

Supplement of

Application of an online ion-chromatography-based instrument for gradient flux measurements of speciated nitrogen and sulfur

Ian C. Rumsey and John T. Walker

Correspondence to: Ian C. Rumsey (rumseyic@cofc.edu)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Section S2.2 Solutions used in MARGA ion chromatography system

The MARGA system requires the following chemicals: absorbance solution, internal
standard solution, ion chromatography (IC) eluents, and suppressor regenerant. All chemicals are
prepared with 18.2 MΩ.cm double deionized (DDI) water.

5 The absorbance solution serves as the medium for gases to diffuse into in the WRD and 6 to supersaturate the SJAC to allow particles to grow and thus produce a condensate of water 7 soluble aerosol. It is also used as a carrier liquid to allow the sample to flow through the MARGA system. Absorption solution is made in batches of 20 L using DDI water. Additionally, 8 9 to prevent the growth of bacteria in the MARGA system, 10 ppm hydrogen peroxide (0.7 mL of 30% H₂O₂) is added to the absorbance solution. During continuous operation, the MARGA 10 requires 5 L of absorption solution per day. The absorption solution is replenished (~ 35 L) 11 12 weekly.

13 As the WRD and SJAC samples are injected from the syringes to the detector box, the 14 sample is automatically mixed with an internal standard that contains a known concentration of 15 lithium bromide (LiBr). The making of the lithium bromide solution requires two steps. First, a stock solution is prepared by dissolving 4000 mg of LiBr (6.94% Li, 79.90% Br) in a 1 L 16 volumetric flask, yielding concentrations of 320 mg L^{-1} Li and 3680 mg L^{-1} Br. This stock is 17 stable for at least 12 months, if stored away from light and refrigerated. Internal standard stock 18 solution (5.6 mL) is then injected into a 5 L container using a pipette. The container is then filled 19 up with DDI water to a weight of 5600 g. This gives final concentrations of 320 μ g L⁻¹ for Li and 20 3680 µg L⁻¹ for Br. The Li and Br internal standard concentrations were verified by an 21 22 independent IC system. Stocks are prepared from NIST-traceable LiBr standards (Fisher 23 Scientific, Pittsburgh, PA). The internal standard is replenished bimonthly.

24	Separate eluents are needed for both the cation and anion ICs. The cation eluent is
25	prepared by injecting 2.08 mL of pure methanesulfonic acid (MSA) into a 10 L container, which
26	is filled with 10 kg of DDI water. This yields a final MSA concentration of 3.2 mmol L ⁻¹ . The
27	anion eluent is prepared by adding 8.68 g of sodium carbonate monohydrate and 6.72 g of
28	anhydrous sodium bicarbonate to 10 kg DDI water, which yields a final concentration of 7.0
29	mmol for sodium carbonate and 8 mmol of sodium bicarbonate. Eluents are prepared from
30	certified chemicals (Fisher Scientific, Pittsburgh, PA). Eluents are replenished biweekly.
31	To further improve the sensitivity of the anion IC, a suppressor regenerant is used. This
32	chemical improves sensitivity by suppressing eluent background conductivity. An ion-exchange
33	unit is regenerated before each analysis with phosphoric acid. The phosphoric acid in the ion-
34	exchange unit is then rinsed by anion eluent. The suppressor regenerant is made by combining 5
35	kg of DDI water and 125 mL of 85% phosphoric acid (H ₃ PO ₄) in a 5-L container, giving a final
36	concentration of 0.35 mol L^{-1} of H ₃ PO ₄ . The regenerant is made from a certified phosphoric acid
37	stock (Fisher Scientific, Pittsburgh, PA). Regenerant is replenished bimonthly.
38	
39	
40	
41	
42	
43	
44	

