil.

2 Meteorological data sets and study area

This study used four data sets from 1 January 1997 to 31
December 2008, as follows.

– TEMP is the meteorological code used to report pro-
files of atmospheric variables and is normally generated
daily at 00:00 and 12:00 UTC on all radiosonde sta-
tions, one of which, in this work, is located at Galeão’s
Airport, whose international aviation code is SBGL,
where SB and GL denote Brazil and Galeão, respec-
tively (see Fig. 1). The TEMP-coded data set was
obtained online from http://weather.uwyo.edu/upperair/
sounding.html (UWYO, 2016a).

– METAR and SPECI are meteorological codes employed
to report hourly surface meteorological conditions and
significant change (decline or improvement) in the
weather condition, at any time from the full hour. Fig-
ure 1 shows the locations of five surface meteorological
stations (represented by red icons) in the Rio de Janeiro
metropolitan area. The SPECI data were only used for
the model test. The stations (or airports) are Galeão
(SBGL), Santa Cruz (SBSC), Santos Dumont (SBRJ),
Jacarepaguá (SBJR), and Afonsos (SBAF). The data
were obtained at the URL address mentioned above.

– Rain rate (RR) is obtained from 29 rain gauges (rep-
resented by yellow triangles in Fig. 1) distributed over
the Rio de Janeiro metropolitan area. The data were ob-
tained from the Alerta Rio System, which belongs to the
City Hall of Rio de Janeiro.
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Table 1. Data sets and meteorological variables used in the distinct stages of development of the neural network-based automated nowcasting
model. It covers a period from 1 January of 1997 to 31 December 2009.

Time series Frequency and
data period

Input: primary
variables
Total number: 8

Input: derived
variables
Total number: 4

Data percen-
tage used for
SNM training/
validation

Data percen-
tage used for
SNM test

Validation
variables

Output variable

Predictors purpose: characterization
of atmospheric conditions

METAR (data
are from
SBGL, SBSC,
SBJR, SBAF,
and SBRJ)

Hourly from 1
January 1997
to 31 December
2008

Dew point at
surface

Julian day 70 % 30 % Class 1 as in
Table 2

Yes = class 1
or No= class 0

TEMP (data are
from SBGL)

Daily at 00:00 and
12:00 UTC from 1
January 1997
to 31 December
2008

Humidity
at 850 and
500 hPa. Pres-
sion at 1000,
850, 700, and
500 hPa

K , vapour pres-
sure at 1000, and
850 hPa

–

Rain rate (RR)
per hour (data
are from the 29
rain gauges)

Every 15 min
from 1 January
1997 to 31
December 2008

RR for 1 h – –

Lightning in-
side a radius of
50 km centred
at SBGL

Varies – – – 100 % 1 (lightning) or
0 (no lightning)

– Lightning reports, regularly collected by the National
Integrated Lightning Detection Network (RINDAT),
characterize each occurrence by indicating location (lat-
itude, longitude), intensity polarity (cloud to ground or
ground to the cloud), and time (UTC with accuracy in
milliseconds). Eletrobras Furnas company kindly made
the data available.

Table 1 summarizes all information on the data sets used
for ANM training, test, and validation in this study. Figure 1
shows the study region and the flight terminal area of Rio de
Janeiro.

3 Methodology and algorithm description

Meteorologists have limited windows of time in which to in-
tegrate all available data and generate a nowcast, as stated by
Mueller et al. (2003). Therefore, the idea is to create an auto-
mated nowcast model in which a neural network algorithm is
used for data fusion, similar to the work performed by Corn-
man et al. (1998) for detecting and extrapolating weather
fronts. At present, one may find applications of neural net-
work in numerous fields of science, such as modelling, time
series investigations, and image pattern recognition, owing
to their capability to learn from input data (Haykin, 1999).
Normally, stages of neural networks are denoted by a global

