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Abstract. Dual-flow-loop two-filter radon detectors have a
slow time response, which can affect the interpretation of
their output when making continuous observations of near-
surface atmospheric radon concentrations. While concentra-
tions are routinely reported hourly, a calibrated model of de-
tector performance shows that ∼ 40 % of the signal arrives
more than an hour after a radon pulse is delivered. After
investigating several possible ways to correct for the detec-
tor’s slow time response, we show that a Bayesian approach
using a Markov chain Monte Carlo sampler is an effective
method. After deconvolution, the detector’s output is redis-
tributed into the appropriate counting interval and a 10 min
temporal resolution can be achieved under test conditions
when the radon concentration is controlled. In the case of ex-
isting archived observations, collected under less ideal con-
ditions, the data can be retrospectively reprocessed at 30 min
resolution. In one case study, we demonstrate that a decon-
volved radon time series was consistent with the following:
measurements from a fast-response carbon dioxide monitor;
grab samples from an aircraft; and a simple mixing height
model. In another case study, during a period of stable nights
and days with well-developed convective boundary layers, a
bias of 18 % in the mean daily minimum radon concentration
was eliminated by correcting for the instrument response.

1 Introduction

Radon–222 (radon) is a radioactive noble gas emitted pri-
marily from the ice-free land surface, and widely used as a
natural passive tracer in the atmosphere. It is almost ideal
as a passive tracer; as well as being chemically inert it has
a relatively well-characterised terrestrial source, and a short

3.8-day half-life. Radon measurements have been used to
identify baseline air masses at atmospheric monitoring sta-
tions (Brunke et al., 2004; Chambers et al., 2014, 2015a; Xia
et al., 2013), for model validation (Considine et al., 2005; Ja-
cob and Prather, 1990; Zhang et al., 2008), and for making
land surface flux estimates (Biraud et al., 2000; Slemr et al.,
2013; van der Laan et al., 2014). Radon has also been used as
a tracer in recent studies of vertical mixing (Chambers et al.,
2011; Griffiths et al., 2013; Williams et al., 2011, 2013; Var-
gas et al., 2015) and in many earlier studies, some of which
are reviewed by Zahorowski et al. (2004).

One of the challenges of using radon as a tracer is that
emissions are small (∼ 1 atom cm−2 s−1; Zhang et al., 2011)
and ambient concentrations are low. Low-level atmospheric
measurements are therefore a niche served largely by instru-
ments built in-house (Frank et al., 2012; Levin et al., 2002;
Schmithüsen et al., 2016; Wada et al., 2010, 2012; Whit-
tlestone and Zahorowski, 1998; Grossi et al., 2012). The
dual-flow-loop two-filter radon detector (Whittlestone and
Zahorowski, 1998; Chambers et al., 2011) is the focus of this
paper. It is based on the two-filter method for radon measure-
ments (Thomas and Leclare, 1970) and is called the “two-
filter detector” for short.

An advantage of the two-filter detector is that it provides
a direct measure of radon concentration, rather than infer-
ring it from the ambient concentration of radon progeny.
Although direct measurements are common for measuring
higher radon concentrations, for instance when measuring
radon emissions from soil (Grossi et al., 2011; Zahorowski
and Whittlestone, 1996), progeny measurements are often
used for low-concentration measurements because it is pos-
sible to increase the measurement sensitivity by accumulat-
ing progeny by filtration or electrostatic precipitation. When
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progeny are trapped directly from ambient air; e.g. using the
one-filter method, the derived radon concentration is more
sensitive to environmental parameters than two-filter detec-
tors (Xia et al., 2010). This is because the two-filter detec-
tor is unaffected by the degree of ambient disequilibrium be-
tween radon and its progeny (equilibrium, in a radioactive
decay chain, is when the activity concentration of a parent
equals the activity concentration of its progeny). Even though
the two-filter detector measures the alpha activity of radon
progeny internally, these progeny are generated under con-
trolled conditions inside a delay chamber, so that steady-state
counts are proportional to the ambient radon concentration.
The cost of being sensitive to radon concentration alone is
that the detector is large, to accommodate the delay cham-
ber, and has the opportunity to see fewer counts than progeny
detectors because of practical limits on the size of the delay
chamber.

Radon detectors are important because of an increasing
need for reliable measurements. Radon emissions, which
must be known for model validation studies, are increas-
ingly well-characterised (e.g. Karstens et al., 2015) and
radon applications are becoming more ambitious (Chambers
et al., 2015a; Vogel et al., 2013). In contrast, prior stud-
ies made simple assumptions about radon emissions (Co-
nen and Robertson, 2002) and focussed on clear trends, such
as identifying the contrast between boundary-layer air and
the radon-depleted free troposphere (Gäggeler et al., 1995;
Guedalia et al., 1972).

Although sensitive and precise enough for the studies
mentioned above, a major limitation of the two-filter detec-
tor is its slow temporal response, with a one-half rise time of
about 45 min. The slow detector response is a problem com-
mon to many high-sensitivity techniques. It puts a limit on
the detector’s usefulness during non-stationary conditions,
most strikingly at inland sites when radon concentrations
drop rapidly following the morning onset of vertical mixing.
This makes it difficult to compare radon measurements with
flask samples, or with measurements of other quantities from
fast-response instruments.

In order to tackle this problem, we have implemented
a deconvolution method to correct observations for the in-
strument response. Deconvolution is a problem which arises
frequently in atmospheric measurements because of the fi-
nite spatial or temporal response of sensors. For example,
deconvolution methods have been applied to eddy correla-
tion (Moore, 1986; Massman, 2000), cavity ring-down spec-
troscopy (Winderlich et al., 2010), temperature (McCarthy,
1973) and radiation measurements (Ehrlich and Wendisch,
2015). In our favoured implementation, the measurement un-
certainty is estimated, along with the reconstructed time se-
ries, and care is taken to avoid the amplification of measure-
ment noise.

The purpose of this paper is to describe the deconvolu-
tion method and the effects of deconvolution on the inter-
pretation of several case studies. In Sect. 2 a mathemati-

Figure 1. Process diagram of the dual-flow-loop two-filter radon de-
tector. Wider arrows indicate higher flow rates. For the detector used
in these tests, the inlet filter was a high efficiency particulate filter
(Vokes Air Hepatex JK), and the second filter was a twill weave
stainless steel mesh made from 20 µ diameter wire with 20 µ open-
ings (635 mesh, TWP Inc.). The alpha particle counter consisted of
an assembly holding the filter, silver activated zinc sulfide scintilla-
tion paper, and photomultiplier (9330B, ET Enterprises).

cal model of the detector is developed and used to explain
the detector response to a radon pulse. In Sect. 3, decon-
volution methods of increasing complexity are described.
Three methods are discussed: Richardson–Lucy deconvo-
lution; Richardson–Lucy deconvolution with total variation
regularisation; and a Bayesian Monte Carlo technique. The
favoured method, Bayesian Monte Carlo deconvolution, uses
the simpler Richardson–Lucy method in its implementation.
In Sect. 4 the deconvolution methods are tested under con-
trolled conditions. In this test, an hour-long pulse of radon is
delivered to the detector and reconstructed at 10-min resolu-
tion. Then, in Sect. 6, the deconvolution method is applied to
data acquired in a previous field campaign. As well as radon
observations, the interpretation draws on a range of microme-
teorological data from surface and aircraft sensors. In Sect. 7
the need for deconvolution is discussed, along with sugges-
tions for detector operation which improve the chances of
successfully correcting the detector output. Finally, conclu-
sions are drawn in Sect. 8.

2 Radon detector model

This section describes a simple model of the dual-flow-loop
two-filter radon detector (Fig. 1). The model is based on
the one described by Whittlestone and Zahorowski (1998),
but with additions which were needed for an unbiased fit to
observations necessary for deconvolution. The model is de-
scribed in full alongside a description of the detector itself.
At the end of the section, model output is compared with ex-
periments.
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2.1 Operating principles

The two-filter detector operates by drawing ambient air
through a particulate filter, to remove ambient radon progeny,
and then counting radon progeny on a second filter which is
downstream of a delay chamber. The only source of progeny,
on the second filter, is the radioactive decay of radon in the
delay chamber. The count rate, as a result, is proportional to
the ambient radon concentration.

