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Abstract. Gravity waves (GWs) play a crucial role in the
dynamics of the earth’s atmosphere. These waves couple
lower, middle and upper atmospheric layers by transporting
and depositing energy and momentum from their sources to
great heights. The accurate parameterisation of GW momen-
tum flux is of key importance to general circulation mod-
els but requires accurate measurement of GW properties,
which has proved challenging. For more than a decade, the
nadir-viewing Atmospheric Infrared Sounder (AIRS) aboard
NASA’s Aqua satellite has made global, two-dimensional
(2-D) measurements of stratospheric radiances in which
GWs can be detected. However, one problem with current
one-dimensional methods for GW analysis of these data is
that they can introduce significant unwanted biases. Here,
we present a new analysis method that resolves this problem.
Our method uses a 2-D Stockwell transform (2DST) to mea-
sure GW amplitudes, horizontal wavelengths and directions
of propagation using both the along-track and cross-track di-
mensions simultaneously. We first test our new method and
demonstrate that it can accurately measure GW properties in
a specified wave field. We then show that by using a new
elliptical spectral window in the 2DST, in place of the tradi-
tional Gaussian, we can dramatically improve the recovery of
wave amplitude over the standard approach. We then use our
improved method to measure GW properties and momen-
tum fluxes in AIRS measurements over two regions known
to be intense hotspots of GW activity: (i) the Drake Pas-
sage/Antarctic Peninsula and (ii) the isolated mountainous
island of South Georgia. The significance of our new 2DST
method is that it provides more accurate, unbiased and better
localised measurements of key GW properties compared to
most current methods. The added flexibility offered by the

scaling parameter and our new spectral window presented
here extend the usefulness of our 2DST method to other ar-
eas of geophysical data analysis and beyond.

1 Introduction

Gravity waves are a vital component of the atmospheric sys-
tem. These propagating mesoscale disturbances can transport
energy and momentum from their source regions to great
heights. They thus are a key driving mechanism in the dy-
namics of the middle atmosphere through drag and diffusion
processes (e.g. Fritts and Alexander, 2003, and references
therein).

The accurate parameterisation of unresolved gravity waves
in global climate models (GCMs) has proven to be a long-
standing problem in the modelling community. One example
of this is the “cold pole” bias (Butchart et al., 2011) suffered
by nearly all GCMs, which has been suggested to be due to a
deficiency of resolved and parameterised gravity wave drag
near 60◦S. One reason for this is that these gravity wave pa-
rameterisations continue to be poorly constrained by obser-
vations (Alexander et al., 2010). The accurate measurement
of gravity wave properties is thus critical for the develop-
ment of the next and current generation of climate models. In
the last decade, satellite-based remote-sensing has greatly in-
creased our capability to make gravity wave observations on
a global scale, but large discrepancies between observed and
modelled fluxes still remain (Geller et al., 2013). This high-
lights the need for more accurate global and regional gravity
wave measurements.
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The Atmospheric Infrared Sounder (AIRS) (Aumann
et al., 2003) is a nadir-sounding spectral imager on board
the Aqua satellite, launched in 2002. Part of the A-Train
satellite constellation, AIRS scans the atmosphere over the
range ±49◦ from the nadir of the satellite in a 90 pixel
(∼ 1800 km) wide swath, using 2378 infrared channels along
a sun-synchronous polar orbit. This continuous swath is
archived in granules, usually 135 pixels (∼ 2400 km) along-
track. Stratospheric gravity waves can be detected in these
granules as radiance perturbations in the 15 and 4.3 µm CO2
emission bands (e.g. Alexander and Barnet, 2007; Hoffmann
and Alexander, 2009; Hoffmann et al., 2013). AIRS mea-
surements enable the study of stratospheric gravity waves at
unprecedented horizontal resolution. In order to fully exploit
these observations, accurate and easily reproducible analy-
sis methods for the measurement of gravity wave properties
must be developed.

The Stockwell transform (S-transform) (Stockwell et al.,
1996; Stockwell, 1999) is a widely used spectral analy-
sis technique for providing time-frequency (or distance-
wavenumber) localisation of a time series (or spatial profile).
This capability makes the S-transform well suited to grav-
ity wave analysis of a variety of geophysical data (e.g. Fritts
et al., 1998; Alexander et al., 2008; McDonald, 2012; Wright
and Gille, 2013). The S-transform has also been used in a va-
riety of other fields, such as the planetary (Wright, 2012),
engineering (Kuyuk, 2015) and medical sciences (Goodyear
et al., 2004; Yan et al., 2015).

Alexander and Barnet (2007) developed a method for
measuring gravity wave amplitudes, horizontal wavelengths
and directions of propagation from AIRS granules using the
one-dimensional (1-D) S-transform. In their method, the S-
transform is computed for each cross-track row, and co-
spectra between adjacent cross-track rows are used to ob-
tain spectral information in the along-track dimension. To
find the dominant waves in each granule, these cross-track
co-spectra are averaged together and up to five peaks are lo-
cated in each averaged spectrum. The method of Alexander
and Barnet (2007) provides good first-order measurement of
the properties of the (up to five) dominant wave features in
a granule, but it can introduce unwanted biases as discussed
further in Sect. 5.

Here, we present a new analysis method. AIRS radi-
ance measurements are two-dimensional (2-D) images; thus
a gravity wave analysis method using a two-dimensional
Stockwell transform (2DST) is a more logical approach. In
this study we present a 2DST-based method for the mea-
surement of gravity wave amplitudes, horizontal wavelengths
and directions of propagation from AIRS measurements. Our
method takes advantage of the spatial–spectral localisation
capabilities of the S-transform in both dimensions simulta-
neously, equally and without bias.

South Georgia and the Antarctic Peninsula, together with
the southern tip of South America, lie in a well-known
hotspot of stratospheric gravity wave activity during austral

winter, which has been extensively studied both observa-
tionally (Eckermann and Preusse, 1999; Jiang et al., 2002;
Alexander and Teitelbaum, 2007; Baumgaertner and Mc-
Donald, 2007; Hertzog et al., 2008; Alexander et al., 2009;
Alexander and Teitelbaum, 2011; Alexander and Grimsdell,
2013; Hindley et al., 2015) and with numerical modelling
techniques (Hertzog et al., 2008; Plougonven et al., 2010;
Shutts and Vosper, 2011; Hertzog et al., 2012; Sato et al.,
2012; Plougonven et al., 2013) in the last decade. These
mountainous regions are subjected to a strong wintertime cir-
cumpolar flow in the troposphere and stratosphere and, as a
result, are major orographic gravity wave sources (e.g. Hoff-
mann et al., 2013). Despite this, discrepancies between ob-
served and modelled gravity wave fluxes in this region are
the largest anywhere on the planet (Geller et al., 2013). This
unique geography of this important region provides a “natu-
ral laboratory” in which to make clear gravity wave measure-
ments from space and is thus an ideal region in which to test
our 2DST methodology on AIRS measurements.

In Sect. 2 we introduce AIRS data and the 1-D and 2-
D S-transforms. In Sect. 3 we apply the 2DST to a speci-
fied wave field, describing our methodology for spatial lo-
calisation of the dominant spectral components. In Sect. 4
we present a new alternative spectral window for use in the
2DST. In Sect. 5 we apply the 2DST to two selected AIRS
granules measured over the Antarctic Peninsula/Drake Pas-
sage and South Georgia and discuss our results. Finally, in
Sect. 6 we summarise the key results of this study and dis-
cuss the advantages of our 2DST method in the context of
previous work.

2 Data and spectral methods

2.1 AIRS data

Gravity waves can be detected in AIRS radiance mea-
surements as perturbations from a background state. Here,
we use AIRS Level 1B radiance measurements from the
667.77 cm−1 channel. These Level 1 radiances have consid-
erably higher horizontal resolution than operational Level 2
temperature retrievals due to retrieval choices imposed on the
latter (Hoffmann and Alexander, 2009). We compute bright-
ness temperature T directly from radiance R as

T =
hcν

kB

(
ln
(

2hc2ν3

R
+ 1

))−1

, (1)

where h is Planck’s constant, c is the speed of light, kB is
Boltzmann’s constant and ν = 667.77 cm−1 is the wavenum-
ber of the specified channel. Temperature perturbations T ′

from the local background state T are then extracted via a
fourth-order polynomial fit (Wu, 2004; Alexander and Bar-
net, 2007). This fit removes limb-brightening and other large-
scale fluctuations. These brightness temperature perturba-
tions are a more useful physical quantity with which to de-
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fine gravity wave amplitudes, since gravity wave energies
and momentum fluxes are easier defined in terms of tempera-
ture perturbations (e.g. Ern et al., 2004). Common limitations
in temperature perturbation-based momentum flux calcula-
tions, such as the assumption of a monochromatic wave and
observational filtering effects, do remain, however, and are
discussed in more detail in Sect. 5.3.

The weighting function of the 667.77 cm−1 channel peaks
near 3 hPa (∼ 40 km), with a full width at half maximum
of ∼ 12 km (Alexander and Barnet, 2007, also illustrated in
Fig. 1 of Wright et al., 2016a). Gravity waves with vertical
wavelengths shorter than 12 km are thus unlikely to be re-
solved and vertical wavelengths close to this limit will be
strongly attenuated.

