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Abstract. Two radar pulses sent at different frequencies near
the 183 GHz water vapor line can be used to determine total
column water vapor and water vapor profiles (within clouds
or precipitation) exploiting the differential absorption on and
off the line. We assess these water vapor measurements by
applying a radar instrument simulator to CloudSat pixels and
then running end-to-end retrieval simulations. These end-to-
end retrievals enable us to fully characterize not only the ex-
pected precision but also their potential biases, allowing us
to select radar tones that maximize the water vapor signal
minimizing potential errors due to spectral variations in the
target extinction properties. A hypothetical CloudSat-like in-
strument with 500 m by ∼ 1 km vertical and horizontal res-
olution and a minimum detectable signal and radar preci-
sion of −30 and 0.16 dBZ, respectively, can estimate total
column water vapor with an expected precision of around
0.03 cm, with potential biases smaller than 0.26 cm most of
the time, even under rainy conditions. The expected preci-
sion for water vapor profiles was found to be around 89 %
on average, with potential biases smaller than 77 % most of
the time when the profile is being retrieved close to surface
but smaller than 38 % above 3 km. By using either horizontal
or vertical averaging, the precision will improve vastly, with
the measurements still retaining a considerably high vertical
and/or horizontal resolution.

1 Introduction

The WMO (2014) statement of guidance for global numeri-
cal weather prediction concluded that one of the critical at-
mospheric variables that are not adequately measured by cur-
rent or planned systems is humidity; in particular, profiles
with adequate vertical resolution in cloudy areas were rec-
ommended (Anderson, 2014). Due to its importance, sev-
eral spaceborne methods have been used to observe atmo-

spheric water vapor, such as passive near-infrared or mi-
crowave imaging, passive infrared or microwave sounding,
and radio occultation techniques. Most of these techniques
have been shown to improve weather forecasting perfor-
mance once assimilated (Anderson, 2007) and are opera-
tionally used, but each has limitations. For example, infrared
and microwave sounders have broad weighting functions
near the Earth’s surface, which considerably limit their ver-
tical resolution. Near-infrared and microwave imaging can
only provide column water vapor, and hence they do not pro-
vide any information on its vertical distribution. Addition-
ally, near-infrared and infrared techniques cannot penetrate
cloudy scenes. Lastly, even though radio-occultation tech-
niques are sensitive even to the boundary layer water vapor
burden, atmospheric ducting effects associated with the top
of the boundary layer limit their accuracy (Ao et al., 2003).

In this study we assess the differential absorption radar
(DAR) concept to profile water vapor in cloudy and rainy
areas. This technique is analogous to the differential absorp-
tion lidar (DIAL) technique (e.g., Schotland, 1966, Browell
et al., 1979 and Wulfmeyer and Walther, 2001). The DAR
concept exploits the difference between the radar reflectivity
at different frequencies (“on” and “off” an absorption line)
to estimate the absorbing gas path between the radar and the
scattering target. The DAR technique can be used to retrieve
surface pressure by estimating the column of oxygen using
frequencies near the 60 GHz absorption band (Flower and
Peckham, 1978; Lin and Hu, 2005; Lawrence et al., 2011;
Millán et al., 2014). Prior studies show that this technique can
be used to retrieve water vapor profiles using three frequen-
cies centered around the 22 GHz water vapor absorption line
(Meneghini et al., 2005), frequencies at 10 and 94 GHz (Tian
et al., 2007), and at 2.8 and 35 GHz (Ellis and Vivekanandan,
2010) using the water vapor continuum. In addition, Lebsock
et al. (2015) assessed the feasibility of water vapor sound-
ing using two frequencies at the wings of the 183 GHz water
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vapor line using large eddy simulations (LES). These high-
resolution LES allowed the assessment of uncertainties due
to small-scale heterogeneities within the radar field of view
(commonly known as non-uniform beam filling) as well as
uncertainties due to the particle size distribution. However
they do not provide context on the capabilities of DAR over
a wide variety of Earth’s clouds. This global climatological
context is best provided by observations. Following Lebsock
et al. (2015) the study will focus on the wing of the 183 GHz
water vapor line, but we will evaluate the DAR capabilities
using global cloud observations from CloudSat (Stephens
et al., 2002). The water vapor line at 183 GHz is used rather
than the 22 GHz because its attenuation is stronger which
provides a greater dynamical range allowing us to explore
cloud and rain profiling. We specifically focus on a space-
borne observational platform.

A spaceborne implementation of a water vapor DAR
would provide observational capabilities that complement
existing remote sensing methods. In particular the method
specifically samples within the cloudy environment. This
could provide much needed observations within the poorly
sampled cloudy boundary layer and help constrain the rel-
ative humidity in ice clouds. Furthermore, the method can
provide high spatial resolution column water vapor in all
weather conditions and over all surfaces.