The delay chamber volume is proportional to the desired
sensitivity. Detectors have been built with delay chambers of
nominal volumes 100, 700, 1500, and 5000 L, the smallest
intended for inland use (Martin et al., 2004) and the largest
for remote stations which monitor non-terrestrial air (Za-
horowski et al., 2013, e.g.). By optimising other aspects of
the design (Whittlestone et al., 1994), the measured net ef-
ficiency has proven to scale roughly linearly with volume,
εnet ≈ 0.2V where εnet is the number of counts per second at
an ambient concentration of 1 Bq m−3 and V is the internal
volume in m3. We focus on the 700 L detector in this paper
but also show an example from a 1500 L detector.

Because the detector works by gross alpha counting, the
signal is also sensitive to thoron (radon–220, with a half-
life of 56 s). Like radon, thoron is a gas that is emitted from
the ground. Its decay products include an alpha-emitting
daughter (lead–212, with a half-life of 10.6 h) that causes
an elevated background if allowed to reach the second fil-
ter (Williams and Chambers, 2016). For installations where
thoron contamination is possible, the thoron signal is attenu-
ated by passing sample air through an external delay cham-
ber before entering the detector, aiming for a delay of at least
5 min.

Calibration is usually performed monthly by injecting
radon from a calibrated source (typically with a 5 % abso-
lute uncertainty), and the background count rate measured
quarterly. For more about a typical installation, see Cham-
bers et al. (2011).

2.2 Model formulation

Whittlestone and Zahorowski (1998) present a model which
describes the detector well enough to estimate its most im-
portant operational characteristics, such as the net efficiency
and response time. Extra terms need to be introduced in order
to reproduce day-to-day variations in the detector response.
Day-to-day variations are small, but important for estimat-
ing the deconvolution uncertainty, so these extra terms are
included in the present application.

Even with these extra terms, the model includes several
simplifying assumptions meaning that it is far from a com-
prehensive treatment of processes within the detector. This
suits our needs, as the purpose of the model is utilitarian; it
needs to be able to reproduce the time-response of the detec-
tor, including day-to-day changes, preferably with few ad-
justable parameters. In the next section, validation data are

Figure 2. The decay series of radon and its immediate progeny, an
extract from the uranium–238 series. The figure shows the energy
of alpha decays, and nomenclature used to identify species abun-
dances: NRn, NA, NB , and NC .

presented to show that the model meets these requirements.
Here, the model is described in full.

Following the notation of Whittlestone and Zahorowski
(1998), radioelement concentrations in air are given in num-
ber densities (atoms m−3), using the symbols shown in
Fig. 2: NRn for radon–222, NA for polonium–218, NB
for lead–214, and NC for bismuth–214. Bismuth–214 de-
cays are treated as immediate alpha decays to stable lead–
210, because of the short half-life of the intermediate
species, polonium–214. The radioactive decay constant, λ=
log(2)/τ , where τ is the half life, is written with the same
subscript as the element’s number density.

Flow rates in the model are volumetric with units of
m3 s−1 at the temperature and pressure of the delay chamber.
Number densities are also referenced to the delay chamber
conditions. Temperature and pressure are logged in the delay
chamber to allow measured radon concentrations to be con-
verted to STP conditions (standard temperature and pressure,
20 ◦C, 1000 hPa, written Bq m−3 STP) or to ambient condi-
tions, if ambient temperature and pressure are logged with a
separate weather station. Other routinely logged parameters
include the internal and external flow rate and the relative
humidity within the delay chamber.

As shown in Fig. 1, ambient air is drawn first into an exter-
nal delay chamber, at the external flow rate of qe, to remove
thoron. Ambient air has a radon concentration NRne , where
the units are activity per unit volume at the delay chamber
temperature and pressure, and the external delay chamber has
a radon concentrationNRnd and volume Vd. In the model, the
air in the delay chamber is always completely mixed and the
temperature changes from the external air temperature, Te, to
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the internal detector temperature, Ti, instantaneously at the
detector inlet.

In the delay chamber, the balance between radon inflow,
outflow, and decay is

dNRnd

dt
=
qe

Vd

(
NRne −NRnd

)
−NRndλRn. (1)

Air exiting the external delay chamber passes through the
first filter; which removes radon progeny, thoron progeny,
and aerosols; then enters the main flow loop. The radon con-
centration, NRn, is assumed to be uniform throughout the in-
ternal delay chamber because of the rapid circulation of air
(q� qe, q/V ≈ 1 min). In the internal delay chamber,

dNRn

dt
=
qe

V

(
NRnd +NRncal −NRn

)
(2)

−NRnλRn−NRn
1
T

dT
dt
.

Equation (2) differs from the Whittlestone and Zahorowski
(1998) model in two ways. First, the last term in Eq. (2) takes
into account the difference between flow rates in and out
of the internal delay chamber as a result of a temperature-
induced trend in air density. It causes, at most, a ∼ 2 %
change in detector output when the detector temperature is
changing rapidly. For detectors installed indoors, it could be
neglected. Second, Eq. (2) has been modified to simulate de-
tector calibration. During normal use, the valve between the
delay chamber and the calibration source (Fig. 1) is closed
and NRncal = 0. During calibration, NRncal = As/qe, where
As is the calibration source activity. The calibration source
is chosen so that NRncal �NRn.

Returning to the description of usual operation: plug flow
is assumed to exist within the internal delay chamber; the
internal flow rate is chosen so that the mean transit time,
τt = V/q, through the delay chamber is about 1 minute; and
inside the internal delay chamber, radon atoms decay accord-
ing to the series shown in Fig. 2. Unattached radon daughters
deposit on chamber walls, or plate out, with a deposition ve-
locity, vd, of about 0.15–0.5 mm s−1, depending on the cir-
culation pattern (McLaughlin and O’Byrne, 1984; Nazaroff
et al., 1992). Deposition is parametrised here as an expo-
nential loss process, with a single time constant of λp for
all species. The time constant λp can be linked to the more
usual parameterisation of deposition, based on the deposi-
tion velocity vd, by equating the expressions for the volume-
integrated deposition, V λpNA, with the area-integrated de-
position AvdNA, where A is the internal surface-area of the
delay chamber. Hence, λp = Avd/V .

Because plug flow is assumed, it is possible to consider
an air parcel which travels, without mixing, through the de-
lay chamber. It enters the delay chamber at time t = 0, free
of radon progeny. Then, as it transits the delay chamber, the

progeny concentration evolves according to

dNA
dt
=NRnλRn−NA

(
λA+ λp

)
(3)

dNB
dt
=NAλA−NB

(
λB + λp

)
(4)

dNC
dt
=NBλB −NC

(
λC + λp

)
. (5)

In air arriving at the second filter, the concentration of
radon progeny is given by the solution to Eqs. (3)–(5) at a
time equal to the transit time, t = τt, with NA =NB =NC =
0 at t = 0. The solution can be found numerically, or written
analytically. Because of its length, it is not reproduced here
but can be found in the Supplement.

Due to the presence of the first filter, and the short tran-
sit time, polonium–218 (species A) is the dominant species
trapped on the second filter, which is actually a fine wire
screen. Because aerosols are excluded from the tank, radon
progeny exists as unattached clusters which are efficiently
trapped on the screen due to their large diffusivity. The ef-
ficiency of the screen; εs, discussed in Sect. 2.3; is & 95 %.
Air re-entering the delay chamber needs to pass through a
length of pipe, a blower, and a denim screen, all of which
trap progeny and ensure that air re-entering the delay cham-
ber is, to a good approximation, progeny-free.

The number of progeny, FA, FB , and FC , resident on the
screen is determined by a balance between the arrival of
new progeny, trapped at a rate qεsN , in situ production from
the decay of parent isotopes, and loss processes. Loss pro-
cesses are dominated by radioactive decay, but an additional
loss process, not included by Whittlestone and Zahorowski
(1998), is recoil loss (Jonassen and McLaughlin, 1976). Dur-
ing alpha decay, the nucleus of the newly formed progeny
recoils away from the alpha particle to conserve momentum.
Although momentum is conserved for beta and gamma emis-
sion too, only in the case of alpha decay is enough kinetic
energy transferred to the nucleus for it to be lost from the
screen. In the detector, recoil is significant only for the decay
of polonium–218 (species A), whose probability of being lost
from the screen is written pr. These considerations lead to

dFA
dt
= qεsNA−FAλA (6)

dFB
dt
= qεsNB + (1−pr)FAλA−FBλB (7)

dFC
dt
= qεsNC +FBλB −FCλC . (8)

A silver activated zinc sulphide scintillator and photomul-
tiplier tube assembly count alpha particles with an efficiency
εd, which is assumed to take a single value for both alpha
particles. This is an approximation, because alpha particles
from the two species have different energies. Polonium–218
(species A) decays with alpha particles which are 22 % less
energetic, have a shorter range in air, and are slightly less
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likely to reach the scintillator. In the simplified decay chain,
this gives a detector activity (alpha particles counted per sec-
ond) of

Ad = εd (FAλA+FCλC) , (9)

which is integrated over a counting interval, δt . Typically,
δt = 30 min for comparison with observations. Although
there are theoretical estimates for the counts expected from
each side of a screen with simple geometry (Solomon and
Ren, 1992), εd is effectively a free parameter in this model
because the geometry of the screen and photomultiplier as-
sembly is complicated, the design having been improved
over several iterations (Whittlestone and Zahorowski, 1998;
Williams and Chambers, 2016).