If the vertical wavelength is known, it is possible to cor-
rect for this attenuation by dividing the amplitude by an ap-
propriate rescaling factor (Alexander and Barnet, 2007, their
Fig. 4). Although methods for measuring long vertical wave-
lengths using multiple AIRS channels have been developed
(e.g. Hoffmann and Alexander, 2009), we do not have direct
measurements of vertical wavelength from our single AIRS
channel, and so we do not apply such a correction to bright-
ness temperature perturbations at this stage. The true ampli-
tude of some waves in our initial analysis may therefore be
between 2 and 5 times greater than the values shown. Later,
however, for the estimation of momentum flux in Sect. 5.3,
we do apply the attenuation correction described in Alexan-
der and Barnet (2007).

2.2 The Stockwell transform

In its analytical form, the 1-D Stockwell transform (Stock-
well et al., 1996) closely resembles a continuous wavelet
transform (CWT) with a complex sinusoidal mother wavelet
windowed with a scalable Gaussian window (Gibson et al.,
2006). For time series data, this scalable Gaussian localises
wave perturbations in the time domain through spectral lo-
calisation in the frequency domain.

For a smoothly varying, continuous and one-dimensional
function of time h(t), the generalised analytical form of the
S-transform S(τ,f ) (e.g. Pinnegar and Mansinha, 2003) is
given as

S(τ,f )=

∞∫
−∞

h(t)ωg(t − τ,f )e
−i2πf tdt, (2)

where τ is translation in the time domain, f is frequency and
ωg(t− τ,f ) is a windowing function, scaled with frequency,
that provides spatial and spectral localisation. Traditionally,
ωg(t − τ,f ) takes the form of the normalised Gaussian win-
dow

ωg(t − τ,f )=
1

σ
√

2π
e
−(t−τ)2

2σ2 , (3)

where σ is the standard deviation. A key aspect of the Gaus-
sian window in Eq. (3) is that the standard deviation is scaled
for each frequency as σ = c

|f |
, where c is a scaling parame-

ter usually set to 1 (Mansinha et al., 1997a). This window is
often referred to as the “voice Gaussian”, which provides lo-
calisation of a specific frequency “voice” (Stockwell, 1999).
Another key aspect of the Gaussian in Eq. (3) is the normali-
sation factor 1/σ

√
2π , which ensures that the integral of the

window over all t is equal to unity, a requirement for any win-
dowing function used in the S-transform. Substituting Eq. (3)
into Eq. (2) allows us to write the S-transform more explicitly
as

S(τ,f )=
|f |

c
√

2π

∞∫
−∞

h(t)e
−
(t−τ)2f 2

2c2 e−i2πf tdt. (4)

Typically, the scaling parameter c is set to 1 (e.g. Stock-
well et al., 1996; Alexander et al., 2008; Wright and Gille,
2013), but it may also be set to other values to achieve
more specific time-frequency localisation requirements (e.g.
Mansinha et al., 1997b; Fritts et al., 1998; Pinnegar and
Mansinha, 2003). Setting c > 1 provides enhanced frequency
localisation at the expense of time localisation, and contrar-
ily setting c < 1 achieves enhanced time localisation at the
expense of frequency localisation. This effect is discussed in
more detail in Sect. 4.

To compute the S-transform using the form in Eq. (4), it
seems we must compute a convolution involving the voice
Gaussian and the time series for each frequency voice f ,
which can become quite computationally intensive. Stock-
well (1999, their Sect. 3.5.1) showed that under the convolu-
tion theorem (Brigham, 1974), the time-domain convolution
in Eq. (4) could be written as a frequency-domain multipli-
cation as

S(τ,f )=

∞∫
−∞

H(α+ f )e
−2π2c2α2

f 2 ei2πατdα, (5)

where H(α+ f ) is a shifted version of H(α), which is in
turn the frequency analogue of H(t). The frequency-domain
form of the voice Gaussian, denoted by ωg(α,f ), is given as

ωg(α,f )= e
−2π2c2α2

f 2 . (6)

The standard deviation σα of this frequency-domain Gaus-
sian window in Eq. (6) scales with frequency as σα = |f |/c.
Note that this voice Gaussian is unnormalised; its peak value
is equal to 1 in the frequency domain.

In this frequency-domain form, the S-transform is com-
puted for each frequency voice f as the inverse Fourier
transform of the product of H(α+ f ) and the correspond-
ing frequency-domain voice Gaussian ωg(α,f ) in Eq. (6).
Crucially, writing the S-transform as the frequency-domain
multiplication in Eq. (5) enables computationally efficient
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(“fast”) discrete Fourier transform (DFT) algorithms and
simple multiplication operations to be used. The S-transform
is most commonly implemented in this manner within the
atmospheric sciences.

The S-transform has a number of desirable characteristics
for geophysical data analysis. Unlike a CWT, the absolute
magnitudes of the complex-valued S-transform coefficients
in S(τ,f ) are directly related to the true underlying ampli-
tude of the corresponding frequency voice f at each location
τ . Information regarding wave amplitude is not strictly re-
coverable from a CWT, since the corresponding CWT coeffi-
cients are pseudo-correlation coefficients between the signal
and the analysing wavelet.

One disadvantage to using fast DFT algorithms in an S-
transform implementation is the familiar coarse wavelength
resolution at low frequencies, a limitation not encountered by
the CWT. Since both the S-transform and DFT algorithms are
easily extended to higher dimensions, however, the reduced
computational expense of a DFT-based S-transform makes
this a practical tool for large 2-D data sets. Retention of the
wave amplitude information in the S-transform is another key
advantage.

2.3 The two-dimensional Stockwell transform

The S-transform is easily extended to higher dimensions.
For a two-dimensional image h(x,y), the 2DST is given by
(Mansinha et al., 1997a; Stockwell, 1999)

S(τx,τy,fx,fy)=

∞∫
−∞

∞∫
−∞

h(x,y)

×
|fx ||fy |

2πc2 e
−

(
(x−τx )

2f 2
x +(y−τy )

2f 2
y

2c2

)
e−i2π(fxx+fyy)dx dy, (7)

where τx , τy are translation in the x and y directions respec-
tively. Here, fx and fy are simple spatial frequencies (in-
verse of wavelength) in the x and y directions respectively,
following the notation of Stockwell (1999). For the remain-
der of the present paper, however, we switch to using angular
wavenumbers kx = 2πfx and ky = 2πfy , since this notation
is more commonly used in the atmospheric sciences. Rewrit-
ing Eq. (7) in terms of angular wavenumbers kx and ky gives

S(τx,τy,kx,ky)=

∞∫
−∞

∞∫
−∞

h(x,y)

×
|kx ||ky |

8π3c2 e
−

(
(x−τx )

2k2
x+(y−τy )

2k2
y

8π2c2

)
e−i(kxx+kyy)dx dy. (8)

The Gaussian windowing term in Eq. 8 describes the 2-D
voice Gaussian wg(x− τx,y− τy,kx,ky), where

wg(x,y,kx,ky)=
|kx ||ky |

8π3c2 e
−
k2
xx

2
+k2
yy

2

8π2c2 . (9)

This is the 2-D form of the 1-D Gaussian window in
Eq. (3). Here, the standard deviations of the 2-D Gaussian
window in Eq. (9) are scaled with wavenumber in the x and
y directions as 2πc/|kx | and 2πc/|ky |, where c is a scaling
parameter.

As discussed in Sect. 2.2, greater computational efficiency
is achieved by computing the 2DST as an operation in the
wavenumber domain as

S(τx,τy,kx,ky)=

∞∫
−∞

∞∫
−∞

H(αx + kx,αy + ky)

×
1

4π2 e
−

(
2π2c2α2

x

k2
x
+

2π2c2α2
y

k2
y

)
ei(αxτx+αyτy)dαxdαy, (10)

whereH(αx+kx,αy+ky) is a shifted version ofH(αx,αy),
which is in turn the wavenumber analogue of the input im-
age h(x,y). Here wavenumbers kx and ky are used to scale,
in αx and αy directions respectively, the standard deviations
of the wavenumber-domain form of the 2-D voice Gaussian
Wg(αx,αy,kx,ky), which is given as

Wg(αx,αy,kx,ky)= e
−

(
2π2c2α2

x

k2
x
+

2π2c2α2
y

k2
y

)
. (11)

The 2DST is introduced and well described by Mansinha
et al. (1997a) and Mansinha et al. (1997b), who demonstrated
its promise for pattern analysis. It has since been discussed
and applied in a variety of fields (Liu and Wong, 2007; Koc-
ahan et al., 2008; Liu, 2009; Barry et al., 2012) but to our
knowledge it has yet to be used for geophysical data analysis
in the atmospheric sciences, despite the wide use of the 1-D
form. In the following section, we describe our 2DST im-
plementation methodology for the purpose of gravity wave
analysis from 2-D data.

3 2DST analysis of a specified wave field

To assess the capabilities of the 2DST, it is logical to first
apply it to a two-dimensional specified wave field containing
synthetic waves with known characteristics.

We create a specified wave field h(x,y) with dimensions
100× 100 km containing synthetic waves with unit ampli-
tudes and known wavelengths. Wave amplitudes are defined
as temperature perturbations T ′ in units of Kelvin. The syn-
thetic waves are localised around their central locations with
Gaussian functions (although note that they do overlap). We
also add random (“salt and pepper”) noise up to 10 % of the
wave amplitude.