Figure 2. A schematic view of a cascade forward network with five
inputs.
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function (Eq. 1), as described by Bishop (2006), for example:

yk (X,W)= σ

(
M∑
j=0

w
(2)
kj h

(
D∑
i=0

w
(1)
j i xi

))
, (1)

where xi and yk are the input and output, respectively; (1), (2)
and wji , wkj represent the input layer, hidden layer, and the
connection weights (that should be determinated) between
input and hidden layers and hidden and output layers, re-
spectively; D and M are the number of inputs and number
of neurons in the internal layer, respectively; and σ and h are
linear and non-linear transfer functions between the neural
network layers, respectively. Thus, determination of the out-
put via Eq. (1) crucially depends on the values of the weights
that are worked out, similarly as in a multiple linear regres-
sion using a set of inputs and outputs; however, instead, to
minimize the distance as in non-linear regression, the neural
networks attempt to minimize the cost function. Given that
the SIE forecast problem requires a categorical output, it was
decided to use probabilistic neural networks, initially pro-
posed by Specht (1990, 1991), which is based on an radial-
basis function (RBF). An RBF network consists of three lay-
ers: the input layer; the second layer (or hidden), applying
a non-linear transformation, denoted as h that, here, is Gaus-
sian function, of the input space to the hidden space; the third
layer, the outgoing, is linear (σ), providing the network re-
sponse. Further details about neural networks and their appli-
cations may be found in Pasini et al. (2001), Haykin (1999),
Pasero and Moniaci (2004); Bremnes and Michaelide (2007),
Bishop (2006), Haupt et al. (2009), and Hsieh (2009).

Figure 3 depicts a general flowchart for the proposed auto-
mated nowcasting model. It has four major steps: (1) data
processing; (2) definitions of input and output variables;
(3) training and validation; and (4) test. These steps are de-
scribed below.

3.1 Step 1 – data processing

All data sets were sorted chronologically, and their statisti-
cal consistency was observed, resulting in 63 320 h of me-
teorological records. Based on weather conditions reported
by METAR, each meteorological record was classified into
two classes, 0 and 1, representing non-existence of impor-
tant weather conditions (low impact to flight flow) and the
existence of significant atmospheric instability (or SIE, as
previously defined) for flights in the TA of Rio de Janeiro,
respectively. Table 1 shows all weather conditions reported
in terms of METAR code and their classification per class.

3.2 Step 2 – input and output definition

ANM data fusion is based on a neural network, which must
be sequentially trained, validated, and subsequently tested to
forecast the presence or absence of SIEs. The latter corre-
sponds to the learning process of a neural network. The input

Figure 3. Automated nowcast model flowchart.

and output variables play an important role in ANM data fu-
sion and should be previously defined.

3.2.1 Input variables

These variables are the predictors of ANM and indicate the
atmospheric stages of SIEs in the study area that are used
by the ANM during its learning process. A meteorological
record is composed of primary and derived variables that are
extracted from METAR, TEMP, and RR and calculated us-
ing primary variables. The purpose of ANM is to nowcast
SIEs and other weather conditions; therefore, all inputs (or
predictors) should thermodynamically represent the presence
or absence of SIE, which are embedded in the meteorologi-
cal records utilized to train/validate and test the ANM. The
latter should be able to classify or forecast weather condi-
tions of classes numbered as 0 and 1, and its performance
is evaluated by cross-testing with observations as presented
later. The criterion to select input (primary and derived) vari-
ables is based on a conceptual model of how the atmosphere
works – particularly during SIE occurrence, which have typ-
ical atmospheric patterns. Several input variables are used,
for example, atmospheric instability indices, i.e. K-index
(K)= (T850–T500)+Td850–(T700–Td500), where Tz and Tdz
represent temperature and dew point, respectively, in degrees
Celsius, and z is the given atmospheric pressure in hPa; to-
tal totals (TTs)= T850+Td850–2T500; lapse rate (LR), repre-
sented by LR= 1000(T500–T700)/(GPH500–GPH700), where
GPH denotes the geopotential height; and others are de-
fined in columns three and four of Table 1. At the begin-
ning, many inputs were generated. However, with regard
to the neural network training, it is necessary to adopt a
method to prune collinear inputs that bring no new infor-
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Table 2. Weather condition classification in METAR and attributed ANM classes.

Class METAR code Weather
condition

Class METAR code Weather
condition

0 H Haze 0 R Moderate rain

K Smog RF Moderate rain
with fog

F Fog R+ Heavy rain

L− Light drizzle R+ F Heavy rain with
fog

L− F Light drizzle
with fog

RW Showers

L Moderate
drizzle

RW+ Heavy showers

LF Moderate driz-
zle with fog

1 T Thunderstorms

L Heavy drizzle TL Thunderstorms
with light
drizzle

R− Light rain TRW− Thunderstorms
with showers

R− H Light rain with
haze

TRW Thunderstorms
with moderate
showers

R− F Light rain with
fog

TRW+ Thunderstorms
with heavy
showers

mation and, thus, could reduce the network performance.
Pasini and Ameli (2003) have investigated heuristic pruning
methods. Here, autocorrelation was selected and enforced to
remove collinearity of the input. Twelve variables then re-
mained, divided into eight primary and four derived variables
as listed in columns three and four of Table 1, respectively.