An important characteristic of the detector, the net steady-
state efficiency, εnet, is found by setting time derivatives to
zero, combining Eqs. (6)–(9), and computing the count rate
for an inflow radon concentration of 1 Bq m−3. Although εnet
depends on several model parameters, it is controlled in prac-
tice by the delay volume, V , provided that the flow rate q is
adjusted so that the screen efficiency is high and the plateout
loss is small (Sect. 2.1).

We implemented this model using the Boost odeint or-
dinary differential equation solver (Ahnert and Mulansky,
2011). Ambient radon concentrations were represented as a
piecewise linear or piecewise constant time series, depending
on the case being simulated.

2.3 Environmental influences on model parameters

Some of the model parameters are potentially affected by
changes to the environment within the delay chamber. In the
delay chamber, radon atoms decay by alpha emission into
polonium–218. Initially, 88 % of the polonium atoms carry a
positive charge (Porstendörfer, 2001) but lose their charge so
that the steady-state fraction of charged clusters is roughly
50 % (Dankelmann et al., 2001). Both charged and neutral
polonium atoms form unattached clusters with an aerody-
namic size of about 1 nm (Zhang et al., 2014), but charged
atoms form larger clusters with a lower diffusivity. Because
the neutralisation rate depends on relative humidity, at least
in the presence of reactive trace gases (Frey et al., 1981), so
the net diffusivity of polonium–218, and other radon daugh-
ters, can change with relative humidity. This is a potential
cause of changes in both the screen efficiency, εs, and the
plateout time constant, λp, both of which increase with diffu-
sivity. The effect of humidity is important only in the range
between about 0 and 30 % (Su et al., 1988), asymptotically
approaching a constant value at higher relative humidities.
This range of sensitivity to humidity compares well with the
results of Thomas and Leclare (1970), who saw an effect on
their two-filter apparatus in the range 0–20 %.

Based on particle diffusivity, the efficiency of woven
steel screens can be computed from theory (Cheng et al.,
1980; Cheng and Yeh, 1980). The Cheng et al. theory has

been validated experimentally for particles above about 2 nm
(Scheibel and Porstendörfer, 1984; Ichitsubo et al., 1996;
Alonso et al., 1997; Heim et al., 2005; Shin et al., 2008;
Thomas et al., 2013) and, although it begins to under-predict
the screen collection efficiency for smaller particles (Heim
et al., 2010), is appropriate for radon progeny. For the flow
rate typical in the 700 L detector, q = 12.2 L s−1, a filter area
of 262 cm2, and taking the diffusivity of neutral clusters to be
0.08 cm2 s−1 and positive clusters to be 0.03 cm2 s−1 (Frey
et al., 1981), εs = 0.98 for neutral clusters and 0.87 for posi-
tive clusters. Bearing in mind an upper limit of 88 % positive
clusters, the net value of εs should lie in the range 0.89–0.98,
assuming uniform flow across the screen.

In isolation, a change in the screen efficiency, though
it affects counting efficiency, will not lead to a change in
the shape of the detector response. To match the observed
changes in detector response, there needs to be a process
which allows atoms to be lost from the screen at a varying
rate. A parameter which allows this is a changing recoil frac-
tion. The upper limit of this effect is for a flat surface in a
vacuum, where there is a 50 % chance of the recoil velocity
being directed away from the surface and an atom being lost
(Jonassen and McLaughlin, 1976). For a screen in an airflow,
the recoil losses measured by Knutson and George (1994)
were consistent with there being a 50 % chance of recoil loss
followed by re-attachment to the screen at the same rate as
the screen efficiency. Although based on only four samples,
the Knutson and George (1994) results suggest that the recoil
probability can be written

pr =
1
2
(1− εs) . (10)

Following this chain of reasoning, we can expect the radon
detector’s response to have more weight at long lag times
when pr is small, which will be more likely on days when
the delay chamber humidity is above ∼ 20 %. Based on the
expected range for εs and Eq. (10), pr, should lie in the range
0–0.055.

2.4 Model validation

The main purpose of the detector model presented in
Sect. 2.2 is to simulate the detector response, necessary for
deconvolution as described later in Sect. 3. Some of the
model parameters have to be fitted to experimental data, ide-
ally to measurements of the detector response to a short pulse
of radon. Such an experiment is presented here in order to
demonstrate the validity of the detector model.

The modelled detector response consists of two overlap-
ping peaks (Fig. 3a); counts occurring during the first hour
are dominated by the decay of polonium–218, later counts
are mainly from the decay of polonium–214. The relative
timing of the two peaks is mainly controlled by the radioac-
tive lifetime of the intermediate isotopes. In contrast, the
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Figure 3. Modelled and observed detector response to a radon
source injected for 1 min at time zero. Panel (a) shows the sim-
ulated response of the 700 L radon detector during normal opera-
tion (base case) including a break down between contributions from
polonium–218 and polonium–214 counts. Also shown is the effect
of changing the external flow rate, qe. Panel (b) shows the observed
and modelled detector response, comparing 2 days which have dif-
fering detector responses, interpreted as a change in the fraction of
polonium–218 progeny lost from the screen after alpha decay. Pan-
els (c) and (d) show the residuals (observed minus modelled counts)
after fitting the modelled response to observations. The pulse con-
centration is not precisely known, and not necessarily the same each
day, so the detector response is normalised (by total counts in a and
by peak counts in b). The normalisation factor, in b, is approxi-
mately 1/

(
1500count s−1

)
. Over eight injections, the number of

counts 0–5 h after injection has a coefficient of variation of 3 %.

shape of the first peak is strongly controlled by the inlet flow
rate, qe, where a higher flow rate leads to a sharper peak.

So as to reproduce the large temperature variations seen
in the field, for the validation experiments the detector was
installed outdoors with full exposure to the midday sun. Am-
bient air was sampled continuously at about 2 m a.g.l. and,
for 1 min, radon was injected into the intake line upstream of

the thoron delay chamber. According to specifications (Pylon
Inc.) the source emits radon at 30.8 Bq min−1

± 5% when
flushed continuously. By leaving the source sealed in be-
tween pulses (one per day at 13:00 LT; valves were controlled
by a timer), radon accumulated inside the source, leading to a
pulse which was much larger than the ambient radon concen-
tration, although not precisely known. Counts were recorded
every minute and the count rate peaked at ∼ 1500 s−1, com-
pared with ambient counts of ∼ 1 s−1. For this 700 L detec-
tor, the count rate peaks at 18 min after injection and 50 %
of the counts occur before 49 min; 42 % of the counts are
recorded after the first hour. The full-width at half-maximum
is 47 min and the peak is asymmetric; the count rate is 50 %
of its maximum 11 min before the peak and 36 min after the
peak.

The theoretical model, when fit to the observed data, has
residuals which show little systematic structure (two cases
are shown in Fig. 3). The Bayesian deconvolution approach
was used to fit the model to observations. The method, de-
scribed in Sect. 3.3, was modified for this purpose by speci-
fying a known radon concentration along with uninformative
priors for the model parameters without direct observations.
Non-Bayesian optimisation, using Powell’s method (Powell,
1964; Press et al., 2007), gave similar results.

The size of the model error is better than the typical count-
ing error under ambient conditions, which indicates that the
model is good enough to use for deconvolution. The residuals
of Case A show what might be systematic structure around
the peak, perhaps because of air flow variations, but the mag-
nitude is small and model error is neglected in the following
sections.

Day to day variations in the detector response can be
matched by changing model parameters. The two cases in
Fig. 3, marked “a” and “b”, were chosen because they lie
at two extremes of the observed ratio of polonium–214 to
polonium–218 counts. To achieve a good fit on both of these
days, the recoil parameter had to be allowed to vary.

Considering all nine of the pulse tests, the ratio of
polonium–214 to polonium–218 counts tends to be higher
on days when the relative humidity inside the detector is low
(Fig. 4), which is consistent with a value of pr at a humidity
below 20 %.