S2

45 Section S2.3.1 Additional information on external standard liquid solutions

46	External standard liquid solutions were made by dissolving chemicals using 18.2 M Ω .cm
47	double deionized (DDI) water. The chemicals used were ammonium nitrate (NH4NO3) (Fisher
48	Scientific, Pittsburgh, PA), ammonium sulfate ((NH4) ₂ SO ₄) (Fisher Scientific, Pittsburgh, PA),
49	potassium chloride (KCl) (Fisher Scientific, Pittsburgh, PA), sodium nitrate (NaNO ₃) (Fluka, St.
50	Louis, MO), and magnesium sulfate heptahydrate (MgSO ₄ 7H ₂ O) (Fluka, St. Louis, MO). All
51	chemicals were ACS (American Chemical Society) grade. Each external standard solution was
52	diluted to the desired concentration using 18.2 M Ω .cm double deionized (DDI) water.
53	
51	
J4	
55	
56	
57	
58	
50	
59	
60	
61	
62	
02	
63	
64	

Section S2.3.2 Additional information on methodology used to determine detection limit

66 The traditional approach used to determine the detection limit involves combining data 67 from all analytical channels (in this study, there are four different channels including denuder 68 and SJAC samples from both sample boxes) into a single data set. From this single data set, the standard deviation and number of analyses are used to determine the detection limit. The 69 70 advantage of this approach is that, for an experiment of given duration, a larger number of 71 observation (i.e., degrees of freedom) are available to calculate the detection limit. However, 72 with this approach it is unknown whether the detection limit is strictly a function of the analytical 73 core of the system or is a combination of the analytical and sampling components of the system. In other words, the standard deviation may reflect a combination of random error plus systematic 74 75 error between channels. To investigate this possibility, the traditional detection limit approach 76 was conducted in conjunction with the Dunn's test (Dunn, 1964) and the Brown-Forsythe test 77 (Brown and Forsythe, 1974) to compare channels. The Dunn's test and the Brown-Forsythe test are non-parametric tests that can be used to determine if there are significant differences in the 78 median concentrations (Dunn's test) and variance (Brown-Forsythe test) across channels. In 79 further detail, the Dunn's test (Dunn, 1964) is a non-parametric statistical test of the difference in 80 81 medians among multiple groups. It is a rank-sum type test in which the null hypothesis is that the probability of observing a randomly selected value from the one group that is larger than a 82 83 randomly selected value from another group equals one half. Dunn's test is appropriate for 84 comparing multiple groups consisting of continuous data. In this case, Dunn's test is used to assess whether the differences in analytical detection limits calculated for individual MARGA 85 channels (Denuder1, Denuder2, SJAC1, SJAC2) are at least partially the result of systematic 86 87 differences (bias) among the channels. The Brown–Forsythe test (Brown and Forsythe, 1974) is a

S4

88	non-parametric statistical test for the equality of variances among multiple groups. For each
89	observation, a transformation (z) is calculated as its deviation from the corresponding group
90	median. A one-way analysis of variance (ANOVA) is performed on z, in which the F statistic
91	represents the Brown-Forsythe test statistic. In this case, the Brown-Forsythe test is used to
92	assess whether the differences in analytical detection limits calculated for individual MARGA
93	channels (Denuder1, Denuder2, SJAC1, SJAC2) are at least partially the result of differences in
94	precision (variance) among the channels.
95	
96	
97	
00	
30	
99	
100	
101	
102	
102	
103	
104	
105	
106	
107	

108 Section S3.1.1 Tables and figures associated with the accuracy results

109

Table S1. MARGA blank concentrations expressed as equivalent air concentration for eachsample box (SB).

112				Blar	nk concen	tration (ug m ⁻³)			
113			NO ₃ -	HNO ₃	SO_4^{2-}	SO ₂	NH4 ⁺	NH ₃	Na^+	\mathbf{K}^+
114		SB1	0.001 ^a	0	0.040	0.037	0	0	0	0
115			0.006^{b}	0.003	0.013	0.012	0	0	0	0
116			33 ^c	37	33	37	33	37	33	37
117		SB2	0.001	0	0.034	0.035	0	0.001	0	0
118			0.003	0.001	0.015	0.011	0	0.005	0	0
119			37	35	37	35	37	35	37	35
120	^a Mean co	ncentra	tion							
121	$b \pm 1$ stand	lard dev	viation							
122	^c Number	of obse	rvations							
123										
124										
125										
126										
127										
128										
129										
130										
131										
132										
133										
134										
135										
136										
137										
138										
139										
140										