In this study we evaluate the ability of the DAR technique
to retrieve water vapor with high vertical and horizontal reso-
lutions under cloudy/rainy conditions and we diagnose which
radar tones are better suited for sampling different altitude
ranges. This paper is organized as follows: the measurement
theory is described in Sect. 2, the radiometric model is de-
scribed in Sect. 3, total column water vapor retrievals are
discussed in Sect. 4, while Sect. 5 explores the profiling ca-
pabilities of this technique. Section 6 summarizes the results.

2 Theoretical basis

As shown by Lebsock et al. (2015), the ratio of two radar re-
flectivities, neglecting multiple scattering, can be expressed
as

Z(ν1, r)

Z(ν2, r)
=
ϒ2(ν1, r) η(ν1, r) λ

4
1

ϒ2(ν2, r) η(ν2, r) λ
4
2

|K(ν2, r)|
2

|K(ν1, r)|2
, (1)

where ν is a radar tone frequency, λ is the wavelength of
radiation, and K(ν,r) is the dielectric constant of the target.
η(ν,r) represents the hydrometeors backscatter coefficients
and ϒ2(ν,r) is the two-way transmission along the range r
given by

ϒ2(ν,r)= exp

−2

r∫
0

[
σgas(ν,r)+ σPext(ν,r)

]
dr

 , (2)

where σgas(ν,r) represents the gaseous absorption coeffi-
cient and σPext(ν,r) the particulate extinction (the sum of
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Figure 1. Example of a typical atmospheric transmittance due to
gases (ϒ2

gas(ν), black) and hydrometeors (ϒ2
Pext(ν), blue), as well

as the backscatter reflectivity (η(ν), red), and the ocean backscatter
(σ 2

0 (ν) green, offset by 30 dB) for a surface return journey (down-
ward atmospheric pass, surface reflection, upward pass) for a nim-
bostratus cloud near the 183 GHz H2O band region. The atmo-
spheric profile was taken from CloudSat data as described in Sect. 3.
The ocean backscatter corresponds to a surface wind of 3 ms−1 and
temperature of 28 ◦C. Note that only the transmittance due to gases
shows a significant frequency dependence. Thin lines show the im-
pact of assuming a different particle size distribution or a differ-
ent surface wind. These lines have been offset to ease comparison
against the unperturbed ones.

absorption and scattering) coefficient. Note that in Eq. (1),
when the scattering target is the surface rather that hydrom-
eteors along the path, η(ν,r) is replaced by the normalized
surface cross section σ0(ν).

Assuming that these frequencies are chosen close to
a strong absorption line, and the frequency dependence of
σPext(ν,r), η(ν,r), and σ0(ν) is small relative to that of
σgas(ν,r) (see Fig. 1), Eq. (1) simply becomes

Z(ν1, r)

Z(ν2, r)
=
ϒ2(ν1, r)

ϒ2(ν2, r)

= exp

−2

r∫
0

[
σgas(ν1, r)− σgas(ν2, r)

]
dr

 , (3)

which can be rewritten as

Z(ν1, r)

Z(ν2, r)

= exp

−2

r∫
0

ρ(r)
∑
i

vi(r) [κi(ν1, r)− κi(ν2, r)] dr

 , (4)

where ρ(r) is the air density and the sum is over all the ab-
sorbers with monochromatic absorption coefficient κi(ν,r)
and volume mixing ratio vi(r).

Furthermore, close to a strong absorption line, the
monochromatic absorption coefficient for the rest of the ab-
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Table 1. Radar model specifics

Parameter Detail

Water dielectric properties Liebe et al. (1991)
Ice dielectric properties Hufford (1991)
Ice water content (IWC) PSD∗ McFarquhar and Heymsfield (1997)
Liquid water content (LWC) PSD Using a log normal distribution with a

10 µm mean radius and a 1.3 spread.
Rain PSD Abel and Boutle (2012)
Snow PSD Sekhon and Srivastava (1970)
Gas absorption Read et al. (2004)
Radiation propagation Hogan and Battaglia (2008); Hogan (2013)
Surface reflection Li et al. (2005b) assuming a surface wind of 3 ms−1,

sea surface temperature of 28 ◦C, a Fresnel fraction of 1,
and zero salinity.

∗ particle size distribution.

sorbers (at two close enough frequencies) are similar, leaving
mostly the influence of the main absorber. For example, next
to the 183 GHz H2O absorption line, Eq. (4) can be simpli-
fied as

Z(ν1, r)

Z(ν2, r)

= exp

−2

r∫
0

ρ(r) vH2O(r) [κH2O(ν1, r)− κH2O(ν2, r)] dr

, (5)

which expressed in decibels relative to Z units (dBZ) and,
using the ideal gas law, results in

dBZ(ν1, r)− dBZ(ν2, r) ∝ uH2O =

r∫
0

p(r)

R T (r)
vH2O(r)dr,

(6)

where R is the gas constant, p is pressure, and T is tempera-
ture.