To fit these observations, the recoil parameter, pr, must be
varied within the range from 0 to 0.1. This range is not wildly
unrealistic, yet is larger than the range expected from theory
(0–0.055, Sect. 2.3). The reason for this is perhaps that pr is
acting as a proxy for an unknown process, or because of the
known approximations in the model. Some of the approxi-
mations are that εd and λp take a single value for all radon
daughters, or the convenient assumptions of plug flow in the
internal delay chamber and complete mixing in the external
delay chamber. Dealing with this by adding complexity to the
model is undesirable because there are already more param-
eters than can be constrained by observations. We therefore

Atmos. Meas. Tech., 9, 2689–2707, 2016 www.atmos-meas-tech.net/9/2689/2016/



A. D. Griffiths et al.: Correcting radon–222 measurements for the instrument response 2695

0 10 20 30 40 50 60

Relative humidity (%)

0.90

0.95

1.00

Polonium-218 counts / Polonium-214 counts

Figure 4. Ratio of polonium–218 to –214 counts (related to the re-
coil probability, pr) during pulse injection tests as a function of the
average relative humidity within the detector for the first hour since
pulse injection. The Bayesian deconvolution approach (Sect. 3.3)
was used to fit the model to observations by specifying a known
ambient radon concentration. The markers show mean ± one stan-
dard deviation.

choose to allow pr to extend outside the range predicted by
theory so as to achieve a good match with observations.

A further consequence of the simplicity of the model, and
the nature of the test data, is that it can not be used to infer
the reason for changes in pr. Even though our data are consis-
tent with a relative humidity effect, something which is also
supported by previous studies (Frey et al., 1981; Su et al.,
1988; Thomas and Leclare, 1970), these data can not rule
out a temperature effect, because relative humidity is driven
by temperature in these data. These issues are sidestepped
during deconvolution by allowing pr to take a random value
within a range that encompasses the full range of observed
detector responses. It is possible to take this approach be-
cause the variations in detector response are relatively small.

Variations in pr imply that the net efficiency of the detec-
tor must also be changing. To measure variations in net effi-
ciency, two changes were made. Instead of being closed be-
tween pulse injections, the source was flushed continuously
so that a known concentration of radon could be injected each
day. Instead of a 1 min injection, radon was injected for 1 h
each day, for 32 consecutive days. The model was fit to ob-
servations to derive the net efficiency. The individual model
parameters were not as well constrained as during the pulse-
injection tests, so we discuss only the net efficiency derived
from the 1 h injections.

In contrast to the apparent variation in pr, the net efficiency
of the detector was more stable. This might be because the
plateout rate, λp, is also linked to diffusivity and will affect
the net efficiency in the opposite sense to pr. The net effi-
ciency had a coefficient of variation, ratio of standard devia-
tion to mean, of 0.018. On days where the relative humidity

was below 15 %, however, the coefficient of variation (0.021)
was about double the remaining days (0.012). This degree of
variability is comparable with the 0.02–0.06 variability range
of monthly calibrations across several sites (Chambers et al.,
2015a).

Solar heating, as a cause of variations in sensitivity, was
previously examined by Brunke et al. (2002). They found
that the calibration coefficient of a 1500 L detector was more
variable if the detector was unshaded, and attributed this to
the effect of buoyancy-driven secondary circulations which
increase the deposition rate of radon daughters within the
delay chamber. However, they reported a coefficient of varia-
tion of 0.14 for the unshaded tests, almost seven times larger
than our tests. The 700 L detector used here is also suscepti-
ble to secondary circulations, so it is likely that another factor
was also important in the earlier results.

A possible explanation is the better temperature measure-
ment in the newer version of the detector used in this study.
In the present version, air temperature inside the delay cham-
ber is measured using a dedicated sensor (Vaisala HMP45C),
allowing the internal volumetric activity (Bq m−3) to be
converted to ambient activity, or to equivalent activity at
standard temperature and pressure (20 ◦C, 1000 hPa, written
Bq m−3 STP). The Brunke et al. (2002) detector lacked an
internal temperature sensor, relying instead on the temper-
ature of a data logger for air density calculation. This data
logger was inside the detector, but in an electronics chamber
separate from the delay chamber. In our detector, the offset
between the data logger temperature and the delay chamber
temperature varies by ±10 ◦C from its mean value. Because
the internal air density can differ from ambient conditions by
∼ 10%, the air density correction can be nontrivial. An im-
perfect density correction might have been a contributor to
the large variation in calibration coefficient, which was seen
by Brunke et al. (2002) but not reproduced here.

In summary, the simplified model of the radon detector can
be fit successfully to the measured detector response. By re-
peatedly measuring the detector response over several days,
both the mean detector response and its variability can be es-
tablished to a high degree of accuracy. Such knowledge of the
detector response is necessary for getting good results from
the deconvolution methods, described next.

3 Deconvolution methods

The task of deconvolution is to estimate a true signal from
observations which are contaminated by noise and smeared
by the non-ideal response of a detector. For a deconvolution
technique to be applicable to radon measurements, it must
handle Poisson-distributed noise, reconstruct a non-negative
signal, and preserve the signal’s long-term average. Ideally,
it would also provide an uncertainty estimate and avoid the
amplification of noise.

www.atmos-meas-tech.net/9/2689/2016/ Atmos. Meas. Tech., 9, 2689–2707, 2016



2696 A. D. Griffiths et al.: Correcting radon–222 measurements for the instrument response

Deconvolution can be expressed in terms of Bayesian pa-
rameter estimation (Gelman et al., 2013; MacKay, 2003).
A key requirement is that, given a set of unobservable pa-
rameters, θ , a model is available to compute the likelihood
of an observation vector, y. The vector θ contains parame-
ters we want to know, i.e. the radon time series, as well as
other parameters needed by the model to compute the detec-
tor response. The likelihood of observations y, given param-
eter values θ , is written p(y|θ). The quantity we require, the
probability of θ given actual observations y, written p(θ |y),
is given by Bayes’ rule

p(θ |y)=
p(θ)p (y|θ)

p (y)
, (11)

meaning that, for a fixed set of observations y,

p(θ |y)∝ p(θ)p (y|θ) . (12)

Therefore the task of computing the relative likelihood of
θ , where each θ is a sample from the posterior probability
distribution, amounts to developing a model of the likeli-
hood function, p(y|θ), as well as assigning prior probabil-
ities, p(θ), to the parameters.

For the radon detector, observed counts follow a Poisson
distribution with a probability distribution given by

Poisson(n|λ)=
1
n!
λn exp(−λ), (13)

where n is the number of counts, an integer, and λ is the
expected value of the distribution. The expected value at time
t is given by the model, M(t |θ), which was described in
Sect. 2.2.

The net likelihood, p(y|θ), is found from the product of
the likelihood of the N individual observations, namely

p(y|θ)=

N∏
i=1

Poisson(yi |M(ti |θ)) , (14)

where yi is the number of counts observed in the ith count-
ing interval. We now consider three methods for making es-
timates of θ , and briefly describe the implementation.

3.1 Richardson–Lucy deconvolution

Richardson–Lucy (RL) deconvolution (Richardson, 1972;
Lucy, 1974) is an iterative algorithm for image reconstruc-
tion, famously used for restoring images from the Hubble
Space Telescope (Adorf et al., 1995). The RL method is a
special case of the expectation–maximisation (EM) method
(Dempster et al., 1977), derived for Poisson counting statis-
tics. It follows from Eq. (12) under the assumption of a uni-
form distribution for the prior model parameters. In the so-
lution, it is assumed that any non-negative value is equally
likely.

A restriction of RL deconvolution is that the detector re-
sponse must be known and unchanging. Should this be the

case,M(t |θ) can be written as a convolution of the point-
response function, s, with the ambient radon concentration
θ . Using ⊗ to signify the discrete convolution operator, the
detector output is

y = θ ⊗ s, (15)

where y, θ , and s are discretised over the counting interval
δt .

The maximum likelihood estimate, which maximises
p(y|θ), is found by iterating with the steps

θk+1
= θk

(
y

θk ⊗ s
⊗ ŝ

)
, (16)

where ŝ (t)= s (−t) is the flipped point response function, θk

is the estimate at the kth iteration, the initial guess is θ0
= y,

and division and multiplication are element-wise.