141 Table S2. HNO_3 and NO_3^- external standard runs and the difference between expected and

	SB1 co	oncentration	s (µg m ⁻³)	SB2 c	oncentrations	$(\mu g m^{-3})$	
	Exp^{a}	Obs ^b	Difference ^c	Exp	Obs	Difference	
			(offset)			(offset)	
	0	0	0	0	0	0	
	0.133	0.192	0.060	0.128	0.181	0.053	
HNO ₃	0.380	0.528	0.149	0.366	0.502	0.136	
	1.345	1.523	0.178	1.303	1.479	0.176	
	2.302	2.483	0.181	2.219	2.404	0.186	
	0	0.001	0.001	0	0.001	0.001	
	0.131	0.186	0.05	0.126	0.183	0.057	
NO ₃ -	0.374	0.518	0.144	0.360	0.488	0.128	
	1.324	1.487	0.163	1.283	1.435	0.153	
	2.266	2.438	0.172	2.184	2.369	0.185	

142 observed concentration.

143 ^a Expected concentration.

^b Observed concentration.

^cDifference between expected and observed concentration (i.e. observed concentration minus expected

146 concentration).

147

148

149

Figure S1. Results of external standard tests. Response is given in equivalent air concentration $(\mu g m^{-3})$.

183 Figure S2. NO_3^- linear regression analysis for external standard tests.

184 Section S3.1.2.a Results and analysis of Dunn's test and Brown-Forsythe's test

185 The results of the Dunn's test and Brown-Forsythe test for each analyte are presented in Table

186 S3.

Table S3. Results of the Dunn's test (DU) and Brown-Forsythe test (BF) for individual MARGA
channels. Top row indicates channels being compared: S1 = SJAC Sample Box 1, D1 =
Denuder Sample Box 1, etc. For the Brown-Forsythe test, p values are reported with bold

indicating statistical significance at the 10% level. For Dunn's test, N and D indicated not significantly different versus significantly different, respectively.

192			S1-S2	S1-D1	S1-D2	S2-D1	S2-D2	D1-D2
102	NO ₃ -	DU	N	N	N	Ν	N	N
192		BF	0.09	0.86	0.45	0.08	0.04	0.60
194	SO_4^{2-a}	DU	Ν	D	D	D	D	Ν
		BF	0.80	0.18	0.24	0.29	0.38	0.88
195	SO_4^{2-}	DU	Ν	D	D	D	D	Ν
196		BF	0.80	0.18	0.24	0.29	0.38	0.88
190	$\mathrm{NH_4^+}$	DU	Ν	Ν	D	Ν	D	D
197		BF	0.71	0.04	0.01	0.10	0.02	0.35
100	Na^+	DU	Ν	D	D	D	Ν	Ν
198		BF	0.86	0.48	0.84	0.65	0.97	0.70
199	Na^+	DU	Ν	Ν	Ν	Ν	Ν	Ν
		BF	0.28	0.15	0.22	0.02	0.05	0.89
200	\mathbf{K}^+	DU	Ν	Ν	Ν	Ν	Ν	Ν
201		BF	0.19	0.85	0.72	0.26	0.35	0.87

^a Detection limits for SO_4^{2-} and Na⁺ were determined using two liquid standards with different concentrations. 203

The results of Dunn's test and Brown-Forsythe test (Table S3) indicate that the sampling

components of the MARGA are influencing the detection limit of all the compounds except K^+ .

206 The influence of the sampling components of the MARGA on the detection limit varies from

207 compound to compound. In both SO_4^{2-} detection limit analyses there were multiple channels that

had significant differences in median concentrations. For NO_3^- , the detection limit was not

- 209 influenced by differences in channel medians, but was influenced by differences in the channel
- variance with three of the six channel to channel comparisons having a Brown-Forsythe p-value
- less than 0.10. It is not known what is causing the significant differences in channel variance, but

- it is hypothesized that inconsistency in peak integration may be an issue. Differences in channel
- 213 median concentrations and/or concentration variance also influenced the determined detection
- limit for Na⁺ and NH₄⁺. It can therefore be concluded that analytical detection limits calculated
- by combining channels is function of variability related to random error in individual channels,
- systematic differences across channels, and differences in variance across channel