We first compute the 2-D DFT H(αx,αy) of our specified
wave field h(x,y). To recover an estimate of the underly-
ing wave amplitude, we use the familiar symmetry around
the zeroth frequency in the Fourier domain to recover a 2-D
analogy of the analytic signal, following the approach of
Stockwell (1999). A 2-D DFT contains four quadrants that
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Figure 1. The specified wave field h(x,y) (background) for which the two-dimensional Stockwell transform (2DST) has been computed.
The absolute magnitudes of the localised 2DST wavenumber spectra |κ(kx ,ky)| (foreground) are plotted for three separate locations in (a),
(b) and (c).

contain coefficients which are in complex-conjugate pairs
with the coefficients in the opposite quadrant. The sum of
these pairs always yields a real signal. By setting the coeffi-
cients of two of these quadrants to 0, and doubling their op-
posite quadrants, we obtain a complex-valued image when
we take the inverse DFT. The magnitude of this image is
analogous to the underlying wave amplitude, while the com-
plex part describes instantaneous phase. All coefficients not
in a complex conjugate pair are unchanged. The full 2DST
spectrum S(τx,τy,kx,ky) can then be computed by taking
the inverse 2-D DFT of the product of the shifted spectrum
H(αx − kx,αy − ky) and the corresponding voice Gaussian
Wg(αx,αy,kx,ky) for each wavenumber voice kx and ky .

For our purposes, we do not need to evaluate
S(τx,τy,kx,ky) for all positive and negative wavenum-
bers, since evaluating all positive and negative values of ky
and only the positive values of kx gives us all the degrees
of freedom. There is a residual 180◦ ambiguity in wave
propagation direction which cannot be broken without
additional information, which is supplied in Sect. 5.3.

A useful aspect of our implementation is that, like the
CWT, we can compute the 2DST for any individual or range
of permitted wavenumber voices by applying the appropriate
wavenumber-scaled Gaussian windows. Although the per-
mitted wavenumber voices in the spectral domain are evenly
spaced, their corresponding wavelengths are limited to in-
teger fractions (i.e. 1/n where n= 0,1,2, . . .,N − 1) of the
number of elementsN in each dimension. This is an unavoid-
able consequence of using computationally efficient DFT al-
gorithms, which results in the familiar coarse spectral reso-
lution seen at long wavelengths.

The ability to analyse an image at specific wavenumbers is
a desirable aspect in geophysical data analysis, where some a
priori information regarding the spectral range of wavenum-
bers detectable in a given data set can be used to reduce the
impact of unphysical, spurious or noisy results in 2DST anal-
ysis.

3.1 Measuring gravity wave properties

The 2DST S(τx,τy,kx,ky) of our specified wave field is a
four-dimensional (4-D) object. For each location in h(x,y),
a two-dimensional complex-valued image of the localised
spectral coefficients κ(kx,ky) is evaluated.

Figure 1 shows a specified wave field h(x,y) for which
the 2DST has been computed. The absolute magnitude of the
localised two-dimensional wavenumber spectrum |κ(kx,ky)|
is plotted for three different example locations. The coeffi-
cients of |κ(kx,ky)| can be directly interpreted as the under-
lying amplitudes of waves with wavenumbers kx and ky at
a given location in the specified wave field. As discussed in
previous studies (e.g. Wright and Gille, 2013; Wright et al.,
2015), there are likely to be multiple peaks in |κ(kx,ky)|
corresponding to overlapping waves at the same location in
h(x,y). Indeed, in Fig. 1b we examine a location in the spec-
ified wave field where a small, high-wavenumber wave is lo-
cated at the intersection of four lower-wavenumber waves.
The localised spectrum computed by the 2DST shown in the
foreground represents this feature well. The maximum spec-
tral response is located in a peak at high kx and ky wavenum-
bers, with four smaller spectral peaks at lower wavenumbers
with lower spectral responses.

A 4-D complex-valued function can be difficult to vi-
sualise. A more useful product might be a series of two-
dimensional images, the same size as the input image, that
contain the characteristics of the dominant wave at each loca-
tion. In the implementation presented here, we neglect over-
lapping waves and identify a single dominant wave for each
location in h(x,y).

For each such location, we record the complex coefficient
of κ(kx,ky) located at the spectral peak of |κ(kx,ky)|. This
yields one complex-valued image ξ(τx,τy), with the same
dimensions as the specified wave field h(x,y), which con-
tains the amplitude and phase of the dominant wave at each
location.

The location of the spectral peak in |κ(kx,ky)| also gives
us the wavenumbers kx and ky to which this peak coeffi-
cient corresponds. Hence, we can produce two further im-
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Figure 2. The specified wave field (a), containing synthetic waves numbered 1–8, for which our two-dimensional Stockwell transform anal-
ysis has been performed. The “reconstructed” wave field T ′2−DST, underlying wave amplitudes |T ′|2−DST, horizontal wavelengths λH and
directions θ (measured anticlockwise from the positive x direction) are shown in (b), (c), (d) and (e) respectively. Distances and wave-
lengths have units of kilometres and amplitudes have units of Kelvin. Panel (f) compares input and measured wavelengths (blue numbered
dots) and input and measured propagation angles (red numbered dots) for the eight synthetic waves. The dashed grey line in (f) shows 1 : 1
correspondence.

ages Kx(τx,τy) and Ky(τx,τy) which contain the dominant
wavenumbers at each location in the specified wave field to
which the coefficients of ξ(τx,τy) correspond.

Thus, in the three images ξ(τx,τy), Kx(τx,τy) and
Ky(τx,τy), we can measure the amplitudes, phases, wave-
lengths and propagation directions of the dominant wave fea-
tures at each location in our specified wave field.

Figure 2a shows our specified wave field h(x,y). The cen-
tral locations of the eight synthetic waves with unit ampli-
tudes and known wavelengths are numbered 1–8.

By taking the real part of the complex-valued image
ξ(τx,τy) containing the dominant coefficients, we can re-
cover a “reconstruction” of the specified wave field, which
is shown in Fig. 2b. This is made possible by the approach
described above in Sect. 3.1.

The 2DST identifies the different spectral regimes of the
specified wave field very well, but the reconstructed wave
amplitudes are reduced by comparison to their original val-
ues.

We suspect the main reason for the reduced amplitudes re-
lates to the “spreading” of spectral power in the transform.
Here, as is often the case for gravity waves in the real world,
our simulated waves form small wave packets, where wave
amplitude decreases around a central location. Such wave
packets are usually represented in the spectral domain as

some combination of wavenumber voices, in addition to the
dominant wavenumber of each of the packets, in order to ac-
curately describe their spatial properties. This means that the
spectral power of a single, non-infinite wave packet can be
spread across multiple wavenumber voices. Spectral leakage
can further contribute to this effect.

The Gaussian window in the 2DST is equal to 1 at its cen-
tral location but immediately falls away with increasing ra-
dius. This means that any spectral power contained in adja-
cent wavenumber voices, which is required to fully recon-
struct the wave, is reduced. When the inverse DFT is com-
puted, the recovered wave amplitude at this location is thus
often diminished.

A further reason for the diminished amplitude recovery in
Fig. 2b is due to wave undersampling. This undersampling
effect is worse for longer wavelengths, since fewer wave cy-
cles are present in the same-sized region of the image. The
wave undersampling limitations of the S-transform are well
understood in one dimension (Wright, 2010; Wright et al.,
2015).

Figure 2c shows the absolute magnitude of the complex-
valued image |ξ(τx,τy)|, which corresponds to the full un-
derlying amplitude of the dominant wave at each location.
This output is useful for defining regions of the specified
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wave field that do or do not contain clear and obvious wave
features (McDonald, 2012).

The horizontal wavelength λH (τx,τy)= (Kx(τx,τy)
2
+

Ky(τx,τy)
2)−1/2 of the dominant wave at each location is

shown in Fig. 2d. Again, the different regimes of each wave
in the specified wave field are clearly distinguished.

The direction of wave propagation θ(τx,τy), measured an-
ticlockwise from the x axis, is found as tan−1Kx

Ky
and plotted

as Fig. 2e. Note that θ(τx,τy) is subject to a ±π radian am-
biguity, which is reconciled with a priori information in our
AIRS analysis in Sect. 5.3.

To assess the effectiveness of our spectral analysis of the
specified wave field, we compare the known wavelengths
and propagation angles of the synthetic waves in the test
image with the 2DST-measured wavelengths and propaga-
tion angles in Fig. 2f. For each wave numbered 1–8, blue
dots show the input wavelength λIN against measured wave-
length λOUT, indicating that the 2DST measures the horizon-
tal wavelengths and propagation angles in the test image very
well. Generally, shorter wavelengths are well resolved but
longer wavelengths are slightly underestimated. This may be
due to the coarse spectral resolution of DFT-based methods
for waves with wavelengths that are a large fraction of the im-
age size, since such waves can be more susceptible to spectral
leakage problems.

4 An alternative spectral window

The use of the Gaussian window in the S-transform has some
convenient mathematical advantages; it is analytically simple
and has a definite integral over an infinite range. However,
when it is used for 2DST analysis an unfortunate side effect
of the Gaussian window is the poor recovery of wave ampli-
tude, discussed in the previous section. Although a Gaussian
is traditionally used, any suitable apodizing function may be
used, so long as its spatial integral is equal to unity (Stock-
well, 2007). For example, Pinnegar and Mansinha (2003)
used an asymmetric hyperbolic time-domain window for en-
hanced measurement of the onset times of one-dimensional
time series components.