3.2.2 Output variables

The output is defined as weather conditions reported in
METAR codes and divided into two classes, 0 and 1, which
represent the absence and presence of SIEs, respectively, as
shown in Table 2. In other words, classes 0 and 1 indicate
non-existence of significant instability and existence of sig-
nificant instability (i.e. weather condition of METAR code as
T, TL, TRW−, TRW, TRW+) in the TA of Rio de Janeiro,
respectively.

Following Pasini (2015) and aiming to avoid the overfit-
ting problem during the learning process of the neural net-
work, which is represented by step 3, the meteorological
records were divided into three subsets: training, validation,
and test. Figure 4a shows the initial training and validation

data sets representing 70 % of the original records (or 44 324)
with 30 % (or 18 996) for testing, as shown in Fig. 4b.

3.3 Step 3 – neural network training and validation

The internal number of neurons (previously defined as M)
of probabilistic neural networks is here determined based on
the cascade-correlation algorithm suggested by Fahman and
Lebiere (1990). Figure 2 shows generally an example of a
cascade forward network for five inputs and one output. The
training and validation are performed in an iterative cycle
composed of a looping of two phases, which are executed us-
ing a specific data set (initially the one in Fig. 4a, which could
be artificially modified until the optimal data set is reached,
as described in step 4), and a constant number of inputs (de-
fined as D is equal to 12). The two phases are described as
follows.

i. It starts with a minimal (only one neuron) internal layer
of the neural network (represented generally by Eq. 1)
and automatically adds new hidden neurons one at a
time, in each round, finally resulting in a multilayer

www.atmos-meas-tech.net/9/2335/2016/ Atmos. Meas. Tech., 9, 2335–2344, 2016
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Figure 4. Histograms of frequency accordingly to two classes 0 and 1 that represent no SIE and SIE, respectively. Panels (a) and (b) show
initial class distribution of training/validation and test data sets that correspond to 70 % (or 44 324) and 30 % (or 18 996) of meteorological
records, respectively. The histograms similarly present class distribution of meteorological recordings for optimal training.

structure with the input connection frozen (represented
by squares in Fig. 2).

i. The follow-on neural network is applied to the valida-
tion data set, and the error is calculated. There are then
two options: first, return to (i) if the test error has not
increased from the previous round and the number of
neurons in the internal layers is less than 150; or sec-
ond, to go to step 4, which means that the final (or that
could be an optimum) neural network configuration (or
ANM) has been obtained.

3.4 Step 4 – test

This step compares the SIE forecasts (output) of ANM with
the true observations, which are assumed to have at least one
of two conditions.

a. Weather conditions (class 1 of Table 2): these were re-
ported by METAR or SPECI (corresponding to the test
data set in Fig. 4b).

b. Lightning was reported inside a 50 km radius centred
at Galeão airport during a 1 h period. The lighting data
are included in the test because the weather conditions
reported in METAR or SPECI represent an observa-
tion by the meteorologist at an instant of time; there-
fore, sometimes it does not correctly represent an en-
tire 1 h period, which is the minimum time interval
for an ANM forecast, and the lightning data will be
continuously generated during the entire ANM fore-
cast time and beyond the METAR observation, which
depends on the meteorologist’s observation skills. The
lightning data allow the ANM forecast verification to
be spread out to encompass the entire flight terminal
area of Rio de Janeiro. Moreover, it is assumed in this