3.2 Total variation regularisation for Richardson–Lucy
deconvolution

Without further refinement, RL deconvolution amplifies
noise and leads to oscillatory solutions. Regularisation intro-
duces an extra term into the optimisation which penalises os-
cillations and makes smooth solutions more likely (Dey et al.,
2006; Dupé et al., 2012; Kempen and Vliet, 2000; Laasmaa
et al., 2011).

One method is called total variation regularisation.
Richardson–Lucy deconvolution with Total Variation regu-
larisation (RL–TV) smooths the solution without reducing
the sharpness of step changes (Rudin et al., 1992). With the
introduction of an adjustable regularisation parameter, λTV,
the iteration step (Eq. 16) becomes (Dey et al., 2006)

θk+1
=

(
y

θk ⊗ s
⊗ ŝ

)
θk

1− λTV

∣∣∣ dθk
dt

∣∣∣ . (17)

Increasing the size of λTV increases the amount of smooth-
ing in the solution. A thorough examination of the effect of
λTV is discussed by Kempen and Vliet (2000); we chose the
value in an ad-hoc manner, using the smallest value which
prevents oscillations during daytime periods when radon
concentrations are steady.

Regularised Richardson–Lucy deconvolution has three
important limitations which mean that it is not ideal for
deconvolving the radon detector output. First, the point-
response function must be known, whereas the radon detector
response, being sensitive to environmental changes, is uncer-
tain. Second, no uncertainty information is provided. Third,
the regularisation parameter, which affects the final result,
is chosen subjectively in our implementation. These limita-
tions can be overcome using a Markov chain Monte-Carlo
(MCMC) method which works directly with probability dis-
tributions.
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3.3 Bayesian Monte-Carlo deconvolution

This method, here termed Bayesian Monte-Carlo (BMC) de-
convolution, is based on the general technique of Bayesian
parameter estimation. A Markov chain is constructed, con-
taining a large number of samples from the posterior prob-
ability function. Each sample is a possible realisation of the
true time series, and other model parameters. Provided that
the chain has been run for long enough to converge to the
posterior distribution, an estimate of the time series statis-
tics can be obtained directly from the Markov chain. Com-
pared with the maximum-likelihood methods in the previous
sections, generating the Markov chain is computationally ex-
pensive and can require tuning and supervision to ensure that
convergence has been reached. Several features of our imple-
mentation were guided by the image reconstruction method
of Esch et al. (2004).

In this method, the detector is modelled directly using the
equations in Sect. 2.2. Prior beliefs are assigned to the detec-
tor parameters and the external radon concentration is rep-
resented as either a piecewise linear, or piecewise constant,
function of time, depending on which is more appropriate to
the problem at hand.

The radon concentration is strictly positive and a prior con-
straint is chosen which ensures that gradual changes in radon
concentration are more likely than rapid changes. This con-
straint, based on the assumption that concentration changes
arise from mixing processes and follow a lognormal distribu-
tion, is written

logCi ∼ Normal(µ= logCi−1,σ = σδ) , (18)

where Ci is the radon concentration at the ith step and σδ
is the width of the distribution. The distribution width has
a physical meaning, it is equal to the standard deviation of
logCi − logCi−1, and can be estimated from the variability
of another tracer whose variability is likely to be similar to
radon.

The detector parameters are drawn from normal distri-
butions, which are wide enough to reproduce the observed
changes in detector response. For the 700 L detector, these
are

qe ∼ Normal
(
µ= 40Lmin−1,σ = 0.02µ

)
(19)

q ∼ Normal
(
µ= 800Lmin−1,σ = 0.02µ

)
(20)

εs ∼ Normal(µ= 0.95,σ = 0.05) (21)
logλp ∼ Normal(µ= log(1/180),σ = log2) . (22)

As well as the individual detector parameters, the net de-
tector efficiency εnet was constrained,

εnet ∼ Normal(µ= 0.128,σ = 0.05µ), (23)

which is larger than the observed variability in εnet (0.02,
Sect. 2.4) but matches the uncertainty in εnet based on the

calibration source. The constraint on εnet means that samples
with high values of εs, the screen capture efficiency, are more
likely to have high values of the plateout constant λp, so that
εnet stays within a reasonable range.

Samples are generated from the posterior distribution us-
ing the emcee sampler (Foreman-Mackey et al., 2013), an
implementation of the affine invariant ensemble sampler
of Goodman and Weare (2010). Other samplers considered
were the NUTS sampler, implemented in Stan (Hoffman and
Gelman, 2014), and PyMC (Patil et al., 2010). Our main rea-
sons for choosing emcee were that it more easily accommo-
dated our detector model than Stan, and implements a more
sophisticated sampler than the current version of PyMC.

The emcee sampler works well when initialised around
the maximum in probability space (Foreman-Mackey et al.,
2013). In our implementation we use a two-stage approach to
find this location. A first estimate is obtained using the regu-
larised Richardson–Lucy method. This first estimate is then
refined by using Powell’s method (Powell, 1964; Press et al.,
2007) to maximise Eq. (12). The estimate obtained is termed
the maximum a posteriori probability (MAP) estimate. It dif-
fers from the maximum likelihood (ML) estimate by taking
into account prior constraints on model parameters.

Because of the computational expense, and because the
probability distribution is difficult to sample from, three nu-
merical tricks are used to improve the sampler performance.
First, the radon time series is broken into overlapping chunks.
Shorter chunks, meaning fewer parameters, are easier to sam-
ple but each chunk must be longer than the response time of
the detector. For the examples here, 24 h chunks with 6 h of
overlap worked well.

A second useful trick was to transform the radon time se-
ries into a form inspired by the wavelet-like basis used by
Esch et al. (2004), which reduces the correlation between pa-
rameters and makes the probability density easier to sample
and optimise. The transformed parameters, φi , were derived
from the radon time series, Ci , according to

φ1 =

N∑
i=1

Ci (24)

φi =
Ci

φ1−
∑i−1
j=2Cj

. (25)

This transformation was more effective than the more com-
mon wavelet or Fourier transforms and had the most notice-
able effect at the MAP optimisation step. The first parame-
ter, φ1, can be thought of as the time integral of the signal
and is strongly constrained by observations. The remaining
φ2. . .φN can each be interpreted as a fraction of the remain-
ing integrated signal which the current point contributes.

The final trick, another transformation, was applied to
bounded parameters. Parameters which were strictly posi-
tive, θ , were transformed to unbounded parameters, φ, ac-
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cording to

φ = logθ (26)

and parameters with upper, b, and lower, a, bounds were
transformed using the logistic function

φ = logit
(
θ − a

b− a

)
, (27)

where

logit(x)= log(x)− log(1− x). (28)

4 Laboratory demonstration

An initial test of the deconvolution methods was performed
under controlled conditions, so that the deconvolution result
could be compared with a known true signal. The known sig-
nal was generated by injecting a pulse of radon into the inlet
for 1 hour at 770 Bq m−3, ∼ 103 times ambient concentra-
tion, to generate a solitary square wave. Detector counts were
recorded at 10 min intervals, and the deconvolution methods
were used to reconstruct the input signal at 10 min resolu-
tion. Compared with atmospheric radon observations, such a
change is unrealistically abrupt and poses a challenge to all
of the deconvolution methods. On the other hand, the signal-
to-noise ratio during the injection period is much larger than
typical atmospheric observations, and this makes deconvolu-
tion more precise.

A comparison between the three methods (Fig. 5) shows
that all three are able to correctly redistribute the output
signal into the 1 hour period when radon was being in-
jected and to locate the edges of the square wave. There
are also clear differences between the deconvolution meth-
ods. Without regularisation, Richardson–Lucy (RL) decon-
volution produces oscillations in the solution, most visible in
the detector background before and after the radon injection.
Oscillations are completely suppressed during the peak with
total variation regularisation (RL–TV), which favours step
changes in the deconvolved signals, and background fluctua-
tions are dramatically reduced.

After deconvolution, the radon time series is comparable
to the output from a fast-response radon detector. The output
from a RAD7, shown in Fig. 5c, is derived from the counts
from the short-lived polonium–218 isotope, with a 3.05 min
half-life.