In this section, we introduce a new spectral windowing
function for the 2DST. This new function takes the shape
of an ellipse in the wavenumber domain, and a first-order
Bessel function of the first kind J1(z) function with a scaled
1/z envelope in the spatial domain (for definition of z see
Eq. (14) below). For this reason we refer to this window
as the Elliptic–Bessel window. We find that when AIRS
measurements are analysed with the 2DST using this new
Elliptic–Bessel window in place of the traditional Gaussian,
the measurement of gravity wave amplitudes is greatly im-
proved. Spectral resolution is also improved slightly, without
adversely compromising spatial resolution.

4.1 The Elliptic–Bessel window

As discussed in Sect. 3.1, the spectral peaks in a DFT spec-
trum have a characteristic width, where the spectral power
is spread in a broad peak around the central wavenumber.
This spectral power is slightly reduced when a Gaussian win-
dow is applied, due to the immediate decrease in the Gaus-
sian function around the central location. The effect can be
mitigated, but not fully reconciled, by decreasing the scal-
ing parameter c, which broadens the Gaussian window in the
wavenumber domain. However, this decreases the width of
the spatial window, which increases the effect of wave un-
dersampling for low wavenumbers.

One solution to this problem is to use a window that is
an ellipse in the wavenumber domain. Here we introduce an
Elliptic–Bessel windowWeb, defined in the wavenumber do-
main as the ellipse

Web(αx,αy,kx,ky)=


0 for

(αx
a

)2
+

(αy
b

)2
>1

1 for
(αx
a

)2
+

(αy
b

)2
< 1

,

(12)

where a = |kx |/2πc and b = |ky |/2πc are the widths in
the αx and αy directions. We see that the semi-major and
semi-minor axes of this “voice ellipse” scale with angular
wavenumbers and are equal to the standard deviations of the
equivalent voice Gaussian window in Eq. (11).

A key feature of this new window is that, in the wavenum-
ber domain, it does not immediately decrease with displace-
ment from the central location but rather has a scalable el-
liptical region within which the function is equal to unity.
Thus, the window captures a much greater extent of the tar-
geted spectral peak at kx and ky , which can greatly improve
wave amplitude recovery compared to the traditional Gaus-
sian window. The width of Web can also be more carefully
adjusted using the scaling parameter c. This window can then
be used in place of the Gaussian windowing term in Eq. (10).

One requirement for any apodizing window used in the
Stockwell transform is that the spatial integral of the function
must be equal to unity. This is so that the spatial integral
of the Stockwell transform is equal to the Fourier transform
H(kx,ky) (Mansinha et al., 1997a), namely

∞∫
−∞

∞∫
−∞

S(τx,τy,kx,ky)dτx dτy =H(kx,ky), (13)

which has the useful result of making the 2DST fully invert-
ible (Stockwell, 1999, 2007).

The normalisation term |kx ||ky |/8π3c2 in the traditionally
used Gaussian window in Eq. (9) ensures that the Gaussian
window satisfies this requirement. To check that the Elliptic–
Bessel function is admissible as an apodizing function, we
must first find its spatial form, then check that its spatial in-
tegral is also equal to unity.
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Figure 3. Illustrative surface plots of the wavenumber-domain (top row) and spatial-domain (bottom row) forms of the traditional Gaus-
sian (a, c) and new Elliptic–Bessel (b, d) windowing functions used in the two-dimensional Stockwell transform for arbitrary wavenumbers
kx and ky and scaling parameter c. The semi-major and semi-minor axes of the Elliptic–Bessel window in (b) are equal to the correspond-
ing standard deviations of the Gaussian window in (a), where both windows have a central value equal to unity. In the spatial domain, the
Elliptic–Bessel window in (d) has a central value equal to half that of the Gaussian window in (c), both of which have spatial integrals equal
to unity. For details, see text.

The Elliptic–Bessel window Web(αx,αy,kx,ky) is easily
defined in the wavenumber domain as an ellipse, but its spa-
tial form, which we denote as web(x,y,kx,ky), is given as

web(x,y,kx,ky)=
|kx ||ky |

8π3c2
J1(z)

z
, (14)

where J1 is the first-order Bessel function of the first kind
(Abramowitz and Stegun, 1964) and

z=
1

2πc

√
k2
xx

2+ k2
yy

2.

A short derivation of the function in Eq. (14) is provided
in Appendix A1. Fortunately, the spatial integral of Eq. (14)
is indeed equal to unity, proof of which is presented in Ap-
pendix A2. This confirms that the Elliptic–Bessel window is
admissible as an apodizing function in the 2DST and vali-
dates its use in this study and beyond.

To recap our notation in this study, we have described
two windowing functions for the 2DST: the traditional
Gaussian and the new Elliptic–Bessel windows, which
we denote in the spatial domain as wg(x,y,kx,ky) and
web(x,y,kx,ky) respectively and in the wavenumber domain
as Wg(αx,αy,kx,ky) and Web(αx,αy,kx,ky) respectively,
where the Wg and Web are the Fourier transforms of wg and
web.

Figure 3 shows three-dimensional surface plots of the spa-
tial and wavenumber domain forms of the traditional 2-D
Gaussian and new Elliptic–Bessel windows used in the 2DST
here.

The surfaces in Fig. 3a and c show the wavenumber-
domain and spatial-domain forms of the Gaussian window,
for arbitrary wavenumbers kx and ky . As discussed above,
the maximum value of the Gaussian is equal to unity in the
wavenumber domain but equal to |kx ||ky |/8π3c2 in the spa-
tial domain such that its spatial integral is equal to unity.
This is a requirement of any windowing function in the S-
transform. The standard deviations of the wg and Wg scale
with wavenumbers kx and ky as described in Sect. 2.3 (Eqs. 9
and 11), providing the voice Gaussian.

Likewise, Fig. 3b and d show the wavenumber-domain
(Web) and spatial-domain (web) forms of the Elliptic–Bessel
window, for the same arbitrary wavenumbers kx and ky as
used for the Gaussian windows in panels a and c. The semi-
major and semi-minor axes of the elliptic region in Fig. 3b
are scaled with wavenumbers kx and ky and are equal to
the standard deviations of the equivalent Gaussian in Fig. 3a,
providing the voice ellipse.

The spatial-domain form of the Elliptic–Bessel window
web, described by a Bessel-shaped function within an en-
velope, is shown in Fig. 3d and described by Eq. (14). The
maximum value of web is |kx ||ky |/16π3c2, which ensures
that its spatial integral is equal to unity. This is equal to
half of the maximum value of the equivalent Gaussian in
Fig. 3c, since the terms involving z in Eq. (14) tend to 1/2
as x→ 0 and y→ 0. The width of the central region of web
is very slightly wider than the equivalent Gaussian, resulting
in slightly coarser spatial resolution. However, the ability to
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Figure 4. Orthographic projection of AIRS brightness temperature perturbations T ′AIRS (a) from a granule over the Southern Andes at
05:30 UTC on 24 May 2008, with “reconstructed” temperature perturbations T ′2−DST and horizontal wavelengths λH computed using the
2DST with three different windowing approaches: (b, e) a Gaussian window with scaling parameter c = 1, (c, f) a Gaussian window with
c = 0.25 and (d, g) the Elliptic–Bessel window with c = 0.25.

“tune” the 2DST with the scaling parameter c ensures that
this effect can be compensated by a reasonable trade-off.

In the next section we show that the use of the Elliptic–
Bessel window in the 2DST, in place of the traditional Gaus-
sian window, significantly improves wave amplitude recov-
ery. This is very useful for our analysis of AIRS data in
Sect. 5.

4.2 Invertibility

A very convenient aspect of the S-transform is its invertibil-
ity. Since we have shown here that both the traditional Gaus-
sian and new Elliptic–Bessel windows have spatial integrals
equal to unity, the 2DST can be completely inverted to re-
cover the original 2-D image, whichever of these windows
or real non-zero positive values of the scaling parameter c
are used. Note that a traditional 1-D or 2-D CWT does not
necessarily have this capability. The fact that we can achieve
such flexibility in spatial–spectral resolutions by swapping
windows or by adjusting c, yet still retain the capability of
inversion, further highlights the strength of the 2DST as a
tool for spatial–spectral analysis of geophysical data.

Unfortunately, to take full advantage of DFT algorithms
and the inversion capability of the 2DST for AIRS data, we
must compute the 2DST using all permitted wavenumber
voices in both dimensions. This requires nearly 12 000 in-
verse DFT calculations for each AIRS granule using the tra-
ditional voice-by-voice implementation described here, the
computational load of which could be quite impractical for

large-scale studies. Interpolating AIRS measurements to a
coarser resolution with fewer pixels could be one solution to
reduce computational cost, but this will obviously undersam-
ple short horizontal wavelengths in the data. Faster methods
for computing the S-transform have been developed (Brown
et al., 2010) which may increase practicality in the future.
Other steps, such as avoiding programming loops and ensur-
ing that any 2-D objects to be transformed have dimensions
that are powers of two, may also reduce relative computa-
tional expense.

4.3 The effect of window choices on AIRS analysis

Figure 4 shows an AIRS granule over the Southern Andes
measured on 24 May 2008, analysed using the 2DST with
three different windowing approaches.