Equation (6) shows that the difference between two radar
tones expressed in dBZ units is proportional to the partial
water vapor path uH2O between the radar and the scattering
target. This means that a range-gated radar may be used to es-
timate profiles of water vapor density inside cloudy or rainy
profiles assuming a temperature and pressure profile (e.g.,
from reanalysis fields). Furthermore, this technique may be
used to estimate the total column water vapor (CWV) us-
ing the surface returns. However, the proportionality given
by Eq. (6) assumes that the absorption from other gases as
well as the particulate extinction and backscattering coeffi-
cient between the two radar tones were similar which might
not be true under certain hydrometeor burdens.

In this study, a range-gated radar system is simulated to
explore the uncertainties in the estimates of total CWV as
well as in the profiles of water vapor inside cloudy and rainy
scenarios using a state-of-the-art radar forward model. This

model is not based upon Eq. (6), but rather a more com-
plete version of Eq. (1) that also includes multiple scattering.
Through this model we assess the impact of spectral variation
of the particulate extinction and the backscatter coefficient,
the impact due to absorption of other gases, the impact of the
temperature and pressure profiles assumed, the impact of the
assumed hydrometeor particle size distribution, and the im-
pact of the spectroscopy uncertainties, among others (see for
example Fig. 1 thin lines).

3 Radiometric model

Radar returns were simulated using the same radiometric
model as discussed in Millán et al. (2014). In short, radar re-
flectivities were computed using time-dependent two-stream
approximation (Hogan and Battaglia, 2008), assuming spher-
ical hydrometeors, evaluating the gaseous properties using
the clear sky forward model for the EOS Microwave Limb
Sounder (Read et al., 2004), and computing the surface re-
flection using a quasi-specular scattering model for the ocean
surface. See Table 1 for more details. Note that even though
all the simulations presented in this study used an ocean
backscatter model, typical land surface back scattering coef-
ficients are also weakly frequency-dependent, and hence, due
to the differential nature of the technique, the results shown
here can reasonably be expected to be similar to those found
over land.

Throughout the study this radiometric model is run with
a nadir viewing angle, to simulate radar tones close to the
183 GHz absorption line, using CloudSat retrievals as in-
puts. In particular we use the liquid water content (LWC)
and ice water content (IWC) profiles from the 2B-CWC-
RO R04 (Austin and Stephens, 2001; Austin et al., 2009)
products, the rain and snow profiles from the 2C-RAIN-
PROFILE (Lebsock and L’Ecuyer, 2011) products, and the
temperature, pressure, water vapor, and ozone from the Euro-
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Figure 2. Cross section exemplifying the CloudSat-driven simulations (data from 15 January 2007 over the South Atlantic Ocean). (a) Cloud-
Sat radar reflectivity. (b) CloudSat retrieved total (IWC+LWC+rain+snow) hydrometeor water content. Black, green, red and purple lines,
respectively, delimit areas where IWC, LWC, rain, and snow were present. (c) ECMWF-aux water vapor. (d) Simulated CloudSat-driven
radar reflectivity at 170 GHz. (d) Simulated radar reflectivity difference (177–170 GHz).

pean Centre for Medium-Range Weather Forecasts auxiliary
(ECMWF-aux) products (Partain, 2007). The ECMWF-aux
data are ECMWF weather analysis outputs interpolated in
time and space to the CloudSat measurements. We also use
the 2B-CLDCLASS product (Sassen and Wang, 2008) for
cloud classification. Furthermore, we assume a radar with the
same detectable signal (the radar sensitivity) and the same
radar precision as CloudSat’s Cloud Profiling Radar (Tanelli
et al., 2008), that is to say −30 and 0.16 dBZ, respectively.
We also assume a similar vertical ranging and horizontal
sampling resolution: 500 m and around 1 km, respectively.
Viewing angles off the nadir, provided by using a scanning
radar, are not explored in this study but, apart from the extra
attenuation due to the longer paths, they are fundamentally
the same as when using the nadir view.

As an example to illustrate the nature of the measurement,
Fig. 2 shows a cross section of CloudSat-driven simulations
over the South Atlantic Ocean. This cross section consists of
700 CloudSat profiles encompassing high thin cirrus, some
liquid clouds, rain, and snow. As shown, the water vapor field
not only decreases exponentially with height, it also shows
a tongue that increases with height along the track, starting
from around 32◦ S at 5 km and finishing at around 35.5◦ S
and 10 km. The impact of this water vapor burden can be

seen in the simulated 170 GHz radar reflectivity subplot; at
this frequency, the radar signal has been considerably more
attenuated than at 94 GHz (the CloudSat radar tone, which
was placed far away from any absorption line). Furthermore,
the radar reflectivity difference (177–170 GHz) already dis-
plays a resemblance to the water vapor field, for example the
influence of the water vapor tongue around 10 km and 34.5◦ S
can already be seen in the radar reflectivity difference.

