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Abstract. Estimates of top-of-the-atmosphere (TOA) radia-
tive flux are essential for the understanding of Earth’s energy
budget and climate system. Clouds, aerosols, water vapor,
and ozone (O3) are among the most important atmospheric
agents impacting the Earth’s shortwave (SW) radiation bud-
get. There are several sensors in orbit that provide indepen-
dent information related to these parameters. Having coinci-
dent information from these sensors is important for under-
standing their potential contributions. The A-train constel-
lation of satellites provides a unique opportunity to analyze
data from several of these sensors. In this paper, retrievals
of cloud/aerosol parameters and total column ozone (TCO)
from the Aura Ozone Monitoring Instrument (OMI) have
been collocated with the Aqua Clouds and Earth’s Radiant
Energy System (CERES) estimates of total reflected TOA
outgoing SW flux (SWF). We use these data to develop a
variety of neural networks that estimate TOA SWF globally
over ocean and land using only OMI data and other ancil-
lary information as inputs and CERES TOA SWF as the out-
put for training purposes. OMI-estimated TOA SWF from
the trained neural networks reproduces independent CERES
data with high fidelity. The global mean daily TOA SWF cal-
culated from OMI is consistently within +1% of CERES
throughout the year 2007. Application of our neural network
method to other sensors that provide similar retrieved param-
eters, both past and future, can produce similar estimates
TOA SWE. For example, the well-calibrated Total Ozone
Mapping Spectrometer (TOMS) series could provide esti-
mates of TOA SWF dating back to late 1978.

1 Introduction

The Earth’s energy budget constrains the general circulation
of the atmosphere and determines the climate of the Earth—
atmosphere system; it is therefore also an indicator of possi-
ble climate changes (Hatzianastassiou, et al., 2004). There is
a long history of attempts to estimate Earth’s albedo and en-
ergy budget (Dines, 1917; Hartmann et al., 1986). With the
advent of the satellite remote sensing era, it became possible
to directly measure the albedo of the Earth. Subsequently, the
shortwave (SW) energy balance at the top of the atmosphere
(TOA) and the role of clouds, aerosols, and trace gases has
been studied using satellite measurements (Ramanathan et
al., 1989; Yu et al., 2006; Bellouin et al., 2005; Loeb et al.,
2005; Patadia et al., 2008; Joiner et al., 2009).

The Earth Radiation Budget Experiment (ERBE) was
launched in October 1984 by the space shuttle Chal-
lenger and provided long- and shortwave radiation param-
eter measurements. TOA SW radiative parameter estimates
from ERBE (Barkstrom, 1984; Barkstrom and Smith, 1986)
showed that clouds approximately double the albedo of Earth
to an all-sky value of 0.3 from an estimated clear-sky value
of 0.15 (Ramanathan et al., 1989; Harrison et al., 1990). The
next generation of broadband instruments, the Cloud and the
Earth’s Radiant Energy System (CERES), draws heavily on
ERBE heritage. Since its first launch in 1997 on board the
NASA Tropical Rainfall Measurement Mission (TRMM),
CERES has provided continuous observations that can be
used to understand the role of clouds and the energy cycle
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in global climate change (Wielicki et al., 1995; Loeb et al.,
2012).

Continuous and coincident measurements of radiative
fluxes and atmospheric components facilitate research stud-
ies to estimate and understand the role of different atmo-
spheric components on the planetary energy balance. Al-
though CERES provides state-of-the-art estimates of TOA
radiative fluxes, it was not designed to make measurements
of individual atmospheric components that impact those
fluxes. Several studies have utilized aerosol and cloud in-
formation from high spatial resolution MODerate resolu-
tion Imaging Spectroradiometer (MODIS) measurements to
quantify their impact on TOA fluxes (Yu et al., 2006; Pata-
dia et al., 2008; Zhang et al., 2005b; Loeb et al., 2005; Ore-
opoulos et al., 2009). Several attempts have also been made
to convert narrowband radiances into broadband fluxes us-
ing regression or more sophisticated statistical approaches
(Chevallier et al., 1998; Hu et al., 2002; Domenech and Wehr,
2011; Vazquez-Navarro et al., 2013).

The Ozone Monitoring Instrument (OMI), flying on
NASA’s Aura satellite since 2004, provides information
about components important for the Earth’s SW radia-
tion budget, including the effective cloud/aerosol fraction
(Stammes et al., 2008; Joiner and Vasilkov, 2006) and to-
tal column ozone (TCO) (Veefkind et al., 2006; McPeters et
al., 2008; Kroon et al., 2008). OMI-retrieved parameters can
be utilized to understand their role in the Earth’s SW energy
budget.