work that the presence of lighting is related with SIE.
Therefore, these two conditions will certainly permit
a better ANM test, which is accomplished via a two-
dimensional contingency table. The calculation of five
categorical statistics used to verify the frequency of cor-
rect and incorrect forecasted values is performed as fol-
lows: (1) proportion correct (PC), which shows the fre-
quency of the ANM forecasts that were correct (a per-
fect score equals one); (2) BIAS, which represents the
ratio between the frequency of ANM estimated events
and the frequency of ANM observed events (a perfect
score equals one); (3) probability of detection (POD),
which represents the probability of the occasions when
the forecast event actually occurred (hits), and the scale
varies from zero to one, where one indicates a perfect
forecast; (4) false-alarm ratio (FAR), which indicates
the fraction of ANM-predicted SIEs that did not occur
(a perfect score equals zero); and (5) threat score (TS),
which indicates how the ANM forecasts correspond to
the observed SIEs (a perfect score equals one). In par-
ticular, the TS is relatively sensitive to the climatology
of the studied event, tending to produce poorer scores
for rare events, such as an SIE. Therefore, the model is
considered to be optimal when it creates SIE nowcast-
ing with scores as near perfect as possible for the five
statistics described (Wilks, 2006).

Finally, if the test results of the ANM do not indicate satis-
factory performance, a normal procedure is to rearrange the
representativeness of the target class 1 in the training data
(i.e. modifying the training/testing data set) and then go to
step 3 and repeat step 4 in Fig. 3. Otherwise, the optimal
model is reached. The ANM training strategy and results are
discussed in the next section.
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Table 3. Strategy condition and final test statistics of the optimal ANM. The ANM output equal to class 1 represents a true SIE (or yes) and
class 0 represents a false SIE (or no) forecast. The statistic values associated with the first(L), second(L), and third(L) are hours in which the
ANM test using the lightning data was included.

Training strategy Output class Test data Neural network Statistics for SIE and no SIE

Training Training Number configuration Hour PC BIAS POD FAR TS
(from data set and of inputs (number of
1st to nth) strategy hidden neurons)

nth Gradually modifies 12 Yes or no Yes or no means 123 1st 0.98 1.28 0.76 0.41 0.50
Optimum for each looping classes one (including 1st(L) 0.99 1.10 0.79 0.28 0.61
training Fig. 3 by decreasing (Yes= class 1) or lighting existence in 138 2nd 0.97 1.59 0.75 0.52 0.41

classes 0 and keeping (No= class 0) the period of 1 h) or zero 2nd(L) 0.97 1.42 0.78 0.45 0.47
class 1 fixed in Table 2, respectively 134 3rd 0.94 2.64 0.61 0.77 0.20

3rd(L) 0.94 2.31 0.67 0.73 0.25

4 Analysis and results

To assess the performance of the nowcasting system pro-
posed for the TA of Rio de Janeiro, the ANM output vari-
ables were divided into two classes as previously defined,
namely, class 0 (no SIE) and class 1 (SIE). Figure 4a and b
depict the frequency of the classes in the initial (1st) train-
ing/validation and test data sets, respectively, corresponding
to 70 and 30 % of the total number of meteorological records.
It is observed in Fig. 4a that class frequencies are not pro-
portionally distributed. In particular, class 1 (defined as SIE)
is poorly represented, accounting for approximately 2 % of
all meteorological records. This increases the difficulty of
the neural network learning process; for phenomenon knowl-
edge, a better representation of target class is needed in the
training data set; i.e. class 1 should have a higher weight than
the other classes or at least a similar weight to another class in
the training data set to facilitate better neural network train-
ing/testing. The following paragraphs summarize the strat-
egy to overcome the low frequency of SIEs in the sequence
of preparation/testing executed in this work in the procedure
to achieve the optimal model, as illustrated in Fig. 3.

4.1 Neural network training

Neural network training is a time-consuming activity, and to
overcome the mentioned problem, a common strategy is to
alter the training data set, for example, by taking the original
data as a reference to artificially create another new train-
ing data set by modifying the representation of the classes
in the data population and testing the model performance to
make an optimum and/or gradually reducing the input vari-
ables by evaluating a particular variable relevance (or contri-
bution) for the output results. The latter was not performed
in this work, and the input number was held constant and
equal as previously explained in Sect. 3.2. In fact, there is no
straightforward set of calculations to accomplish this goal. It
is significant to observe that the test data set shown in Fig. 4b
has similar class frequencies to the original data set, shown
in Fig. 4a. The idea is to provide real scenarios of rare events
during the test process. Table 3 presents the training scheme