Figure 3 illustrates the relationship between water vapor
path and radar reflectivity difference using CloudSat-driven
simulations. As predicted by Eq. (6) there should be a linear
relationship between water vapor path and the radar reflectiv-
ity difference, either when the scattering target is the surface
or hydrometeors. In the first instance, the radar reflectivity
difference will be proportional to the total CWV, while in the
latter it will be proportional to the partial CWV, the amount
of water vapor above the scattering target. As shown, even
under moderately rainy scenarios, the linear relationship is
clearly apparent. The slope of these curves is the exploitable
signal, which is on the order of 2.3 db/1 cm for this pair of
radar tones, while the scatter may be interpreted as noise.
Observe that under clear sky conditions a robust linear rela-
tionship is found between the total CWV and the surface re-
turn difference. The spread results from the different temper-
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Figure 3. Simulated relationships between surface radar returns and total and partial CWV. Each point represents a CloudSat-driven simula-
tion for each of the CloudSat measurements available from 15 January 2007. The total or partial hydrometeor column is color-coded. Dark
gray is used for clear sky cases (total hydrometeor column equal to zero). The black line shows the linear regression. The root mean square
error (RMSE) displayed is the overall linear regression error for each scenario. The top row shows the relationship between the range-gated
radar returns and partial CWV and the bottom row displays the relationship between the surface returns and total CWV.
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Figure 4. Percentage penetration for frequencies discussed in this
study calculated using CloudSat-driven simulations for 10 days, as-
suming a radar sensitivity of −30 dBZ.

ature and pressure profiles for the same water vapor burden.
Under cloudy and rainy scenarios the spread also increases
proportionally to the mass of condensate.

The root mean square errors (RMSEs) of these linear fits
can be interpreted as the maximum likely precision error

of a water vapor retrieval. The results are promising. They
show that even without knowledge of the temperature, pres-
sure and hydrometeor burden, partial and total CWV can be
constrained to less than 0.5 cm under clear and cloudy sce-
narios, and to under 0.7 cm for rainy ones. Note that if the
hydrometeor burden is known (for example using the range-
gated information from the 160 GHz radar tone), one could
subset the data using this ancillary information to constrain
the partial and total CWV better.

It is important to notice that as the attenuation provides
the differential radar signal it will also limit the penetra-
tion depth. In other words, it will also determine which al-
titude range of the atmosphere can be sampled. Figure 3
used the 170–160 GHz frequency pair suggested by Lebsock
et al. (2015) to best maximize the signal for vapor profil-
ing within the boundary layer. These frequencies were cho-
sen in the wing of the 183 GHz absorption line to be able
to penetrate the large water vapor concentrations residing
in the boundary layer. However, to maximize the signal at
higher altitudes the required frequency pairs will need to
be selected closer to the line center, despite not being able
to penetrate all the way to the surface. Figure 4 shows the
penetration percentage for frequencies used throughout this
study computed using around one and a half million Cloud-
Sat pixels (the first 10 days of January 2007) and assuming
a sensitivity of −30 dBZ. As shown, frequencies higher than
177 GHz are severely impacted by attenuation in the lowest
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Table 2. Systematic uncertainties perturbationsa.

Perturbation Amount Comments

Temperature 3 K Calculated as the average of 10
randomly perturbed profiles

Pressure 5 % Calculated as the average of 10
randomly perturbed profiles

IWC error 50 % –
LWC error 50 % –
Rain error 50 % –
Snow error 50 % –
IWC PSDb1 – Heymsfield et al. (2002)
IWC PSD2 – Donovan and van Lammeren (2002)
LWC PSD1 – Log-normal distribution with a

6 µm mean radius and a 1.5 spread.
Rain PSD1 – Marshall and Palmer (1948)
Rain PSD2 – Willis (1984)
Snow PSD1 – Gunn and Marshall (1958)
Surface wind 12 ms−1 To characterize uncertainties in σ0(ν)
Line strength 0.25 % Pickett (1998)
Line width 4 % Bauer et al. (1989), Goyette and DeLucia (1990)
H2O continuum 10 % Meshkov (2006)
N2 and O2 continuum 10 % Meshkov (2006)
A prioric 20 % Calculated as the average of 10

randomly perturbed profiles

a For the unperturbed characteristics see Table 1.
b Particle size distribution.
c Only applied to profile retrievals.

few kilometers of the atmosphere. However, notice that the
strong surface reflection is detectable 60 % of the time even at
178 GHz. The strength of the surface reflection should enable
retrievals of total CWV in a diverse range of environments,
even where profiling is not possible.

4 Total column water vapor results

To properly explore the capability of this technique to es-
timate total CWV we have performed end-to-end retrievals.
The retrieval algorithm used was a linear least-squares fit (see
Appendix A for more information) which allow us to quan-
tify both the expected precision and the systematic errors of
the total CWV estimates using ancillary knowledge of tem-
perature, pressure, and the hydrometeor profile. This retrieval
does not use any a priori information; that is to say, we do not
use any additional information to constrain these retrievals.
The expected precision is determined by the random noise
in the radar measurements propagated through the retrieval
algorithm, while the systematic errors will arise from the un-
certainties in the ancillary knowledge used, as well as from
the spectroscopy uncertainties. These end-to-end retrievals
assume knowledge of the hydrometeors’ vertical distribution.
This knowledge is assumed to come from an offline radar
tone using CloudSat-like retrievals. The impact of attenua-
tion on this radar tone/retrievals is not investigated here.