Bayesian Monte Carlo (BMC) deconvolution produces a
similar result to RL–TV, but the error estimate makes it clear
that the reconstructed concentration fluctuations are not nec-
essarily present during the injection period. The period from
14:00 to 16:00 LT is problematic, though. During this period,
detector counts are slowly decaying from their peak count
rate and the deconvolution output relies heavily on the ac-
curacy of the model. The error bounds on the BMC decon-
volution widen during this period, but not enough to include

(a) (b)

(c)

Figure 5. Observed counts and deconvolved output. An elevated
concentration of radon was injected into the detector inlet between
13:00 and 14:00 LT with counts recorded at 10 min intervals. Obser-
vations were corrected for the detector response using the Bayesian
Monte Carlo (BMC, with the 16th–84th percentile range shaded
in grey), Richardson–Lucy (RL), and Richardson–Lucy with total
variation regularisation (RL–TV) deconvolution methods. Panel (a)
shows the output from the two-filter detector and the reconstructed
time series. Panel (b) shows the same data on a log scale to em-
phasise the period of low radon concentrations before and after
the spike. Panel (c) shows a repeat measurement where the two-
filter detector has been substituted for a fast-response radon detec-
tor (RAD7, Durridge Company Inc.). The concentration of radon–
222 and polonium–218, computed from the source activity and flow
rate, is also shown in (c).

the scenario of an abrupt drop back to a constant radon back-
ground, which is presumed to be the true signal, as supported
by the RAD7 measurements. This reflects the prior constraint
which favours smooth time series (Eq. 18), which is also
the reason for the slower response of the BMC solution at
14:00 LT when compared with both RL and RL–TV.

The radon time series reconstruction is nevertheless a vast
improvement over the scaled detector output. In this test,
10 min output is both feasible and realistic. The fact that prior
beliefs are incorporated into the error limits needs to be kept
in mind, however. Both the mean reconstruction and the er-
ror limits are influenced by the prior constraint which says
that ambient radon concentrations are unlikely to change by
a factor of 103 over a 10 min period.

An obvious test, of the conclusion that the smoothness
constraint is responsible for the low concentration, is to re-
lax it or drop it entirely. It turns out, however, that it be-
comes difficult for the emcee sampler to draw samples from
the posterior distribution in the absence of the smoothness
constraint. It is not unexpected that this is a difficult distri-
bution to sample. Distributions with a large number of pa-
rameters and non-linear models are problematic (Jasche and
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Wandelt, 2012), and the affine invariant sampler can fail on
multi-modal distributions (Foreman-Mackey et al., 2013). It
is possible that the smoothness constraint on the radon time
series also smooths multi-modal peaks in the probability dis-
tribution.

The NUTS sampler, used by Stan, works well without the
smoothness constraint. When applied to synthetic data, with
a precisely known point-response function, uncertainty lim-
its were indeed wider after the abrupt step back to ambient
conditions (a plot is not shown). When applied to real data,
however, small differences between the assumed and actual
detector response caused ringing, or oscillations, in the out-
put. Stan uses its own problem description language, making
it difficult to incorporate the detector model necessary for a
changing point response function, therefore the emcee sam-
pler combined with a smoothness constraint is currently the
best approach.

Although the smoothness constraint leads to subtle prob-
lems in this extreme case, it should improve the results for
natural variations in radon concentration by preventing the
amplification of noise.

5 Reconstruction of simulated data

Another test of our implementation of the Bayesian Monte-
Carlo method can be performed by simulating the detector
response to a known time series and then applying our de-
convolution algorithm. In this test, we know the “true” radon
concentration precisely and can test the performance of the
deconvolution algorithm in isolation. It tests the consistency
of the method and also allows us to develop a feel for the
link between model parameters, observational uncertainty,
and the reconstructed time series.

The assumed radon concentration, shown in Fig. 6, is a
simplified diurnal cycle based on the idealised near-surface
radon concentration over land (Vinuesa et al., 2007). The
radon concentration is constant during the daytime, and then
increases at a constant rate during the night. The morning
transition is modelled as an abrupt jump back to the daytime
radon concentration. Like the laboratory test, the step-change
back to daytime concentrations is unusually abrupt, so as to
present a challenge to the deconvolution method.

The simulated radon detector output is derived from the re-
sponse function of the 700 L radon detector with the addition
of Poisson noise. As a result of its response time, the drop
back to daytime radon concentrations takes about 3 hours.

In both Fig. 6a and b, the original time series is success-
fully reconstructed by the Bayesian Monte Carlo method.
The assumed radon concentration is 10 times larger in
Fig. 6a, peaking at 100 Bq m−3, which explains the smaller
spread in concentration, relative to the peak size. Both ex-
amples represent realistic range in radon concentrations for
inland or near-coastal sites.

 
(a)

(b)

(c)

(d)

–

Figure 6. Tests of Bayesian Monte-Carlo deconvolution based on a
simulation of the detector with known radon time series. Panel (a)
shows a simulation with high radon concentrations, representative
of an inland site on a stable night. In (b), the peak concentration
is a factor of 10 lower. Panel (c) shows the effect of an incorrect
prior, where the external flow rate was too low by a factor of two.
Panel (d) has the same configuration as (c), but the sampler has run
for ten times longer, 60× 103 iterations.

In Fig. 6c, the prior constraint on qe was deliberately set
to an incorrect mean value, with a large uncertainty. That is,

qe ∼ Normal
(
µ= 20Lmin−1,σ = 0.8µ

)
, (29)

half of the correct value (µ= 40Lmin−1 with σ = 0.02µ).
As shown in Fig. 3a, qe has a strong influence on the re-
sponse function. Halving the external flow rate increases the
response time, so that the deconvolution has a tendency to
over-correct the time series.

After enough iterations, though, the deconvolution routine
is able to compensate for the poorly specified prior and suc-
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cessfully reconstruct the true time series. While impressive
in this case, it might be too optimistic to routinely expect
performance to be as good in the real world, for at least
three reasons. First, in a real detector, qe is measured and
is usually believed to be well known. If, for example, the
flow sensor malfunctioned it seems likely that qe would be
wrongly specified, along with a narrow distribution. In this
case, the algorithm would not be able to compensate. Second,
the sampler takes much longer to reach convergence when qe
is poorly specified. In this example, it takes about 10 hours to
run the required 60×103 iterations (on an Intel Core 2 Quad
CPU). Third, the radon concentrations are high in this exam-
ple meaning that the signal-to-noise ratio is also high. This
means that changing qe has a significant effect on how well
the model can be fit to observations.

For making routine corrections to observational data,
fewer iterations would be used, that is 6× 103 instead of
60× 103, for faster processing. This is, in effect, an assump-
tion that the priors are appropriate and the emcee sampler
is initialised close to the probability-maximum in parame-
ter space. As a result, it seems that inspection of the recon-
structed time series is an important final step in applying the
correction. Particular signs of problems are periods of os-
cillations or of tightly-bound low radon concentration after
abrupt changes.

In summary, these simulations underline the importance of
priors in the deconvolution process. In each of the cases, the
most problematic period is the abrupt change back to daytime
radon levels at 06:00 LT. This is when the smoothness con-
straint is violated in the time series. Although such abrupt
changes are likely to be rare in observations, they are also
likely to represent interesting events and therefore be studied
more intently. In case C, the incorrect specification of the ex-
ternal flow rate causes the radon concentration to undershoot
the daytime value. This is because the external flow rate has
a strong influence on the detector response function. In all
of these cases, the radon concentration’s uncertainty fails to
grow enough to include the true value within the 10–90th
percentile range, because the reconstructed estimate includes
information from prior constraints. This is important to con-
sider when making use of the reconstructed time series, be-
cause it implies that the reported uncertainty limits can not
be relied upon as protection from inappropriate priors.

6 Field application

In this section, a case study approach is used to demonstrate
the effect of deconvolution on radon time series and their in-
terpretation. Radon observations can be used as both qualita-
tive and quantitative tracers of vertical mixing either directly,
or by comparison with another tracer emitted by the land sur-
face. For the examples shown here, the deconvolved time se-
ries changes the interpretation when compared with the raw
signal.
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Figure 7. Field observations from a calm and clear night on the
5th–6th of November 2011. The wind speed was . 1 m s−1 at
2 m a.g.l. for most of the night. Aircraft measurements were made
36–41 m .a.g.l. over 6 km flight segments. Night-time is shaded
grey, as is the 16th–84th percentile range about the reconstructed
time series.

Prior to the characterisation experiments, the 700 L radon
detector had been deployed in a 2-week field campaign
alongside other sensors. The detector was outdoors, un-
shaded, and counts were recorded every 30 min. In this sec-
tion, we apply the Bayesian deconvolution method to these
previously acquired measurements to see how the detector
response affects interpretation of 30 min resolution data.