In Fig. 4b and e, we use a Gaussian windowing function
with the scaling parameter c set to 1. This is the window usu-
ally used in 1DST implementations. We see that, as discussed
above, this choice of window is only able to recover the very
general, long-horizontal wavelength features of the granule,
with poor spatial localisation and significantly reduced am-
plitude. This is due to a large proportion of the spectral re-
sponse being lost by the windowing Gaussian when applied
to two dimensions.

We can reduce the impact of this by decreasing the scaling
parameter c, which broadens (narrows) the spectral (spatial)
window. This provides improved amplitude recovery and im-
proved spatial localisation at the expense of spectral localisa-
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tion (Fritts et al., 1998). Since we only select a single domi-
nant spectral peak for each location on the granule, this is ac-
ceptable for our purposes. The “reconstructed” perturbations
and horizontal wavelengths (Fig. 4c and f) are now much
more representative of the wave features in the granule.

One problem remains, however. By decreasing c, we nar-
row our spatial window. In regions where wave amplitudes
are low, such as the bottom-left corner of Fig. 4a, this narrow
Gaussian window starts to undersample long wavelengths,
such that only very short wavelengths are attributed to the re-
gion. The Elliptic–Bessel window used in Fig. 4d and g per-
forms better at recovering the underlying larger-scale struc-
ture of the granule, without defaulting to the small-scale
noisy variations. Amplitude recovery at all wavelengths is
also improved over either of the Gaussian approaches.

In the general case, these low-amplitude, small-scale vari-
ations are unlikely to be due to gravity waves with vertical
wavelengths visible to AIRS, so their recovery is something
we try to avoid. Furthermore, such wavelengths are very
close to or at the Nyquist limit for these data. Our confidence
in their measurement is thus very low, yet the momentum
fluxes they transport can dominate. We discuss this further in
Sect. 5.4.

For the windowing functions considered, it is clear from
Fig. 4 that the scaling parameter c has a significant effect
in determining the spatial–spectral localisation capabilities
of the 2DST. The Elliptic–Bessel windowing function, with
a scaling parameter of c = 0.25, was selected for our AIRS
analysis in the next section. This choice provided the best
trade-off between spatial and spectral localisation of different
wave regimes in AIRS measurements.

As discussed in Sect. 3.1, the 2-D images ξ(τx,τy),
Kx(τx,τy) and Ky(τx,τy) contain the dominant measured
wave amplitudes and wavelengths at each location on the
granule. These images are computed on a pixel-by-pixel ba-
sis, selecting a single monochromatic wave with the largest
amplitude in the localised spectrum for each pixel.

As a result, the reconstructed images shown in Fig. 4b–
d, computed by taking the real part of the complex image
ξ(τx,τy), will never be perfect representations of the input
data, but they will provide a “best guess” of the dominant
features of the granule.

Since we have shown that the 2DST is fully invertible
for both the Gaussian and Elliptic–Bessel windowing ap-
proaches (Sect. 4 and Appendix A), a complete reconstruc-
tion of the input image is of course producible by taking the
“inverse” of the full 4-D 2DST object, but here we desire 2-D
“maps” of wave properties, so a best guess method is used.

A possible quantitative metric to assess the first-order ef-
fectiveness of our 2DST analysis in Fig. 4 could be to com-
pare the variance of the input image with the variances of
each of the reconstructions. However, since the reconstruc-
tions are computed as a best guess method on a pixel-by-
pixel basis, their total variance is not readily related to the
total variance of the input image and thus may not be mean-

ingful as a comparison. Furthermore, such use of the image
variance would only be appropriate if the distribution of per-
turbations was unimodal and ideally Gaussian, which is not
the case for an image of a sinusoidal wave. In practice, how-
ever, we generally expect the variance of the reconstruction
not to exceed the variance of the input image, since wave
amplitudes computed on a pixel-by-pixel basis from a lo-
calised spectrum will usually be underestimated for the rea-
sons given in Sect. 3.1.

It is not impossible that in some rare cases the total vari-
ance of the reconstruction could exceed the total variance of
the input image, for example due to the spatial extent of a
wave feature being slightly overestimated. If the localised
spectrum for one pixel is affected a larger-amplitude wave
feature in one of its neighbouring pixels, this can result in
subtle artificial “borders” between different wave regimes
in the reconstructions. This is not a limitation of the 2DST
itself, but arises in the somewhat forced extraction of lo-
calised gravity wave parameters contained in the 4-D Stock-
well transform object S(τx,τy,kx,ky) in order to produce the
2-D image. This effect should be carefully considered in fu-
ture work to ensure wave properties are not over-represented.

5 AIRS gravity wave analysis using the 2DST

In this section, we use our 2DST-based method to perform
gravity wave analysis on two-dimensional granules of AIRS
radiance measurements, comparing our analysis to that of
previous studies. We use the 2DST to measure gravity wave
amplitudes, horizontal wavelengths, and directions of prop-
agation. We then use ECMWF-derived wind speeds and the
assumption of an orographic wave source to infer vertical
wavelengths and make estimates of gravity wave momen-
tum flux (the vertical flux of horizontal pseudomomentum)
by closely following the method of Alexander et al. (2009).

5.1 AIRS granule selection and pre-processing

The first AIRS granule selected for our study is granule 32
of 6 September 2003, over South Georgia. The second gran-
ule is a 135-pixel swath over the intersection between gran-
ules 39 and 40 on 2 August 2010, located over the Antarctic
Peninsula and Drake Passage.

Alexander et al. (2009) and Hoffmann et al. (2014) per-
formed an analysis of these AIRS granules over South
Georgia and the Antarctic Peninsula respectively. Their
studies measured wave amplitudes, horizontal wavelengths
and wave propagation directions using a 1-D S-transform
method, as described by Alexander and Barnet (2007). In
their method, the 1-D S-transform is computed for each
cross-track row. Then, covariance spectra are computed be-
tween pairs of adjacent cross-track rows to measure phase
shifts in the along-track direction, from which along-track
wavelengths can be inferred. To find the dominant wave fea-
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tures in a granule, these co-spectra are averaged together and
up to five spectral peaks are found in this averaged spectrum.
This approach can provide computationally fast, first-order
gravity wave analysis of AIRS granules, and it has been used
in numerous other studies (e.g. Alexander and Teitelbaum,
2011; Alexander and Grimsdell, 2013; Wright et al., 2016a).

One limitation of this method is that the phase difference
measurements required to recover along-track wavenumbers
can introduce a strong cross-track bias in resolved features,
since the S-transform is only computed in the cross-track di-
rection. In addition, waves which occupy only small regions
of the granule in the along-track direction may also be under-
represented in the averaged co-spectrum. Furthermore, se-
lecting no more than five dominant waves in the averaged co-
spectrum implicitly limits the maximum number of available
along-track wavenumber voices to no more than five for each
location on the entire granule. The use of a 2DST is a logical
solution to each of these problems. With the increased conve-
nience of computational power since the study of Alexander
and Barnet (2007), the 2DST now represents a more practical
alternative to the one-dimensional method.

Before implementing the 2DST, each granule of bright-
ness temperature perturbations is interpolated onto a regu-
larly spaced grid with approximately 17.7 and 20.3 km sep-
arating adjacent pixels in the along-track and cross-track di-
rections respectively. In the centre of the AIRS swath, the
resolution of this regularly spaced grid closely matches the
spatial resolution of AIRS, so very little if any information
is lost. Towards the edge of the swath, this grid is finer than
the spatial resolution than AIRS, but the grid points will not
exactly match the location of the AIRS footprints. A useful
graphic of typical AIRS footprints can be found in Hoffmann
et al. (2014, their Fig. 2).

As a result of using DFT algorithms, the maximum num-
bers of permitted wavenumber voices available in the along-
track and cross-track directions are limited to NAT− 1 and
NXT− 1, where NAT and NXT are the number of pixels in
the along-track and cross-track directions (135 and 90 re-
spectively). These wavenumber voices have corresponding
wavelengths that are integer fractions of the total along-track
and cross-track dimensions of the granule. Here, we compute
the 2DST for wavelengths greater than around 40 km. This is
just over twice the Nyquist-sampling distance between AIRS
pixels after interpolation onto our regular grid. The zeroth
frequencies are omitted. Increased along-track spectral reso-
lution at low wavenumbers can be obtained by applying the
2DST to two or more adjacent granules, thus increasing the
number of along-track pixels.

5.2 AIRS gravity wave properties measured by the
2DST

The results of our 2DST analysis of the selected AIRS gran-
ules over South Georgia and the Antarctic Peninsula are
shown in Figs. 5 and 6 respectively.

In both Figures, panel a shows the brightness tempera-
ture perturbation measurements calculated as described in
Sect. 2.1. Note that the colour scale is chosen so as to make
wave perturbations clearer by eye, but at some locations it is
saturated.

Clear wave-like perturbations are observed in both gran-
ules directly over and to the east of the mountain ranges. As
in previous work, such clear wave-like perturbations are at-
tributable to gravity waves with a high degree of certainty.

Reconstructed 2DST temperature perturbations T ′2−DST
are shown in panel b. These are found by taking the real
part of the complex 2DST object ξ(τx,τy) as described in
Sect. 3.1.