For a given scene, a perturbed set of radar measurements
is generated for each systematic uncertainty and run through
the retrieval algorithm. Each of the retrieved results is then
compared to the retrieved total CWV for an unperturbed run
to estimate the impact of such perturbation. A list of the per-
turbations used can be found in Table 2. Figure 5 (middle
column) shows the systematic error characterization for three
different scenarios using the 160 and 170 GHz radar tones.

Employing this end-to-end retrieval framework allows us
to search for an optimum pair of radar tones that will min-
imize the total error. For each scene, we simply run end-to-
end retrievals to explore a given frequency space and then
we choose the best radar tone combination. To find globally
optimized radar tones, we performed around 30 end-to-end
retrievals for each scene type (clear sky, cirrus, altostratus,
altocumulus, stratocumulus, cumulus, nimbostratus, drizzle,
slight rain, and moderate rain) using all the possible frequen-
cies combination between 160 and 183 GHz, every 1 GHz
step. These scenes were constructed from CloudSat represen-
tative profiles spread throughout 2007. The optimum radar
tones are found in Table 3. To ensure that the radar tones can
be use globally, we only used radar tones that were able to
penetrate all the way to the surface at least 80 % of the time
for clear sky and cloudy scenes and at least 60 % for rainy
ones. For clear sky cases the chosen tones are separated as
much as possible (14 GHz baseline) to maximize the signal
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Table 3. Optimum radar tones

Scene Radar tones Precisiona Potential biasa Potential biasa

type (GHz) 60 % of the time 80 % of the time

Total CWV (cm)
Clear sky 160, 174 0.01± 0.001 0.10 0.14

Cloudy 166, 174 0.01± 0.001 0.10 0.14
Rainyb 169, 172 0.03± 0.008 0.18 0.26

Profile H2O (%)

< 9 km 178, 183 86± 33 20 26
9–12 km 178, 183 84± 77 13 20

6–9 km 178, 181 93± 83 25 37
3–6 km 169, 177 69± 63 48 81
1–3 km 162, 172 87± 64 50 78
0–1 km 160, 170 114± 77 29 70

a Estimates computed using end-to-end retrievals for each of the CloudSat measurements available from 15 January 2007.
b Rain rates lower 10 mm h−1.
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Figure 5. Systematic error estimates for total column water vapor retrievals caused by each of the sources described in Table 2 as well as
the precision and maximum potential bias for three different scenarios (clear sky, cirrus, and drizzle). The maximum potential bias is the
root-sum-square combination of all the systematic error sources. Left: hydrometeor burden for each of the scenarios; middle: simulations
performed using 160 and 170 GHz radar tones; right: simulation using optimum radar tones (see Table 3).

(i.e the attenuation in the on channel) and hence minimize the
impact of the random noise. For rainy cases, the radar tones
are close to each other (just 3 GHz baseline) to minimize the
impact of the uncertainties associated with the hydrometeors.
Lastly, the cloudy cases sit in between these two extremes

(8 GHz baseline), trying to minimize both the precision and
the systematic errors.

Note that these tones are optimal in the sense that they
minimize the overall error; however there may be pairs of
radar tones better suited for individual cases. Figure 5 (right
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Figure 6. Histogram (gray) and cumulative histogram (blue) of the
maximum potential biases for CloudSat-driven end-to-end total col-
umn water vapor retrievals for each of the CloudSat measurements
available from 15 January 2007.

column) shows the impact of using the optimized radar tones.
Overall, the precision has improved and the maximum poten-
tial biases (the root-sum-square combination of all the sys-
tematic error sources) have decreased compared to the re-
sults using the 160 and 170 GHz radar tones. Observe that
for the drizzle case, even though the precision has decreased,
the optimum radar tones minimize the total error. In general,
the most persistent potential bias is due to the water vapor
line width uncertainty, followed by the assumed pressure pro-
file. In cloudy and rainy situations this is followed by the hy-
drometeor error as well as their corresponding particle size
distribution (PSD) uncertainties. Lastly, biases induced by
uncertainties in temperature, surface wind, the background
atmospheric absorption from O2, N2, and H2O (i.e., the ab-
sorption continuum), as well as the water vapor line strength,
are negligible.

To fully test the optimized radar tones, we have run end-
to-end retrieval simulations for CloudSat measurements from
15 January 2007 (more than 150 000 pixels). Histograms and
cumulative histograms of the maximum potential biases are
shown in Fig. 6. Even under rainy conditions the expected
precision was found to be 0.03 cm on average, with potential
biases smaller than 0.26 cm 80 % of the time. Table 3 lists
the precision and potential biases for all weather conditions.
This expected precision is half of the Advanced Microwave
Scanning Radiometer (AMSR) expected total CWV preci-
sion reported by Wentz and Meissner (2000). The greater
precision of DAR relative to the passive microwave results
from the fact that DAR makes use of the stronger 183 GHz
line, whereas passive microwave relies on the 22 GHz line.