Modeling the spatial and temporal distribution of the TOA
shortwave flux (SWF) requires a description of the com-
ponents that control the transfer of solar radiation within
the Earth—atmosphere system. When required parameters are
missing or incomplete, a statistical approach is an alternative
for estimation of TOA SWF. Here, we develop an artificial
neural network model (NNM) to estimate total reflected TOA
outgoing SWF. Artificial NNs are algorithms that simulate
biological NNs by learning and pattern recognition (Bishop,
1995). NNs have been used by many scientific disciplines, in-
cluding Earth science, to identify patterns and extract trends
in imprecise and complicated nonlinear data (e.g., Lee et
al., 1990; Gupta and Christopher, 2009). In radiation stud-
ies, NNs have been used to estimate TOA and surface SWF
based on radiative transfer calculations with or without data
from satellites (e.g., Krasnopolsky et al., 2008, 2010; Take-
naka et al., 2011; Vazquez-Navarro et al., 2012; Jiang et al.,
2014). CERES TOA flux algorithms have also used NNs to
generate angular distribution models (ADMs) in the absence
of sufficient high-resolution imager information for reliable
scene identification (Loukachine and Loeb, 2003, 2004).

In this study, we utilize OMI cloud and ozone products
along with other ancillary data to estimate TOA SWF. We
develop NNs that take OMlI-derived quantities as inputs
and provide CERES-equivalent TOA SWF as the output. In
essence, the trained NNs have learned or incorporated all
of the complexity that is essential to the CERES algorithms
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(ADMs, scene identification, etc.) and are then able to predict
TOA SWF directly and efficiently based on a limited number
of retrieved products from OMI or sensors that provide sim-
ilar data. The trained NN models are optimized to run with
data sets from OMI or similar sensors and can be applied
generally to different seasons and years. For example, the
NN-based models we develop here can be applied to similar
measurements from the Total Ozone Mapping Spectrometer
(TOMS) instruments. One objective of this study is to assess
how well TOA SWF can be estimated using OMI-derived
cloud and ozone products with NNs when nearly coincident
CERES data are used for training. The developed NNs can
then be applied to other data sets with similar products and
accuracy. Alternatively, the general training approach could
be applied with similar data sets such as with MODIS cloud
and ozone products.

The strength of a NN approach is that it is highly efficient
and, if well-trained, should be precise and accurate for this
type of problem. NNs may be used to examine the sensitivity
of TOA SWF to various input data sets but do not themselves
provide specific insight into the physical mechanisms behind
those sensitivities. NNs will of course only be as good as
the data that are used for training. In addition, they may not
perform well for unusual conditions that are not present in the
training data set. Therefore, NNs cannot replace dedicated
TOA SWF estimates from instruments like CERES.

The paper is organized as follows: Sect. 2 describes the
various satellite data sets utilized in the study. Section 3 dis-
cusses the development of NN models including the selection
of input parameters. Section 4 evaluates our NN estimation
of TOA SWF using independent CERES data over ocean and
land. Section 5 summarizes the results and discusses future
work.

2 Satellite data sets and coincident sampling

Under clear-sky conditions, TOA SWF is affected by the
Earth’s surface properties, atmospheric absorbers such as
water vapor, ozone, and aerosols, and scattering by air
molecules and particulates. Over ocean, surface properties
can be characterized by ocean color and roughness of the
ocean surface. Under cloudy sky conditions, cloud optical
properties such as the cloud optical thickness, geometrical
cloud fraction, effective radius, and phase function affect
TOA SWE. In clear and cloudy skies, the solar zenith angle
(SZA) and Sun—Earth distance (SED) impact the TOA SWF.

In this work, we make use of data sets mainly from two
passive sensors in A-train constellation of satellites that fly
within 15 min of each other: (1) Aura OMI with an equa-
torial crossing time of ~13:45 £15minLT (local time)
and (2) Aqua CERES with an equatorial crossing time of
~ 13:30LT. For testing and optimization of the NNMs, we
primarily use 2007 data over global oceans. Starting around
2008, OMI experienced an anomaly presumably due to mate-
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rial outside the sensor that adversely affects the quality of the
level 1B and level 2 data products in a portion of its 60 rows
across the swath. Our study focuses on data in 2007 that are
not significantly affected by these anomalies.

2.1 CERES

The first CERES instrument flew on the TRMM satel-
lite, launched in November 1997, and provided data un-
til 2000. Five CERES instruments are currently operating:
two on NASA’s Terra satellite (FM1 and FM2), two on
NASA’s Aqua satellite (FM3 and FM4), and one on the
Suomi National Polar-orbiting Partnership (NPP) satellite
(FM5). These CERES instruments provide radiometric mea-
surements of the Earth’s atmosphere from three broadband
channels: (1) a shortwave channel to measure reflected sun-
light (0.3-5 um), (2) a long-wave channel to measure Earth-
emitted thermal radiation in the window region (8—12 um),
and (3) a total channel to measure radiation from 0.3 to
200 um.