The image T ′2−DST shows the dominant wave features in
the granule reconstructed using only the pre-defined range of
permitted wavenumber voices in the 2DST. Since we only
consider the coefficients of the dominant wavenumber at
each location, this reconstruction cannot be perfect, but it
provides a visual inspection of how well the 2DST outputs
represent the dominant wave characteristics of the granule.
The T ′2−DST image can be used to “fine-tune” the 2DST by
changing the windowing function, by adjusting the scaling
parameter c or by redefining the range of frequency voices
until the desired outcome is achieved. Such fine-tuning flex-
ibility cannot be so easily achieved using the 1DST method.

Generally, the agreement between reconstructed wave fea-
tures in Fig. 5b and AIRS measurements in Fig. 5a is
very good, but some uncertainties remain. As discussed in
Sect. 4.3, there is some discrepancy regarding the spatial ex-
tent of some wave features, such as a small positive wave
crest located just south-west of South Georgia which appears
to be located slightly east, with an apparently slightly over-
estimated amplitude, than is observed in the AIRS measure-
ments. Conversely, at 63◦ S, 28◦W, a positive bow-shaped
wave crest is observed in the AIRS measurements but is un-
derestimated in the reconstruction. As mentioned in Sect. 4.3,
these small misrepresentations are not a limitation of the
2DST itself but rather the forced extraction of gravity wave
parameters from the 4-D S-transform object in order to cre-
ate the 2-D reconstruction, where only one single wave fea-
ture with the largest localised spectral amplitude is assigned
at each location. The overall agreement is still very good, but
future work to improve the extraction of gravity wave param-
eters from the 4-D S-transform object may help to resolve
some of these discrepancies.

Figures 5c and 6c show full underlying wave amplitudes
|T ′|2−DST for each granule. This is found by taking the abso-
lute magnitude of the complex 2DST object ξ(τx,τy) as de-
scribed in Sect. 3.1. This property provides us with a useful
metric with which to define regions of the granule which do
or do not contain wave-like perturbations, such that we can
limit spurious detections (e.g. McDonald, 2012). In Figs. 5h
and 6c–h, we exclude regions of each granule where the un-
derlying wave amplitude is more than 1 standard deviation
below the mean underlying wave amplitude of the granule.
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Figure 5. Orthographic projections of a granule of AIRS brightness temperature measurements T ′AIRS (a) over South Georgia at around
03:00 UTC on 6 September 2003 and selected outputs (b–e) of our 2DST analysis using the Elliptic–Bessel window. This granule was
also analysed by Alexander et al. (2009) (their Fig. 3) using a one-dimensional S-transform method. The 2DST outputs shown here are
reconstructed brightness temperature perturbations T ′2−DST (b), underlying wave amplitudes |T ′|2−DST (c), horizontal wavelengths λH (d)
and wave propagation directions θ (e) in degrees anticlockwise from the east. Also shown are mean wind speed parallel to the horizontal
wavenumber vectorsU || (f) from ECMWF operational analyses at z≈ 40 km, vertical wavelengths λZ (g) and the magnitude of the horizontal
component of vertical momentum flux |MF|x,y (h). Black arrows in (f) and (h) show the horizontal direction of U || and |MF|x,y respectively.
For details, see text.

In Fig. 5c–g, we do not exclude such regions for discussion
purposes, so as to provide an example of the data we would
otherwise omit.

Figures 5d and 6d show absolute horizontal wavelengths
λH = 2π(k2

AT+ k
2
XT)
−1/2, where kAT and kXT are the along-

track and cross-track angular wavenumbers respectively. We
can see that these horizontal wavelengths clearly define dif-
ferent regimes of the dominant wave features of the gran-
ules, as in the test case in Sect. 3.1, though the AIRS data
are more complex. In the South Georgia granule in Fig. 5d,
we see that the island lies within a wave field where long
horizontal wavelengths are dominant around and to the east
of the island over the ocean, with their wavenumber vectors
aligned roughly parallel to the direction of the mean flow.
This is characteristic of a wing-shaped mountain wave field
(Alexander and Grimsdell, 2013) and is in good agreement
with visual inspection of the granule itself.

In Figs. 5e and 6e, we show the orientation of the horizon-
tal wavenumber vector measured anticlockwise from east. θ
is calculated by first projecting the along-track and cross-
track wavenumber vectors kx and ky into their zonal and

meridional components k and l using the azimuths of the
along-track and cross-track directions at each location on
the granule, then taking θ = tan−1 ( l

k

)
. Note that θ only de-

scribes the orientation and not the true horizontal direction
of propagation of the wavenumber vectors, which retain a
±180◦ ambiguity that we break below.

In the South Georgia granule (Fig. 5), we see that our
2DST measurements in the southern region of the granule are
largely dominated by small-scale, low-amplitude, short hor-
izontal wavelength features with random directions of prop-
agation. Most of these features are likely to be due to noise
and not attributable to coherent wave structures. By using a
threshold amplitude, such regions are effectively removed,
leaving well-defined regions with clear wavelike perturba-
tions. The contribution of small-scale features that remain
after this step is discussed further in Sect. 5.4.
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Figure 6. As Fig. 5 but for AIRS measurements over the Antarctic Peninsula around 04:00 UTC on 2 August 2010. These measurements
were also analysed by Hoffmann et al. (2014, their Fig. 8) using a one-dimensional S-transform method. Here, regions in (c–h) where the
underlying wave amplitude |T ′|2−DST is less than 1 standard deviation below the mean are coloured white.

5.3 Momentum fluxes

Here we make estimates of gravity wave momentum flux for
the dominant wave-like features measured by the 2DST in
our selected granules, following the method of Alexander
et al. (2009).

Ern et al. (2004) showed that the zonal and meridional
components of gravity wave momentum flux MFx and MFy
can be given by

(
MFx,MFy

)
=
ρ

2

( g
N

)2
(
T ′a

T

)2(
k

m
,
l

m

)
, (15)

where ρ is density at a height of 40 km, g is the acceler-
ation due to gravity, N is the buoyancy frequency, T ′a is
the attenuation-scaled full underlying wave amplitude, T is
the background temperature and k, l and m are wavenum-
bers in the zonal, meridional and vertical directions respec-
tively. Equation (15) assumes the mid-frequency approxi-
mation (Fritts and Alexander, 2003, their Sect. 2.1), which
is valid for a large portion of the observable gravity wave
spectrum. For these waves, m2

� (k2
+ l2) and Coriolis ef-

fects are negligible, as is the case for nearly all waves mea-
sured here due to the size of the AIRS beam footprint (Hoff-
mann et al., 2014) and the vertical weighting function of the
667.77 cm−1 channel (Alexander and Barnet, 2007). When
compared with momentum fluxes calculated without mak-

ing the mid-frequency approximation, Ern et al. (2004) found
discrepancies typically not exceeding around 10 %.

We also have a ±180◦ ambiguity in direction of propaga-
tion, which we break by assuming the waves in our granules
always propagate against the mean flow. One last variable in
Eq. (15) is vertical wavenumber m= 2π/λZ . Under the as-
sumption that the waves are upwardly propagating mountain
waves with ground-based phase velocity equal to 0, λZ is
given as

λZ ≈
2πU ||
N

, (16)

where U || is the component of the mean wind speed parallel
to the wave’s horizontal wavenumber vector (Eckermann and
Preusse, 1999). U || is found by projecting the mean wind
vector U in the direction of the wave propagation angle θ
shown in Figs. 5e and 6e.

Figures 5f and 6f show U || coincident with each granule at
an altitude of 40 km from ECMWF operational analyses, pro-
jected onto each granule’s regular grid. Orange contours and
black arrows show the magnitude and direction ofU || respec-
tively. Vertical wavelength λZ is shown in Figs. 5g and 6g.

Towards the south-eastern corner of both granules, mean
wind speeds become quite weak. As they fall below around
40 m s−1, vertical wavelengths start to drop below the ver-
tical resolution limit of the AIRS channel. The wave field
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may continue into this region, but the vertical wavelengths
may be too short to be resolved such that wave amplitudes
are attenuated to below the ambient noise level. This is par-
ticularly clear in the Antarctic Peninsula granule, where de-
tectable wave fronts abruptly terminate just as U || begins to
fall below 30 m s−1.

No further wave amplitude attenuation corrections were
applied to regions where vertical wavelengths are inferred
to be below 12 km, since this is beyond the resolution limit
of the weighting function of the 667.77 cm−1 channel. It
should be noted, however, that although theoretically valid,
the attenuation correction applied here can in some cases in-
crease wave amplitudes by perhaps an order of magnitude
or more, despite being significantly susceptible to errors in
wind speed, wave direction or both. This correction should
be applied with caution, and the effects of its inclusion are
discussed below and in Sect. 5.4.

In the South Georgia granule, peak momentum flux val-
ues of more than 500 mPa are associated with a small region
of large amplitude and short horizontal wavelength wave fea-
tures, located toward the south-eastern tip of the island. In the
Antarctic Peninsula granule, momentum fluxes of a few hun-
dred millipascals are generally co-located with the clearly
visible wave structures in the raw brightness temperature per-
turbations just downwind of the peninsula.

The key strength of the results presented here is the much-
improved spatial–spectral localisation and resolution capa-
bilities provided by full two-dimensional treatment of the
AIRS data. Confidence in the accuracy of subsequent mea-
sured quantities in our 2DST-based analysis is thus greatly
improved over previous 1-D S-transform-based methods.
Understandably, the former is more computationally inten-
sive than the latter, and this should be considered if data sets
are large or computational resources are limited.