Arguably to date, passive microwave instruments have
provided the benchmark for CWV measurements. Not only
might DAR total CWV have better precision but could also
have a considerable better horizontal resolution, i.e., around
1 km rather than the native passive microwave footprint of
∼ 24 km. Further, DAR total CWV estimates will be avail-
able over land and ocean rather that just over the oceans.

5 Profiling capabilities

As with total CWV, we have used end-to-end retrievals to
further study the capabilities of this technique to estimate
profiles of water vapor under cloudy and rainy scenarios.
In this case, we have used an optimal estimation algorithm
(Rodgers, 2000). This algorithm uses a priori data to con-
strain the retrieval. This additional information acts as an
extra set of measurements and the solution can be thought
as a weighted average between the measurements and the a
priori. The a priori used is the mean profile of 100 adjacent
CloudSat ECMWF-aux water vapor values smoothed by a
boxcar average of four vertical levels. The uncertainties in
this a priori are assumed to be 100 %, allowing the informa-
tion to arise mostly from the simulated measurements. See
Appendix B for more information.

Figure 7 exemplifies the profiling capabilities of this tech-
nique for a raining profile. As shown, different pairs of radar
tones can sample different parts of the cloudy/rainy atmo-
sphere: tones close to the line center can sample higher alti-
tudes, while tones with moderate water vapor absorption can
penetrate further into the surface. This can be appreciated in
the averaging kernels subplots. These kernels delimitate the
region of the atmosphere from which the atmospheric infor-
mation is contributing to the retrieved values at a given alti-
tude (Rodgers, 2000). Hence, if only two radar tones are go-
ing to be used, they will need to be carefully chosen to be able
to sample the desired vertical region. In this study, altitudes
where the kernel maximum is greater than 0.4 are considered
to have retrievals not influenced too much by the a priori and
therefore carry useful retrieved information. The expected
precision and systematic errors are only shown for those al-
titudes. As shown in the last row of Fig. 7, it is possible to
sample the entire vertical profile using multiple radar tones.
Figure 8 shows the retrieved water vapor profiles over the
same cross section displayed in Fig. 2c. As shown, this tech-
nique could provide valuable information for studies of water
vapor vertical and horizontal distribution in cloudy/rainy ar-
eas and as input to weather forecasting models, complement-
ing the existing water vapor measurements well. The use of
multiple radar tones is analyzed here purely from an infor-
mation content point of view with no concern for practical
implementation matters.

Note that the tone pairs used in Figs. 7 and 8 are opti-
mized for different vertical regions (except for the multi-tone
retrievals). These radar tones were found using the same ap-
proach as for total CWV vapor. These optimum radar tones
can be found in Table 3. If only two tones are available,
to ensure that they can penetrate down to the lowest de-
sired altitude, radar tones better suited for higher altitudes
need to be sacrificed. As before, to test the applicability of
these radar tones, we run end-to-end retrieval simulations
for CloudSat measurements from the 15 January 2007. His-
tograms and cumulative histograms of the maximum poten-
tial biases are shown in Fig. 9. The expected precision was
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Note that these multi-tone frequencies are not optimized.

found to be around 89 % on average, with potential biases
smaller than ∼ 80 % when the profile is being retrieved close
to surface but smaller than 37 % above 6 km 80 % of the
time. At all altitude ranges, the main source of potential bi-
ases is the hydrometeor uncertainties, followed by pressure,
temperature, and spectroscopic uncertainties. The last three
contribute around 10 % at most. We also notice that an a pri-
ori that is too dissimilar to the atmospheric profile has the
potential to be a source of systematic uncertainty impacting
more at higher altitudes.

At first glance, the DAR expected precision may seem
large in comparison to uncertainties of current water va-
por profilers. For example in the upper troposphere, the Mi-

crowave Limb Sounder (MLS) (Waters et al., 2006) expected
precision varies from 65 to 15 % (Livesey et al., 2015), while
the Atmospheric Infrared Sounder (AIRS) (Aumann et al.,
2003) has uncertainty estimates of around 20 % (Susskind et
al., 2003). However, MLS has a ∼ 1.5 to 3.0 km vertical res-
olution and a horizontal resolution of 7 km across track and
180 km along track (Livesey et al., 2015), while AIRS has a
vertical resolution of around 2.7 km close to the surface and
4.3 km near the tropopause (Maddy and Barnet, 2008) with a
field of regard of ∼ 40 km. The potential resolution of DAR
greatly exceeds the resolution of current water vapor profil-
ers and, hence, the expected precision needs to be interpreted
accordingly. For example, simply by matching their vertical
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Figure 9. Histogram (gray) and cumulative histogram (blue) of the
maximum potential biases for CloudSat-driven end-to-end profile
water vapor retrievals for each of the CloudSat measurements avail-
able from 15 January 2007.

resolutions, the DAR precision could be improved by a fac-
tor of ∼

√
3 (when matching the 1.3 km MLS resolution) to

∼
√

8 (when matching the ∼ 4 km AIRS resolution), while
still retaining the ∼ 1 km horizontal resolution.