The study area was in an agricultural grazing region dom-
inated by grassland and with gently sloping hills. The study
area and ancillary measurements are described in detail by
Williams et al. (2011). The radon detector was∼ 500 m from
a 10 m eddy-covariance and meteorological mast. Airborne
radon measurements were taken from an ECO-Dimona mo-
tor glider equipped with activated charcoal filters. The filters
were exposed during flight and analysed for radon content
within 24 h (Williams et al., 2011). A closed path infra-red
gas analyser (Li-7000, LI-COR inc.) measured CO2, with
a 1 min averaging time, from a sampling tube co-located
with the radon detector inlet. Soil radon emissions in the
Goulburn area are comparable to the Australian average
(23.4± 2 mBq m−2 s−1), having previously been measured
as 18.1 mBq m−2 s−1, during relatively wet conditions dur-
ing winter, and 51.3 mBq m−2 s−1 in a dryer summer period
(Griffiths et al., 2010).

Data from one night are presented in Fig. 7. Around sun-
set, both carbon dioxide and radon concentrations increase
as the result of surface emissions being trapped within the
stable nocturnal boundary layer. To assess the success of de-
convolution, we compare radon with carbon dioxide fluctua-
tions and assume that soil emissions are the only significant
source of carbon dioxide. Following from this assumption,
radon and carbon dioxide variations should both be driven
mainly by atmospheric mixing and therefore be strongly cor-
related. Like radon, which is produced at a constant rate, the
soil production of carbon dioxide should be relatively steady
in this dry grassland (Kuzyakov and Gavrichkova, 2010). The
presence of a reference time series is important because of
the need to discriminate between real signal, which has been
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reconstructed, and spurious features in the time series caused
by the amplification of noise.

Based on the reference carbon dioxide time series, de-
convolution improves the radon observations in three ways.
First, the time lag between carbon dioxide and radon is elim-
inated. Second, the night-time variability is increased which
greatly improves the match with transient changes in tracer
concentration during the night. Third, the apparent duration
of the morning transition, from a stable to unstable boundary
layer, is reduced in the reconstructed radon time series and
now matches the time taken for carbon dioxide to return to
daytime values.

Although the lag can also be greatly reduced by the much
simpler means of removing a constant lag from the radon
observations, a previously common practice, this will not
change the time taken for radon concentrations drop during
the morning transition. In the example shown, the detector
counts take 4.5 h to drop to daytime values from their peak
compared with 3 h for both carbon dioxide and the decon-
volved radon time series. On days when the transition was
more rapid (not shown), it was still ∼ 4.5 h before the detec-
tor output stabilised at day-time values.

As further evidence that the deconvolved observations are
a better representation of the true radon concentration, there
is a better agreement in the timing of the drop in radon con-
centration between the surface radon measurements and air-
craft samples made 30 m overhead. The aircraft measure-
ments are not directly comparable with the surface-based de-
tector; the first two aircraft samples were made above the sta-
ble boundary-layer and all aircraft samples were made over
6 km flight segments. In contrast to the earlier samples, the
later two were made within the comparably well mixed con-
vective boundary layer and have a much smaller offset from
the deconvolved time series. The remaining difference be-
tween the aircraft and fixed detector measurements is outside
the limits of instrument uncertainty, but plausibly the result
of spatial variability in the developing convective boundary
layer.

When plotted against each other, carbon dioxide and radon
are strongly related over almost 2 weeks of measurements.
Focussing on a single night, Fig. 8a shows that they are lin-
early correlated and that deconvolution strengthens the corre-
lation more than the removal of a constant 60 min lag, which
is the optimum lag for maximising the correlation between
radon and carbon dioxide (Fig. 8b). Deconvolution also cor-
rects the slope of a linear fit to the points, changing it by 6 %
when compared with the constant-lag correction.

If the focus is only on the correlation, or ratio, of radon
and carbon dioxide, it is possible to take the instrument re-
sponse into account another way. Instead of deconvolving the
radon observations, the response function of the radon detec-
tor can be applied to the carbon dioxide time series (Fig. 8c)
also recovering a strong correlation between radon and car-
bon dioxide and the same slope.
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Figure 8. Correlation between radon and carbon dioxide concentra-
tions during the same night as Fig. 7. In panel (a), raw light points
indicate raw data and heavy points have the radon time series lagged
by 1 hour (the linear fit is for the lagged points). In panel (b), radon
measurements have been deconvolved to correct for the detector re-
sponse and the horizontal bars show the range between 10th and
90th percentiles. Panel (c) shows the raw radon measurements ver-
sus carbon dioxide concentrations which have been filtered with a
running mean filter weighted by the radon detector response. The
slopes of the three linear fits are (a): 1.60, (b): 1.50± 0.07, (c):
1.53
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During a single night the slope of radon versus carbon
dioxide is related to the flux ratios. Assuming that the net res-
piration flux of carbon dioxide is constant during the night,
and that radon and carbon dioxide have the same source dis-
tribution in space, the fluxes, FCO2 and FRn, can be linked to
the change in concentration since sunset, 1CCO2 and 1CRn,
according to (e.g. Conen et al., 2002)

FRn

FCO2

=
1CRn

1CCO2

. (30)

As an extension, beyond correcting for the instrument re-
sponse, it would also be useful to examine deviations from a
linear correlation between radon and carbon dioxide. These
deviations, which are relatively small at this site, would be
caused by differences in the spatial variability of sources (van
der Laan et al., 2014), or by temporal changes in carbon diox-
ide emissions. For this paper, though, it is pursued no further.

Two nights earlier, during a windy night, the respira-
tion flux from eddy covariance measurements was FCO2 =

1.18 µmol m−2 s−1. Assuming that the respiration flux was
similar on the calm night, when eddy covariance estimates
are known to be inaccurate (Aubinet, 2008; Mahrt, 2010), the
radon flux was FRn = 19.2+0.8

−0.9 mBq m−2 s−1. This estimate
is within the previously measured regional emissions (Grif-
fiths et al., 2010) of 18.1 and 51.3 mBq m−2 s−1 and has an
uncertainty derived from the uncertainty in 1CRn/1CCO2 ,
ignoring the uncertainty in the eddy-covariance flux and sys-
tematic errors.

Having obtained an estimate of the radon flux, it is pos-
sible to estimate the depth of the planetary boundary layer
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Figure 9. Box model analysis of deconvolved and scaled radon
detector output. The 16th–84th percentile range is shaded grey.
The mixing depth is calculated by assuming that radon is mixed
homogeneously in a near-surface layer, with surface emissions of
FRn = 19.2 mBq m−2 s−1. The aircraft measurements of boundary-
layer depth are computed from vertical profiles of temperature,
wind speed, and humidity using the parcel method (lower limit of
each bar) and bulk Richardson number methods (the upper limit of
each bar). A critical Richardson number of 0.3 was assumed.

based on the radon time series and a boundary layer budget.
During the morning transition, the boundary layer is likely
to be well mixed so that a simple box model (Griffiths et al.,
2013) can be used to estimate its depth, on the assumption
that the horizontal flow is non-divergent. Output from this
box model is shown in Fig. 9 based on raw, 60 min lagged,
and deconvolved time series. The motor glider flew ascend-
ing profiles at 07:25 and 08:00 LT and profiles of tempera-
ture, humidity, and wind speed were used to derive bound-
ary layer heights. The aircraft-derived boundary layer height
was computed from two methods: the parcel method (Col-
laud Coen et al., 2014), which has similar underlying as-
sumptions to the radon box model, and a bulk Richardson
number method (Holtslag and Boville, 1993).

In Fig. 9, the profile flown at 08:00 LT was capped by
a strong temperature inversion, which draws the parcel and
Richardson number estimates closer than the earlier profile.
As well as being easier to analyse, a strongly capped bound-
ary layer is close to the situation assumed by the box model.
As a result, the box-model-derived height agrees well with
the aircraft measurements at 08:00 LT, and is in between the
two aircraft-derived estimates at 07:25, provided that the de-
convolved radon time series is used. Using the detector out-
put directly leads to an underestimate of mixing height. Al-
ternatively, if the radon surface flux were a free parameter,
surface emissions would be overestimated. In this case, us-
ing the scaled detector output yields a mixing height estimate
which is too low by a factor of four. If the detector output
is lagged by a constant 60 min, the error is reduced, yet the
boundary layer height is still low by a factor of two and the
timing of boundary layer growth is wrong.
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Hour of day

100
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Radon concentration (Bq m-3 )

BMC deconvolution
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Figure 10. Composite diurnal cycle from the Richmond 1500 L de-
tector during 2 weeks of consecutive stable nights and clear-sky
days. BMC deconvolution means the Bayesian Monte Carlo decon-
volution method from Sect. 3.3 and the 16th—84th percentile range
is shaded grey. A lag correction of 72 minutes maximises the cor-
relation between the lagged detector output and the deconvolved
output. See Chambers et al. (2015b) for site details.