Although the magnitude, direction and distribution of mo-
mentum fluxes in both granules are broadly in line with pre-
vious AIRS gravity wave studies in the region (e.g Alexander
and Teitelbaum, 2007; Alexander et al., 2009; Alexander and
Teitelbaum, 2011), momentum flux magnitudes are much
higher than those observed in studies using limb-sounder
data sets (e.g. Ern et al., 2004, 2011; Alexander et al., 2008;
Geller et al., 2013; Hindley et al., 2015; Wright et al., 2016a),
which generally do not exceed a few tens of mPa in this
region. While we would not expect the magnitude of these
fluxes to be the same as those observed by limb sounders
(firstly, nadir-sounding instruments are generally more sen-
sitive to waves with longer vertical wavelengths and hence
higher momentum fluxes due to the deep vertical weighting
function (Alexander and Barnet, 2007); secondly, momen-
tum flux estimates from limb sounders are typically lower-
bound estimates due to the projection of horizontal wave-
lengths (Ern et al., 2004); and, thirdly, wavelength-dependent
wave amplitude attenuation corrections are not generally ap-
plied to limb-sounder results), we note that our results and
those of other AIRS gravity wave studies in this region,

which use a correction factor for wave amplitude attenuation
based upon a vertical wavelength estimation, are substan-
tially higher. This effect and its implications are discussed
in the next section.

5.4 Small-scale perturbations and the attenuation
correction

In the implementation of any spectral image processing, it
is important to strike a balance between accurate measure-
ment of the desired properties and the spurious interpretation
of noise. One of the advantages of AIRS measurements is
the high horizontal resolution of the data. With the close ex-
ception of the Infrared Atmospheric Sounding Interferometer
(IASI; e.g. Clerbaux et al., 2009), currently no other space-
borne instrument can measure stratospheric gravity waves
with comparable horizontal resolution to AIRS. Therefore,
accurate measurement of resolved waves with horizontal
wavelengths close to the AIRS resolution limit are of great
importance. Such short horizontal wavelength waves, if reli-
ably resolved, will generally carry higher momentum fluxes
via Eq. (15). However, as we approach the resolution limits
of AIRS measurements and our spectral methods, our con-
fidence in the accuracy of our measurement of such waves
decreases.

In Fig. 5, our 2DST analysis resolves a very small region
of short horizontal wavelengths over the south-eastern tip of
South Georgia. Wave perturbations in this small region are
just a few pixels across, but their uncorrected brightness tem-
perature perturbations are large, with peaks of order 5–6 K.
If these perturbations were located almost anywhere else on
the granule we would likely attribute them to retrieval noise.

However, gravity waves with very short horizontal wave-
lengths, tightly packed in a region immediately downwind of
a mountainous island, are in good agreement with mountain
wave theory. Examples of such waves can be found in, for
example, the modelling studies of Shutts and Vosper (2011)
and Alexander and Teitelbaum (2011). If these waves are in-
deed real, their accurate measurement is of great importance.

An added complication is introduced as a result of the
mountain wave assumption used. Since these waves are only
a few pixels across, their directions of propagation are dif-
ficult to define, introducing a random element. The compo-
nent of the mean wind parallel to the horizontal wavenum-
ber vector can thus be very low, which decreases the vertical
wavelength estimate, which in turn increases the attenuation
correction applied to the observed temperature perturbations.
This attenuation correction can increase temperature pertur-
bations by 400 % or more which, since momentum flux is
proportional to the square of wave amplitude, can increase
our estimate of momentum flux to extremely large values.

Thus, by applying a correction factor for wave amplitude
attenuation, very small-scale low-confidence perturbations
can yield extremely high momentum fluxes which can domi-
nate the momentum budget of the entire granule if the moun-

Atmos. Meas. Tech., 9, 2545–2565, 2016 www.atmos-meas-tech.net/9/2545/2016/



N. P. Hindley et al.: A 2-D Stockwell transform for AIRS gravity wave analysis 2559

Figure 7. As Figs. 5h and 6h but for estimates of the magnitude
of gravity wave momentum flux over South Georgia (a) and the
Antarctic Peninsula (b) calculated without correcting for attenua-
tion of wave amplitude as discussed in Sect. 5. Momentum fluxes
less than 0.5 mPa are coloured white.

tain wave assumption is used, correctly or otherwise. This is
evident in the South Georgia granule studied by Alexander
et al. (2009) and shown in our Fig. 5, where peak momen-
tum fluxes are localised over only a few large-amplitude pix-
els just over the south-eastern tip of the island. In Fig. 5h,
the flux peaks at almost 1000 mPa for one pixel in this small
region, though the colour scale is saturated. Whether these
fluxes are real or not, they can nevertheless be extremely
large and should be approached with caution.

Figure 7a and b show gravity wave momentum fluxes over
the South Georgia and Antarctic Peninsula granules as shown
in Figs. 5 and 6, only with fluxes calculated without scaling
the temperature perturbations for attenuation as described in
Sect. 5. The highest momentum flux values in Fig. 7a and b
are around 70 and 30 mPa respectively, located within small
regions in the wave field where the colour scale is saturated.

As is expected, these values are much lower than those cal-
culated using the attenuation-corrected wave amplitudes.

If these extremely high fluxes correspond to real waves,
then their measurement is of crucial importance. However,
if such perturbations are simply instrument noise and their
fluxes are spurious, then the biases and errors introduced by
their inclusion in broader studies could be very large.

Without a priori knowledge of the wave environment,
which is most readily gained by visual inspection of the
AIRS measurements, it would be unwise to include the fluxes
from these small-scale perturbations in any automated anal-
ysis. Indeed, Wright et al. (2015) suggest that when AIRS
granules are pre-smoothed with a boxcar of width 3 pixels,
resolved momentum fluxes calculated using the method of
Alexander et al. (2009) can be reduced by a order of magni-
tude. This suggests that these small-scale, high-momentum
flux features are reasonably common and can impact larger-
scale momentum flux estimates, either realistically or spuri-
ously.

Further work investigating this problem is encouraged.
Pre-smoothing granules so as to exclude these perturbations
(Wright et al., 2015, 2016b) is one solution. Excluding even
more wavenumber voices corresponding to short horizon-
tal wavelengths from our 2DST analysis is another solution.
However, in cases such as the South Georgia granule pre-
sented in Fig. 5, where such perturbations may well be phys-
ical, this exclusion can reduce peak momentum fluxes by or-
ders of magnitude, introducing a systematic low bias and thus
further uncertainty.

6 Summary and conclusions

In this study, we have applied the 2DST to granules of AIRS
measurements, extracting gravity wave amplitudes, wave-
lengths and directions of propagation. Our 2DST method
builds upon the work of Alexander and Barnet (2007), who
used the 1-D Stockwell transform for the same purpose.
Their method can introduce a strong cross-track bias prob-
lem, which we solve by using a full 2DST.

We first define our 2DST implementation and test it on a
specified wave field containing synthetic waves with known
amplitudes, wavelengths and directions of propagation. We
find that the 2DST provides very good spatial representation
of the dominant spectral components of the specified wave
field, accurately measuring wavelengths and orientations of
all the synthetic waves.

Due to the spread of spectral power in the spectral domain
and wave undersampling in the spatial domain, we find that
localised wave amplitudes as measured by the 2DST are re-
duced by more than a factor of two when the typical Gaus-
sian windowing function is used in the Stockwell transform.
We compensate for this by decreasing the scaling parameter
c and by replacing the Gaussian window with a new alterna-
tive Elliptic–Bessel window, which we test on a granule of
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AIRS measurements over the southern Andes. We find that
this new spectral window provides a better balance between
spatial–spectral localisation and the accurate measurement of
wave amplitudes. Wave amplitude recovery is thus improved
to around 80 to 90 % of input values. We also demonstrate
that this new window is indeed valid for use in the 2DST by
showing its spatial integral is equal to unity.

Next, we measure gravity wave amplitudes, horizontal
wavelengths and directions of propagation in two granules of
AIRS measurements over South Georgia and the Drake Pas-
sage/Antarctic Peninsula region. Our 2DST method signifi-
cantly improves two-dimensional representation of the dom-
inant spectral features of the granules over previous 1DST
methods. These spectral features are directly measured in
both dimensions simultaneously for each location of the
granule, without the introduction of potential biases caused
by the use of averaged co-spectra. This is a clear advantage
over previous methods.

Another key advantage of our 2DST method is the abil-
ity to visually inspect the quality of our spectral analysis. By
taking the real parts of the dominant localised spectral coeffi-
cients at each location, a reconstruction of the granule can be
created. This can be used to fine-tune the adjustable param-
eters and provide a useful sanity check on the performance
of the 2DST. Future work may involve comparing this out-
put to the original data via a variance argument or similar,
such that we can obtain a quantitative measure of the quality
of the 2DST analysis for quality control purposes in larger-
scale studies.

To conclude, our new 2DST-based gravity wave analysis
method for AIRS data makes significant improvements over
current methods in several key areas, and we would advocate
its use in future work.
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Appendix A: Admissibility of the Elliptic–Bessel
window in the Stockwell transform

In Sect. 4 we introduced the Elliptic–Bessel window as a new
apodizing function for the 2DST. One requirement for any
apodizing function for use in the Stockwell transform is that
its spatial sum must be equal to unity. If this condition is
satisfied, the spatial sum of the 2DST is equal to the 2-D
Fourier transform, making the 2DST fully invertible.