217 Section S3.1.2.b Detection limits for individual MARGA channels

		Exp conc ^b	Median Obs ^c	St Dev ^d	Ne	T-stat	Liq Conc DL	Air Conc DL
		(µg L ⁻¹)	(µg L ⁻¹)	(µg L ⁻¹)			(µg L ⁻¹)	(µg m ⁻³)
	D1		7.64	0.76	19	1.33	2.02	0.050
NO ₃ -	D2	5.34	8.05	0.65	14	1.35	1.76	0.044
	S1		7.60	0.75	19	1.33	2.00	0.050
	S2		7.89	1.14	20	1.33	3.03	0.076
	Average NO ₃ ⁻ /HNO ₃						2.20	0.055/0.056
	D1		2.15	0.74	37	1.31	1.93	0.048
SO_4^{2-a}	D2	0.00	2.05	0.70	35	1.31	1.83	0.046
	S 1		1.65	0.54	33	1.31	1.41	0.035
	S 2		1.49	0.62	37	1.31	1.62	0.040
	Average SO ₄ ²⁻ /SO ₂						1.70	0.042/0.028
	D1		26.40	0.63	19	1.33	1.68	0.042
SO_4^{2-}	D2	19.47	27.06	0.98	14	1.35	2.65	0.066
	S 1		27.39	1.08	19	1.33	2.87	0.072
	S2		25.92	0.63	20	1.33	1.67	0.042
	Average SO ₄ ^{2-/} SO ₂						2.21	0.055/0.037
	D1		5.11	0.26	19	1.33	0.69	0.017
$\mathrm{NH_4^+}$	D2	4.91	5.51	0.33	14	1.35	0.89	0.022
	S1		4.93	0.17	20	1.33	0.45	0.011
	S2		4.91	0.19	20	1.33	0.50	0.013
	Average NH ₄ ⁺ /NH ₃						0.63	0.016/0.015
	D1		1.63	0.49	19	1.33	1.30	0.033
Na ⁺	D2	1.75	1.53	0.45	14	1.35	1.22	0.030
	S1		1.39	0.35	20	1.33	0.93	0.023
	S2		1.42	0.45	20	1.33	1.19	0.030
	Average						1.16	0.029
	D1		7.25	0.28	20	1.33	0.74	0.019
Na ⁺	D2	5.00	7.16	0.20	21	1.33	0.53	0.013
	S1		7.03	0.44	18	1.33	1.17	0.029
	S2		7.01	0.54	21	1.33	1.43	0.036
	Average						0.97	0.024
	D1		5.14	0.64	20	1.33	1.70	0.042
\mathbf{K}^+	D2	4.91	5.68	0.58	21	1.33	1.54	0.038
	S1		5.03	0.67	18	1.33	1.79	0.045
	S2		5.31	0.53	21	1.33	1.40	0.033
	Average						1.61	0.040

218 Table S4. Detection limit results for individual MARGA channels.

219 ^a Detection limits for SO₄²⁻ and Na⁺ were determined using two liquid standard with different concentrations.

220

^b Expected concentration.^c Median observed concentration. 221

 $^{d} \pm 1$ standard deviation. 222

223 ^e Number of observations.

224

225

Section S3.1.2.c Additional analysis of the detection limits in comparison to previous studies

- Thomas et al. (2009) and Wolff et al. (2010) determined detection limits in field
- conditions using the GRAEGOR system, which is quasi-similar to the MARGA system.
- However, they used different methodologies to determine their detection limit. Therefore, in
- order to make an equivalent comparison, the detection limits were also calculated for this study
- using the Thomas et al. (2009) and Wolff et al. (2010) detection limit methodologies. Thomas et
- al. (2009) calculated average blanks using average blank values plus three standard deviations of
- the blank value, whereas Wolff et al. (2010) used three standard deviations of the blank value.
- The results are shown in Table S5.
- 237
- 238 Table S5. Calculate detection limits from this study using different methodologies