(or strategy) and attempts to convey the concept of succes-
sive training used in the present work. The training strategy
is based on decreasing records of class 0 and keeping class 1
fixed in each training/testing executed by following the steps
in Fig. 3. The optimal ANM was obtained in the nth training
corresponding to the data set in Fig. 4c. The resulting test
statistics were achieved by two options: first, by consider-
ing items a); and second, by considering items (a) and (b) of
Sect. 3.4. The latter item (item b) – lightning reported in-
side a 50 km radius centred at SBGL airport during a 1 h pe-
riod – represents an SIE. Table 3 shows categorical statistical
verifications of the optimal model results. The ANM fore-
cast performance slowly declines from the first to the second
hour and declines more rapidly from the second to the third
hour. By including the lightning data in the test, the ANM
results were improved, as shown by the first (L), second (L),
and third (L) hours. The comparison between the two test data
sets (with and without lightning data) shows that BIAS, POD,
and FAR values improved by 14, 11, and 12 % (for the first,
second, and third hours); 3, 3, and 6 % (for the first, second,
and third hours); and 13, 13, and 5 % (for the first, second,
and third hours), respectively. In particular, the BIAS values
improved more than the other statistics because of the inclu-
sion of the lightning data in the test. In addition, although TS
normally tends to produce poorer scores for rare events, its
results have also improved here with the inclusion of light-
ning data in the test of optimal training as shown in Table 3,
column 13.

The best ANM result corresponds to the first hour. The
BIAS is the lowest, equal to 1.10 (which means that the re-
sults slightly overestimated the observations for the consid-
ered forecasts); even so, the readings for PC, POD, FAR, and
TS are quite respectable, equal to 0.99, 0.79, 0.28, and 0.61,
respectively. The effects of the ANM for the second hour
are slightly less useful than those for the first hour forecast
but are nonetheless satisfactory. However, the statistical val-
ues for the third hour forecast are poorer than those for the
second hour. One cause of the ANM’s overall performance
degeneration is that a neural network is a statistical model
rather than a physical one, which means that the physical as-
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pects are not included. In summary, it is possible to state that
an optimal ANM should be able to forecast SIEs in the study
area for up to 2 h.

4.2 Possible sources of error in the ANM test

The ANM optimal model output is considered a hit when
it corresponds to event observations, if at least one of two
weather conditions in Sect. 3.4 are satisfied. In particular,
the weather condition reported in the METAR or SPECI is
obtained from a human observer and may have some incon-
sistencies. The latter is common in meteorological observa-
tions; thus, consciousness of such matters is important when
interpreting results from METAR at a specific time. The
ANM results are slightly biased as previously presented for
the first hour forecast; therefore, in an attempt to explain that
BIAS, the study pursued an investigation of possible sources
of error in the meteorological observations used to verify the
model forecasts. First of all, with regard to the learning pro-
cess, the training data set was composed only of meteoro-
logical records with a unique true association between their
output (as class 1) and input variables (represented some-
how in the thermodynamic atmospheric pattern during the
development of an SIE from the METAR records). In other
words, the training only used meteorological records whose
output was characterized as a true SIE and none. However,
in the test data set, there are many meteorological records
in which such a unique association (one-to-one relationship
between input and output) is not always true; i.e. some me-
teorological records have a typical thermodynamic pattern of
SIE (input), but the weather condition (output) does not cor-
respond to an SIE (or prevailing actual weather situation).
These records were used in the present study to verify ANM
forecasts and have consequently produced the results in Ta-
ble 3. A possible reason for false alarms and consequently
biased ANM results is that hourly METAR records repre-
sent quasi-instantaneous meteorological observations (which
take approximately 10 min to generate and may carry in-
consistencies); therefore, the weather condition (output) may
be affected by a certain amount of subjectivity on the part
of the meteorologist (see discussion below). These results
have provided plenty of evidence that the validation param-
eters (i.e. weather condition report just mentioned in the
METAR or SPECI in Table 2) are not totally appropriate for
ANM validation because the METAR or SPECI are quasi-
instantaneous observations and thus do not cover the entire
ANM forecast time. The lightning data permit the ANM fore-
cast verification to be spread out to encompass the entire TA
of Rio de Janeiro. The comparisons between ANM forecasts
and lightning detection have improved all statistical values.