6 Conclusions

We have discussed the theoretical capabilities of a differen-
tial absorption radar method to retrieve total column water
vapor under clear sky, cloudy, and precipitating conditions,
as well as water vapor profiles under cloudy and rainy con-
ditions. This concept relies on radar reflectivities at two fre-
quencies in the wings of the 183 GHz water vapor line (on
and off an absorption line) to estimate the absorbing gas path
between the radar and the scatterer.

An inversion scheme was implemented, focusing on the
retrieval propagation of measurement noise as well as sys-
tematic biases. This scheme provided a mathematical basis
for the weighting of the water vapor signal against errors in-
troduced by uncertainties in other parameters needed by the
retrieval such as the assumed pressure and temperature ver-
tical distribution, hydrometeor abundances, particle size dis-
tributions, as well as spectroscopic uncertainties. Then, this
scheme was used to select pair of radar tones that maximize
the water vapor signal and minimize the total error at differ-
ent targeted altitude ranges. As expected, to sound close to
the surface, the inversion scheme selected radar tones well
into the wing of the 183 GHz to be able penetrate the large
water vapor concentrations residing in the boundary layer
and radar tones closer to the line center to sound higher alti-
tude ranges.

Assuming an instrument precision of 0.16 dBZ and a radar
sensitivity of −30 dBZ and a retrieved vertical resolution of
500 m against a ∼ 1.7 km footprint, we found that even un-
der rainy conditions, the total column water vapor expected
precision will be 0.03 cm on average, with potential biases
smaller than 0.26 cm 80 % of the time. This precision is half
as good as that of passive microwave total column water va-
por measurements, with the potential of considerably better
horizontal resolution. Further, DAR total column water vapor
estimates would be available over land and ocean and essen-
tially all sky because, for the radar tones selected, the surface
return is always above the radar sensitivity limit.

For water vapor profiles, the expected precision was found
to be around 89 % on average, with potential biases 80 %
of the time smaller than 77 % when the profile is being re-
trieved close to surface but smaller than 38 % above 3 km.
Simply by matching the vertical resolution of current humid-
ity sounders, the DAR precision could be improved consid-
erably, still retaining the high horizontal resolution. Further-
more, DAR specifically samples in cloud and rain, where
existing sensors suffer large errors or simply cannot mea-
sure. At all altitude ranges, the main source of potential bi-
ases are the hydrometeor uncertainties, and any attempt to
characterize an instrument should probably be coupled with
an effort to characterize the hydrometeor particle size distri-
butions better. These results demonstrate that this technique
holds considerable potential as a method for retrieving water
vapor profiles under realistic cloudy and precipitating scenar-
ios.

Atmos. Meas. Tech., 9, 2633–2646, 2016 www.atmos-meas-tech.net/9/2633/2016/



L. Millán et al.: DAR water vapor retrievals 2643

Appendix A: Least squares

In this study, the least-squares retrieval is used to estimate a
total water vapor column, w. The measurement vector y is
determined by the differences between surface radar returns
at different frequencies; that is to say

y = [dBZ(ν2, rs)− dBZ(ν1, rs),

dBZ(ν3, rs)− dBZ(ν1, rs), . . .] . (A1)

For completeness, we present the theory for multiple radar
tones even though in Sect. 4 we only used a pair. The idea
is to minimize the sum of the square differences – a least-
squares approach – between the measurement vector y and
the simulated measurements, given by

ŷ(x)=
[
Fν2,rs(x,b)−Fν1,rs(x,b),Fν3,rs(x,b)
−Fν1,rs(x,b), . . .

]
, (A2)

where F is the forward model described in Sect. 3, x is a wa-
ter vapor linearization profile, and b is known as the forward
model parameter and contains additional terms needed by the
forward model but which are not retrieved (such as profiles
of temperature, pressure, ice water content, liquid water con-
tent, rain, snow). In these simulations any reflectivity below
the radar sensitivity is set to missing.

The solution of such system may be found by minimizing
the cost function:

χ2
=
[
y− ŷ(x)

]T S−1
y

[
y− ŷ(x)

]
, (A3)

where Sy is the matrix describing the noise covariance of the
measurements.

Following Rodgers (2000), the iterative least-squares fit
solution is given by

wi+1 = wi +
[
KT S−1

y K
]−1

KT S−1
y

[
y− ŷ(x)i)

]
, (A4)

where the total water vapor column, wi , is computed by suit-
ably integrating the vertical profile xi , and

K=
∂ŷ(x)
∂w
|x=xi (A5)

is the Jacobian matrix evaluated by finite differences perturb-
ing the entire profile by 1 %. Note that after each iteration
xi+1 is computed following

xi+1 =
wi+1

wi
xi . (A6)

This technique estimates the uncertainties (the precision)
in the retrieved total column water vapor, w, according to

Sw =
(

KT S−1
y K

)−1
, (A7)

where Sw is the covariance matrix of the estimated total
column water wi+1.