In this appendix we demonstrate that the Elliptic–Bessel
window is admissible as an apodizing function in the S-
transform. To do this, we must first find the spatial analogue
of the wavenumber-domain ellipse we defined in Eq. (12).
We must then take the spatial integral of this function to
demonstrate that it is equal to unity.

A1 The Elliptic–Bessel window in the spatial domain

The Elliptic–Bessel window is defined in the wavenumber
(αx,αy) domain as

Web(αx,αy,kx,ky)=


0 for

(αx
a

)2
+

(αy
b

)2
>1

1 for
(αx
a

)2
+

(αy
b

)2
< 1

,

(A1)

where a = |kx |/2πc and b = |ky |/2πc are the half-widths of
the ellipse in the αx and αy directions (see Fig. 3b). The
spatial-domain form of the Elliptic–Bessel window, denoted
here by web(x,y,kx,ky), is found by taking the inverse 2-D
Fourier transform of Eq. (A1) as

web(x,y,kx,ky) (A2)

= F−1
x F−1

y

[
Web(αx,αy,kx,ky)

]
=

1
4π2

∞∫
∞

∞∫
∞

Web(αx,αy,kx,ky)e
i(αxx+αyy) dαx dαy .

Since Web(αx,αy,kx,ky)= 1 within the ellipse and 0 ev-
erywhere else, and has double symmetry, we can change the
limits of integration to be the boundaries of the ellipse, ex-
pressing the total integral as a sum of four equal quadrants:

web(x,y,kx,ky)=

4
4π2

√
b2−

α2
xb

2

a2∫
0

a∫
0

ei(αxx+αyy) dαx dαy . (A3)

We then recognise that the exponential term in the trans-
form above can be replaced with sine and cosine functions

as

ei(αxx+αyy)

=(cos(αxx)+ i sin(αxx))
(
cos(αyy)+ i sin(αyy)

)
=cos(αxx)cos(αyy)+ i sin(αxx)cos(αyy)
+ i sin(αyy)cos(αxx)− sin(αxx)sin(αyy). (A4)

We can omit the last three sin() terms in Eq. (A4) since,
due to the symmetry of the sine function around (0,0), each
term will eventually sum to 0. We can then rewrite Eq. (A3)
as

web(x,y,kx,ky)=

4
4π2

√
b2−

α2
xb

2

a2∫
0

a∫
0

cos(αxx)cos(αyy)dαx dαy . (A5)

This integral can be further simplified if we switch to polar
coordinates using the substitutions αx = ar cos(φ) and αy =
br sin(φ) after which the expression in Eq. (A5) becomes

web(x,y,kx,ky)=

ab

4π2

2π∫
0

1∫
0

cos(arx cos(φ))cos(bry sin(φ)) r dr dφ. (A6)

Next we substitute A= arx and B = bry and, using mul-
tiple angle formulae, rewrite Eq. (A6) as

web(x,y,kx,ky)

=
ab

4π2

1∫
0

r

2π∫
0

cos(Acos(φ))cos(B sin(φ)) dφ dr

=
ab

8π2

1∫
0

r

2π∫
0

[cos(Acosφ+B sinφ)

+ cos(Acosφ−B sinφ)] dφ dr

=
ab

8π2

1∫
0

r

2π∫
0

[cos(
√
A2+B2 cos(φ−3)

+ cos(
√
A2+B2 cos(φ+3)]dφ dr, (A7)

where 3= tan−1(B/A). Here, 3 is simply an arbitrary
phase due to the periodicity of the cosine function when in-
tegrated over 0 to 2π , so the integrals of both terms in the
square brackets in Eq. (A7) will be equal. Hence we can sim-
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ply add these terms such that we have

web(x,y,kx,ky)=

ab

8π2

1∫
0

r

2π∫
0

2cos
(√
A2+B2 cosφ

)
dφ dr. (A8)

Next we recall the integral definition of the zeroth-order
Bessel function of the first kind J0(x) (Abramowitz and Ste-
gun, 1964) given as

J0(x)=
1

2π

2π∫
0

cos(x cosφ) dφ (A9)

and substitute into Eq. (A8) and reintroduce our substitutions
of A= arx and B = bry to give

web(x,y,kx,ky)=
ab

2π

1∫
0

J0

(
r

√
a2x2+ b2y2

)
r dr. (A10)

We now use a new substitution that ξ = r
√
a2x2+ b2y2

and rewrite Eq. (A10) as

web(x,y,kx,ky)=
ab

2π

√
a2x2+b2y2∫

0

ξJ0(ξ)

a2x2+ b2y2 dξ. (A11)

Next we use the standard result (e.g. Abramowitz and Ste-
gun, 1964) that

x2∫
x1

x J0(x)dx = xJ1(x)

∣∣∣x2

x1
(A12)

to rewrite Eq. (A11) as

web(x,y,kx,ky)=
ab

2π
ξJ1(ξ)(

a2x2+ b2y2
) ∣∣∣√a2x2+b2y2

0

=
ab

2π

J1

(√
a2x2+ b2y2

)
√
a2x2+ b2y2

. (A13)

Finally, recalling that a = |kx |/2πc and b = |ky |/2πc are
the half-widths of the original ellipse in Eq. (A1), we now
can write the analytical expression for the spatial form of the
Elliptic–Bessel window as

web(x,y,kx,ky)=
|kx ||ky |

8π3c2
J1(z)

z
, (A14)

where

z=
1

2πc

√
k2
xx

2+ k2
yy

2.

This spatial-domain form of the Elliptic–Bessel window in
Eq. (A14) is plotted in Fig. 3d.

Equation (A14) describes a J1(z) function within a scaled
1/z envelope. Because of this, the terms involving z in
Eq. (A14) converge to 1/2 as x→ 0 and y→ 0, such
that the central region of the function has peak value of
|kx ||ky |/ 16π3c2, as shown in Fig. 3d. Interestingly, this
value is equal to half the peak value of the equivalent Gaus-
sian window shown in Fig. 3c. The central peak of the
Elliptic–Bessel window is also, for each frequency voice,
slightly broader than that of the equivalent voice Gaussian.

A2 Spatial integral of the Elliptic–Bessel window

Now that we have found an analytical expression for
the spatial-domain form of the Elliptic–Bessel window
(Eq. A14), we can proceed to check that it is admissible
as an apodizing function in the 2-D Stockwell transform –
namely that its spatial sum is equal to unity (e.g. Pinnegar
and Mansinha, 2003). The spatial sum of Eq. (A14), denoted
here by I, can be written as

I=
∞∫
−∞

∞∫
−∞

|kx ||ky |

8π3c2
J1(z)

z
dx dy. (A15)

This integral can be simplified if we reintroduce our sub-
stitutions a = |kx |/ 2πc and b = |ky |/ 2πc and switch to
polar coordinates, using the substitutions x = 3cos(ϕ)

a
and

y =
3sin(ϕ)

b
to give

I=
ab

2π

2π∫
0

∞∫
0

J1(3)

3

3

ab
d3 dϕ

=
1

2π

2π∫
0

∞∫
0

J1(3)d3 dϕ

=
2π
2π

∞∫
0

J1(3)d3. (A16)

Using the standard result (e.g. Abramowitz and Stegun,
1964) that
x2∫
x1

J1(x)dx =−J0(x)

∣∣∣x2

x1
, (A17)

we see that Eq. (A16) becomes

I=−J0(3)

∣∣∣∞
0

= (0)− (−1)
= 1 (A18)

as required. This result confirms that the spatial sum of
web(x,y,kx,ky) is indeed equal to unity; thus the Elliptic–
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Bessel window is admissible as an apodizing window for the
2-D Stockwell transform.

A3 Admissibility of other windows

In this appendix so far, we have found a useful analytical ex-
pression for spatial form of the Elliptic–Bessel window pre-
sented in this study. We have then shown that its spatial inte-
gral is equal to unity and it is thus admissible as an apodiz-
ing function in the 2-D Stockwell transform. In other cases, a
quick test may be performed on candidate S-transform win-
dowing functions to check whether their spatial integral is
unity.

If we take the spatial integral I of the spatial-domain form
of a candidate windowing function w(x,y,kx,ky), namely

I=
∞∫
−∞

∞∫
−∞

w(x,y,kx,ky)dx dy, (A19)

and introduce the factor e−i(kxx+kyy), noting that when kx =
ky = 0 this factor is equal to unity, then I can be written as

I=
∞∫
−∞

∞∫
−∞

w(x,y,kx,ky)e
−i(kxx+kyy)dx dy

∣∣∣
kx=ky=0

(A20)

=W(αx,αy,kx,ky)

∣∣∣
kx=ky=0,

(A21)

where W(αx,αy,kx,ky) is the wavenumber domain form of
the candidate window and the notation |kx=ky=0 denotes that
the function is evaluated at kx = ky = 0. This means that if
the value ofW(αx,αy,kx,ky) evaluated at kx = 0 and ky = 0
is equal to unity, then its spatial integral will also be equal to
unity. If it is not, then the candidate window is not admissi-
ble for use the Stockwell transform. Figure 3a and b show
that both the Gaussian window and the Elliptic–Bessel win-
dow are equal to unity at kx = ky = 0 and thus satisfy this
requirement. This short test may be helpful in the design of
proposed alternative S-transform windowing functions in the
future.
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