4.3 Case study

To elucidate the foregoing discussion, this section shows the
ANM results for an SIE that occurred from 15:00 to 23:00 LT

Figure 5. GOES-10 (channel 4) extracted and adapted from www.
cptec.inpe.br that represents the synoptic weather situation at 18:00
(local time) on 18 March 2009, where the top convective cloud
temperatures are categorized by a temperature range from −30 to
−80 ◦C. The red box roughly represents the study region.

on 18 March 2009. Figure 5 depicts a synoptic weather sit-
uation through an enhanced GOES-10 (channel 4) satellite
image at 18:00 (local time), in which a cloud (or cloud com-
plex) is classified, by an automatic stretch process, as a con-
vective cell (which could certainly be associated with an SIE)
if its top temperature is lower than minus 30 ◦C. The red box
roughly represents the TA of Rio de Janeiro, which is influ-
enced by SIEs (located approximately at the centre of the
red box) and where a complex convective cloud (with cloud
top temperature equal to minus 70 ◦C) is clearly observed
in the east. On this day, the K , TT, and LR index values,
calculated from the SBGL atmospheric profile, were equal
to 33.64, 44.97, and 5.5, respectively, indicating that a typi-
cal atmospheric instability pattern was dominating the area.
Table 4 presents a comparison between ANM forecasts (col-
umn four) and the weather observations made by the mete-
orologist and registered in the METAR (columns two and
three) for the considered period. From this result, it seems
that the ANM overestimated the possibility of an SIE (com-
pare columns three and four). However, the problem of ver-
ification of the output of the ANM is difficult because the
meteorologist’s observation does not always give a more ap-
propriate weather condition (or a prevailing condition) for
comparison; therefore, biased results may be obtained from
the ANM. Lightning has been coincidently detected (col-
umn five) for all ANM forecasts of SIEs during the time of
this particular case study, which indicates an unstable atmo-
spheric pattern (meaning true SIE) in the flight area of the
airport influenced by the event. In summary, the ANM fore-
casts usually capture the signs of an atmospheric instability
pattern.
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Table 4. ANM forecasts versus meteorological observations on
March 18 2009.

Local Weather Observed SNM class Lightning
time condition class forecasts detection

(METAR)

15 H 0 0 no
16 TRW− 1 1 yes
17 R 0 1 yes
18 R− 0 1 yes
19 H 0 1 yes
20 TRW− 1 1 yes
21 R+ 0 1 yes
22 T 1 1 yes
23 TRW+ 1 1 yes

5 Conclusions

In Brazil, the numerical prediction models have presently
demonstrated certain difficulties in attempting to forecast lo-
cal or short-term heavy rain, strong wind, and turbulence
events that are normally associated with SIE occurrences.
Hence, this work shows an automated nowcasting model for
short-term and local-specific forecasting of SIEs based on a
neural network technique for the flight terminal area of Rio
de Janeiro. The main findings of this study are as follows.

a. The optimal ANM results of SIE forecasts for the first
and second hours are encouraging because the categori-
cal statistical values are quite acceptable. The proposed
model has a very low computational cost, and it is pos-
sible to say that the ANM could alternatively forecast
short-term strong atmospheric instability.

b. The third hour ANM forecast has the highest BIAS; per-
haps the main reason for the ANM performance degen-
eration in time is that the neural network model is purely
statistical rather than physical, and its use should there-
fore be limited to short-term nowcasting, possibly up to
a 2 h time frame.

c. There is visible evidence that the test data contain a
certain amount of uncertainty. A key consideration re-
garding the ANM results versus test data and possi-
ble sources of error should be addressed; i.e. the use
of METAR or SPECI weather conditions is affected by
subjectivity on the part of the meteorologist and some-
times does not represent prevailing weather conditions.
The results and case study showed that ANM forecasts
might falsely be classified as hits.

d. The inclusion of lightning data in the test significantly
improved the ANM statistic results and also provided
evidence that weather conditions discussed in the previ-
ous point are not totally appropriate for ANM test.

e. Finally, the study may conclude that the optimal ANM
developed here is clearly capable of predicting signs of
a local atmospheric instability pattern in the TA of Rio
de Janeiro.

Future studies are planned to include other data sources in
the learning process, such as numerical models, meteorolog-
ical satellites, RADAR, and/or SODAR wind profiles.

Data availability

The TEMP-coded data set (UWYO, 2016a) was obtained on-
line from http://weather.uwyo.edu/upperair/sounding.html.
The METAR-coded data set (UWYO, 2016b) was obtained
on-line from http://weather.uwyo.edu/surface/meteorogram/.
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