	Detecti	on limit ca	lculation	Previous studies detection limits						
	for data	a in this stu	dy using	$(\mu g m^{-3})$						
	differen	t methodol	ogies (µg							
		m ⁻³)								
	This	Thomas	Wolff	Thon	nas et	Wo	lff et			
	study	et al.	et al.	al. (2	009)	al. (2	2010)			
		(2009)	(2010)							
_				MPIC	CEH	NEU	EGER			
NO ₃ -	0.056	0.066	0.065	0.077	0.150	0.093	0.130			
HNO ₃	0.057	0.066	0.066	0.079	0.191	0.094	0.132			
SO_4^{2-a}	0.048	0.093	0.056	0.201	0.116	-	-			
SO_2	0.032	0.073	0.037	0.123	0.254	-	-			
SO ₄ ²⁻	0.064	0.112	0.075	-	-	-	-			
SO_2	0.043	0.086	0.050	-	-	-	-			
$\mathbf{NH_{4}^{+}}$	0.021	0.025	0.025	0.117	0.180	0.074	0.022			
NH ₃	0.020	0.024	0.023	0.111	0.161	0.055	0.021			
Na ⁺	0.029	0.030	0.030	-	-	-	-			
Na ⁺	0.026	0.033	0.033	-	-	-	-			
K^+	0.038	0.038	0.045	-	-	-	-			

240	In summary, regardless of the detection limit methodology, the detection limits determined in
241	this study are lower than those determined by Thomas et al. (2009) and Wolff et al. (2010) for all
242	nitrogen and sulfur compounds with the exception of NH ₃ . NH ₃ detection limits determined in
243	this study are lower than those reported by Thomas et al. (2009) and Wolff et al. (2010) at the
244	grassland NEU site, but similar to those reported by Wolff et al. (2010) at the forest (EGER) site.
245	
246	
247	
248	
249	
250	
251	
252	
253	
254	
255	
256	
257	
258	
259	
260	
261	
262	
263	
264	
265	
266	

Section S3.2.1 Tables and figures associated with the concentration gradient precision (gradient detection limit) results

Table S6. Orthogonal least squares regression coefficients comparing SB1 (x) to SB2 (y).

271 Results are reported for individual colocation experiments during June-July (Period 1), August

272 (Period 2), and October, 2012 (Period 3). Number of hourly observations for each period are

approximately 87, 138, and 73, respectively.

Period	1	2	3	1	2	3
					Intercept	
		Slope			$(\mu g m^{-3})$	
NH ₃	0.94	1.03	0.95	-0.10	-0.01	-0.08
$\mathrm{NH_4}^+$	1.06	1.01	1.02	-0.03	-0.01	-0.01
HNO ₃	0.86	1.02	1.00	0.05	-0.02	-0.01
NO ₃ -	0.87	1.06	1.03	0.02	-0.02	0.01
SO_2	0.97	1.04	1.03	-0.02	-0.01	-0.05
SO_4^{2-}	1.02	0.99	1.01	0.09	0.05	0.01

three colocation experiments represented by different symbols (Period 1= June-July 2012; Period
 2 = August 2012; Period 3= October 2012)

- 294
- 295
- 296

299

Figure S4. Curves describing relationship between air concentration and the standard deviation 300 of orthogonal least squares fits (gradient precision). Data points represent binwise standard 301 302 deviation of residual and corresponding average air concentration. Bins comprise ≈ 42

303 observations.

Figure S5. Scatterplots (gray circles) of orthogonal least squares residuals versus average
 concentration between sample boxes. Data from three colocation experiments are combined.
 Black squares represent binwise standard deviation of residuals versus concentration. Horizontal

- bars represent standard deviation of concentration within bin. Individual bins contain ≈ 42 observations.
- 311

313 Section S3.3.2.a Tables and figures associated with flux uncertainty results

Table S7. Summary statistics for select meteorological variables, air concentrations, and fluxes during the period 23 September – 14
 October, 2012.