So, to test the total column water vapor retrieval four pa-
rameters are needed: (1) the measurements y, (2) the initial
guess x0, (3) the forward model parameters b, and (4) the
measurement covariance matrix Sy . The measurements are
CloudSat-driven simulations. The initial guess, that is to say
the water vapor profile used in the first iteration, is a climato-
logical water profile. The forward model parameters needed
are IWC, LWC, rain, snow, temperature, and pressure. All of
them were taken from the CloudSat retrieval products. The
hydrometeor PSDs used were listed in Table 1, which are the
same ones employed to compute the synthetic measurements.
Lastly, the measurement covariance matrix was assumed to
be a diagonal matrix with the variances of the elements of
the measurement vector; that is to say

σ 2
=

(√
2δZ

)2
, (A8)

where δZ is the radar precision, in this study assumed to be
0.16 dBZ, and the expression within the brackets is just the
addition in quadrature of the uncorrelated radar tones’ preci-
sion.

While finding the solution of the retrieval problem is the
central part of operational retrieval algorithms, it is not the
main focus of this study. This study quantifies the theoret-
ical capabilities of such measurements, and therefore, the
precision and accuracy of the solution w reached by the it-
erative process. As already mentioned, the uncertainty in the
retrieved state due to the measurement noise (the precision)
is described by the diagonal elements of the covariance ma-
trix Sw. To compute the accuracy, the impacts of various
sources of systematic uncertainties were investigated. These
errors were estimated using end-to-end retrieval simulations.
First, for each systematic error a perturbed set of measure-
ments were generated and ran through the retrieval algo-
rithm. These perturbed measurements were computed fol-
lowing

y′ = F(xT,b′), (A9)

where xT is the true water vapor state as provided by the
CloudSat-ECMWF product, and where b′ is the perturbed
forward model parameter. Note that in b′ only one of the pa-
rameters is perturbed at a time; for instance, when comput-
ing the systematic uncertainty related to temperature, only
the temperature values are perturbed, while the rest (IWC,
LWC, rain, snow, PSDs, etc) are left unperturbed. Then, the
retrieval results using the perturbed measurements were com-
pared to the retrieved values from an unperturbed run, i.e.,
where the measurements were

y = F(xT,b) (A10)

and the difference between the two was a measure of the im-
pact of a given systematic error source. Table 2 summarizes
the perturbation used.
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Appendix B: Optimal estimation

In this study, optimal estimation retrievals are used to esti-
mate water vapor profiles, x. In these retrievals the problem
is ill-conditioned and to find a meaningful solution an a pri-
ori constraint is added to the retrieval problem. Each element
in the measurement vector, also denoted by y, is determined
by

yjk =
dBZ(ν2, rk)− dBZ(ν2,zk−1)

∂r

−
dBZ(ν1, rk)− dBZ(ν1, rk−1)

∂r
, (B1)

where j is the frequency counter (excluding the reference
frequency), k is the range gate counter, and ∂r is the vertical
resolution. In a similar manner, the elements of the forward
model are given by

ŷjk =
Fν2,rk (x,b)−Fν2,rk−1(x,b)

∂r

−
Fν1,rk (x,b)−Fν1,rk−1(x,b)

∂r
. (B2)

The solution of such system may be found by minimizing
the cost function:

χ2
=
[
y− ŷ(x)

]T S−1
y

[
y− ŷ(x)

]
+ [x− a]T S−1

a [x− a] ,
(B3)

where a is the a priori estimate with covariance Sa . As men-
tion before, the a priori used is the mean profile of 100 ad-
jacent CloudSat ECMWF-aux water vapor values smoothed
by a boxcar average of four vertical levels, and the uncertain-
ties in this a priori are assumed to be 100 %. In this case, the
diagonal elements of Sy are given by

σ 2
=

(√
4δZ/∂r

)2
(B4)

because each element in the measurement vector involves
four reflectivity measurements.

Following Rodgers (2000), the iterative solution is given
by

xi+1 =xi +
[
KT S−1

y K+S−1
a

]−1

{
KT S−1

y

[
y− ŷ(xi)

]
+S−1

a [a− xi]
}
, (B5)

where in this case, the Jacobian matrix is given by

K=
∂ŷ(x)
∂x
|x=xi . (B6)

This technique gives an estimate of the precision in the
water vapor profiles according to

Sx =
(

KT S−1
y K+S−1

a

)−1
. (B7)

Another important quantity used to diagnose the retrieval
performance is the averaging kernel matrix, given by

A=
∂x
∂xT
=

(
KT S−1

y K+S−1
a

)−1
KT S−1

y K, (B8)

where xT is the true state of the atmosphere and x is the re-
trieved state obtained in the last iteration of Eq. (B5). The
rows of this matrix are the averaging kernels and they map
the true state into the retrieval space; that is to say, they de-
scribe how the elements of the true state influenced the re-
trieved state. The width of the kernel is a measure of retrieval
resolution.
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