In this case (Fig. 7) the raw and deconvolved time series
are in agreement during the afternoon. It is important to know
if this is always the case, because the daytime radon con-
centration is of particular interest during model testing (e.g.
Allen et al., 1996). Daytime radon concentrations respond
to the height of the convective boundary layer and airmass
fetch (Chambers et al., 2011). Errors in daytime radon con-
centrations might therefore be related to problems with the
modelled convective boundary layer and not to factors which
are important for night-time radon concentrations.

To see how the detector response may influence model
comparisons, the systematic influence of deconvolution on
daytime radon concentrations was examined for a 2-week
period of radon measurements from a site near Richmond,
New South Wales (Chambers et al., 2015b). Figure 10 shows
the composite diurnal cycle from a 1500 L detector during
2 weeks of clear weather conditions, when the radon diur-
nal amplitude was large, meaning that the influence of the
detector response might be relatively large. In this case, the
detector recorded counts every 6 min and a lag correction of
72 min maximises the correlation between raw and decon-
volved time series. A 60 min lag works almost as well, and
would be a good choice for data recorded at the usual 30 min
intervals. The constant-lag correction reduces the daytime
high bias present in the raw detector output, but changes the
timing of the morning drop in radon concentration. Crucially,
for comparison with model output, the afternoon high bias is
still present (18 % high both at 15:00 LT and in the daily min-
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imum). This is significantly higher than the absolute uncer-
tainty in the detector at steady state (a 5 % uncertainty, based
on the uncertainty of the calibration source).

In summary, the two case studies in this section illustrated
that correcting for the instrument response can lead to rela-
tively large changes in the interpretation of radon time series.
The first showed that raw radon time series are inconsistent
with carbon dioxide measurements, with grab samples, and
with aircraft profiles of the boundary-layer. After deconvo-
lution, however, the time series is consistent with a uncom-
plicated understanding of boundary-layer mixing and carbon
dioxide fluxes. The second showed the effect of deconvolu-
tion on the radon diurnal composite. The effect is less dra-
matic than the previous example, but significant because it bi-
ases results. The amplitude of the diurnal cycle is attenuated
in the raw radon time series causing a high bias of ∼ 18% in
the daily minimum. This high bias can be expected at other
inland sites during periods of clear skies and low winds.

7 Discussion

7.1 Detector operation

The deconvolution technique performs best with a stable de-
tector response function. Section 2.4 showed that a detector
being operated outdoors has a small, but measurable, change
in response which appears to be linked to low relative humid-
ity, itself caused by the hotter-than-ambient temperature in-
side the delay chamber. The detrimental effect of solar heat-
ing has been observed elsewhere; Brunke et al. (2002) found
that shading their detector led to more repeatable calibra-
tions of detector efficiency. For best performance, therefore,
indoor installation should be favoured. Actively controlling
the humidity inside the detector is also a possibility for fu-
ture consideration. If the detector response were stabilised
enough, it would simplify the detector model and make de-
convolution easier. The long-tail response of the detector is
ultimately set by the lifetimes of radon daughters but the ini-
tial rise-time is controlled by the external flow rate. Provided
that thoron can be excluded from the detector, a higher exter-
nal flow rate should be favoured when aiming for sub-hourly
resolution.

7.2 Application to other two-filter radon detectors

Analysis of the radon detector response and deconvolution
methods has focused mainly on data from a single instru-
ment. Because the instrument response depends on parame-
ters which are not precisely standardised, the correction can
not be applied directly to other installations. Nevertheless, it
is possible to derive the response of other detectors without
further characterisation experiments because of the routine
calibrations which are performed during operation and be-
cause many of the detector parameters are recorded.

Routine data acquisition uses 30 min counting intervals.
Each month, for calibration, a solenoid valve opens to allows
radon emitted from a calibration source to enter the main de-
lay chamber of the detector. The calibration period typically
lasts several hours so that the detector can approach steady
state. Then the valve closes, and the detector returns to mea-
suring ambient air. By fitting the model to the calibration
data, we are able to derive the detector response from the
shape of the calibration peak. The detector response, found
using this method, is not as well-constrained as the detector
response we measured using a 1 min injection and the effect
of any upstream delay chambers is not measured. For the best
possible results, especially at 10 min resolution, it would be
appropriate to measure the detector response. Even so, the
detector response, derived from calibration, is good enough
to reconstruct 30 min or hourly measurements from archived
data.

7.3 When should deconvolution be used?

Three deconvolution methods were tested in this work, all of
which are successful at redistributing the long response tail
into the correct part of the time series. Nevertheless, decon-
volution is not always the right option.

Deconvolution introduces more variability into the time
series. For the method used here, unrealistic fluctuations are
suppressed by a prior constraint on the radon time series. De-
viations from a smooth signal are only allowed when there
is enough evidence, from detector counts, to support them.
When detector counts, N , are small measurement noise is
large because noise scales with

√
N . At remote baseline

sites, radon concentrations of 50 mBq m−3 are common (Za-
horowski et al., 2013), 3 orders of magnitude below the radon
concentrations in Fig. 7. During these periods, the case for
deconvolution is weak.

Even in cases where deconvolution is possible, it might
not be necessary. When the high-frequency fluctuations are
not of intrinsic interest, there are two alternatives. First, a
constant lag can be assumed, as has been standard practice
previously. Second, in cases where radon measurements are
compared with another tracer, the detector response can be
applied to the other time series.

The constant-lag approach has the advantage of simplicity
and can be useful in many studies. The choice of lag might
be based on some characteristic of the instrument response,
or chosen to maximise the correlation with other tracers (e.g.
Griffiths et al., 2014). With a constant-lag approach, the cor-
relation between radon and other tracers, although weakened,
is still present. There are also biases which affect the diurnal
cycle, but at least these can be anticipated.

Applying the detector response to other tracers is also sim-
pler than deconvolution. It requires the detector response to
be well understood, but the complexities of Markov chain
Monte Carlo sampling can be avoided. For the case study dis-
cussed here, applying the detector response to carbon diox-
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ide measurements is a feasible option. As this is, in effect,
smoothing the carbon dioxide measurements, this approach
reduces the statistical uncertainty without changing the abun-
dance ratio of the two species.

A forward modelling approach could also be attractive for
model–data intercomparison, but would require care during
interpretation. Problems could arise under certain conditions,
such as when trying to compare daytime model and measured
radon concentrations. Section 6, showed that the daytime
radon measurements retain a memory of the night-time peak,
with the implication that a diagnosed daytime bias might be
caused by errors in night-time mixing.

In spite of the possibility of forward-modelling, decon-
volution remains preferable in many cases, especially when
radon concentrations are used quantitatively. An example is
when comparing with grab samples or with widely spaced
model output. In particular, deconvolution is the best op-
tion when radon measurements are used to infer the depth
of boundary-layer mixing.

8 Conclusions

The raw signal from a two-filter radon detector responds
slowly to abrupt changes in radon concentration. The signal,
as a result, depends on the history of radon concentration for
several hours prior. Correcting for the instrument response,
or deconvolving the radon time series, is difficult because of
small day-to-day changes in the instrument response. Nev-
ertheless, this paper shows that it is possible to reconstruct
the ambient radon time series using a Bayesian deconvolu-
tion method based on a Markov chain Monte Carlo sampler
and a validated model of the detector response.

For archived measurements, the radon time series was re-
constructed at 30 min resolution, the resolution of the raw
data, instead of being down-sampled to hourly resolution.
For large radon signals, such as from a calibration source,
10 min resolution was achievable and could potentially be
applied to field measurements inland, where the radon con-
centration is high.

When sub-diurnal measurements of radon concentration
are studied, deconvolution can change their interpretation.
This is especially the case at inland sites with large varia-
tions in the boundary-layer height under clear sky conditions.
In one case study, the deconvolved time series was consis-
tent with carbon dioxide measurements (from an instrument
with a fast time response), grab samples, and a simple mixing
height model; the uncorrected detector output was not. In an-
other example, during a period with a large amplitude diurnal
cycle, the mean daily minimum radon concentration was too
high by 18 %, if the instrument response was neglected.

In terms of physical properties radon is an almost ideal
natural tracer, which makes it important to account for the
non-ideal characteristics of detectors. Correcting for the in-
strument response, based on the representative cases shown

here, makes inference from radon observations easier and
more certain.

The Supplement related to this article is available online
at doi:10.5194/amt-9-2689-2016-supplement.
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