	Meteorology			Concentration $(\mu g m^{-3})$				$\frac{\text{Flux}}{(\text{ng } \text{m}^{-2} \text{ s}^{-1})}$							
	W.S. ^c (m s ⁻¹)	u* (m s ⁻¹)	Air Temp. (°C)	NH3	$\mathbf{NH_4}^+$	HNO ₃	NO ₃ -	SO_2	SO4 ²⁻	NH ₃	$\mathrm{NH_4^+}$	HNO ₃	NO ₃ -	SO_2	SO4 ²⁻
Mean	0.8	0.1	15.9	0.4	0.7	0.3	0.4	0.5	1.9	9.1	-1.0	-4.3	-3.1	-5.5	-4.0
Median	0.7	0.1	15.5	0.3	0.7	0.2	0.3	0.1	1.8	3.9	-0.4	-1.8	-1.6	-1.9	-2.4
S.D. ^a	0.5	0.1	5.8	0.3	0.3	0.3	0.3	1.1	0.8	11.7	2.1	6.4	4.3	16.8	5.1
Max.	2.4	0.5	28.7	1.6	1.5	1.8	1.2	8.8	4.3	82.8	6.6	6.6	18.1	46.7	17.7
Min.	0.0	0.0	4.4	0.0	0.2	0.0	0.0	0.0	0.5	-1.4	-14.6	-38	-35.4	-245	-28.9
N^b	474	474	474	449	376	451	384	451	384	406	358	407	366	407	366

316 ^a S.D.= \pm 1 standard deviation

317 b N = number of observations

318 ^c W.S. = Wind Speed

Figure S6. Example time series of meteorological variables, air concentrations, and fluxes.
Fluxes also include flux error calculated from equation (4) in the main text. For plots of
chemical species, concentrations and fluxes are represented by black circles and gray squares,

³²³ respectively.

Section S3.2.2.b Analysis of the influence of the co-location concentration adjustment on calculated fluxes

326 The influence of the co-location concentration adjustment on calculated fluxes was 327 determined by performing a sensitivity analysis in which hypothetical colocation corrections 328 were applied to the three weeks of flux data presented in the manuscript. For this analysis, a reasonable range of slope and intercept (offset) values were determined based on co-location 329 330 slope and offset values from this manuscript (see supplemental Table S6). The influence of co-331 location slope and offset values on overall average fluxes was quantified as the percent change in 332 the average flux, with test values of slope and offset applied, relative to the average flux with a 333 slope and offset of 1 and 0, respectively. Results are presented in figure S7. Results indicate that the correction for a co-location slope of 1.1 (assuming an offset of 334 335 0.0) can change the average flux by 30% for HNO₃ and approximately a factor of 4.5 for NH₄⁺. 336 Correcting for an offset of 0.1 (assuming a slope of 1.0), can change the average flux by 70% for SO₂ and approximately a factor of 7 for NH₄⁺. Because concentration gradients are small relative 337 to the air concentration, the colocation correction can be large, particularly for aerosols, which 338 deposit more slowly than gases thereby resulting in smaller concentration gradients. It should be 339 340 noted that, because concentrations and fluxes (i.e., concentration gradients) vary by site, the 341 importance of the colocation test will also vary by site. However, the sensitivity analysis 342 demonstrates that colocation tests are needed to help control the accuracy of the concentration gradient measurement. 343 344 345 346

- 347
- 348

Figure S7: Results of co-location sensitivity analysis in which hypothetical values of slope and offset (intercept) were applied to the observed fluxes.

358 Supporting Information References

359 360	Brown, M.B., Forsythe, A.B. Robust tests for equality of variances. J. Am. Statist. Assoc. 69 (346), 364–367, DOI 10.1080/01621459.1974.10482955, 1974.
361	
362	Dunn, O.J. Multiple comparisons using rank sums. Technometrics 6 (3), 241-252, DOI
363	10.1080/00401706.1964.10490181, 1964.
364	
365	Thomas, R.M., Trebs, I., Otjes, R., Jongejan, P.A.C., ten Brink, H., Phillips, G., Kortner, M.,
366	Meixner, F.X., Nemitz, E. An automated analyzer to measure surface-atmosphere exchange
367	fluxes of water soluble inorganic aerosol compounds and reactive trace gases. Environ. Sci.
368	Technol., 43 (5), 1412-1418, DOI 10.1021/es8019403, 2009.
369	
370	Wolff, V., Trebs, I., Ammann, C., Meixner, F.X. Aerodynamic gradient measurements of the
371	NH ₃ -HNO ₃ -NH ₄ NO ₃ triad using a wet chemical instrument: an analysis of precision
372	requirements and flux errors. Atmos. Meas. Tech., 3 (1), 187–208, DOI 10.5194/amt-3-187-
373	2010. 2010
0.0	