CERES radiances are converted to TOA fluxes using
ADMs. The CERES science team has an extensive database
of ADM:s for clear- and cloudy-sky over both land and ocean
(Loeb et al., 2005). The ADMs heavily depend upon the ob-
served scene type and are sensitive to surface characteristics
as well as cloud and aerosol optical properties (Loeb et al.,
2003; Zhang et al., 2005a; Patadia et al., 2011). The ADMs
over ocean are dependent upon wind speed and aerosol opti-
cal thickness along with sun-satellite geometry (Zhang et al.,
2005a).

The Aqua spacecraft carries two identical CERES instru-
ments: one operates in a cross-track scan mode (FM3) and
the other in a biaxial scan mode (FM4). Measurements from
the biaxial scan mode were used to develop the ADMs; this
provided considerable improvement over the previous gener-
ation of instruments, including the ERBE (Loeb et al., 2003,
2007).

This study uses the Single Scanner Footprint (SSF, Edition
3A) TOA SWF obtained from the Aqua CERES FM3. The
SSF product is an instantaneous merge of CERES parameters
with coincident cloud and aerosol parameters derived from
the Aqua MODIS (Loeb et al., 2003) at the footprint level
(i.e., not daily averages). The high-resolution (1 x 1 km? at
nadir) MODIS imager data are used to characterize the clear
and cloudy portions of the larger CERES pixel (20 x 20 km?
at nadir). We also used broadband surface albedo over land
derived using measurements from MODIS and CERES to
characterize the land surface in the NN trained specifically
over land.

2.2 OMI
OMI provides hyper-spectral measurements of Earth-

backscattered sunlight from UV to visible wavelengths
(~270-500nm) with a spectral resolution of the order
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of 0.5nm (Levelt et al., 2006). Its spatial resolution is
13 x 24km? at nadir with a swath width of about 2600 km.
Cloud, aerosol, and TCO products from OMI are used in this
study. Specifically, the cloud—aerosol optical centroid pres-
sure (OCP), effective cloud fraction (ECF; f.), Lambertian
equivalent reflectivity (LER) at 354.1 nm, SZA, relative az-
imuth angle (RAA), and viewing zenith angle (VZA) are ob-
tained from the OMI cloud products as detailed below, and
aerosol index (AI) and TCO are obtained from the OMI-
TOMS total ozone product (OMTO3, version 8.5, collec-
tion 3) (McPeters et al., 2008).

Cloud-aerosol OCP, also known as effective cloud pres-
sure, is a measure of the reflectance-weighted pressure
reached by incoming solar photons (Joiner et al., 2012). It
is distinct from the cloud-top pressure (CTP). While CTP
is the more important parameter needed for TOA long-wave
flux, OCP is more related to atmospheric absorption in the
shortwave. OCP is derived from OMI observations using two
different methods (Stammes et al., 2008): (1) filling-in of
solar Fraunhofer lines from rotational Raman scattering in
the UV (the OMCLDRR product) (Joiner and Bhartia, 1995;
Joiner et al., 2004) and (2) collision-induced oxygen absorp-
tion (02—03) at 477 nm (the OMCLDO?2 product) (Stammes
et al., 2008; Acarreta et al., 2004). Unless otherwise speci-
fied, we use the f. and OCP from OMCLDRR product here.

OMI cloud and trace-gas algorithms use a simplified
mixed Lambertian cloud model to estimate observed radi-
ances Ip,. In this scenario, a pixel is modeled as a having
components from clear and cloudy sub-pixels weighted us-
ing an ECF f; i.e.,

In=1g (1= fo)+ L fe. ey

where Iy and I are the radiances computed in the Rayleigh
atmosphere for Lambertian surfaces corresponding to the
clear and cloudy portions of the scene, respectively; f. is de-
fined as the fraction of the Lambertian cloud covering the
pixel and is related to both the geometric cloud fraction and
cloud optical thickness. It contains information similar to the
LER of the scene (related to cloud and surface reflectivities).
However, because it attempts to account for variations in
the Earth’s surface reflectivity, it is a more spectrally invari-
ant quantity and therefore potentially more highly correlated
with TOA SWFE.

Formally, the ECF is wavelength dependent because it is
defined by spectral quantities (Stammes et al., 2008). We
conducted a simulation experiment to evaluate the wave-
length dependence of f.. In this experiment, we simulate ob-
served TOA radiances as a weighted sum of the clear-sky and
cloudy radiances; i.e.,

Iy = Ig (l_fg)+1cfg 2

where I is the cloudy radiance computed with a plane-
parallel cloud model that depends on cloud optical thick-
ness, and f, is the geometrical cloud fraction. In our sim-
ulation, clouds have a vertically uniform distribution of the

Atmos. Meas. Tech., 9, 2813-2826, 2016



2816 P. Gupta et al.: Shortwave flux estimation from OMI observations

extinction coefficient and phase function. We use a cloud-
top height of 5km and a cloud layer thickness of 1km. The
assumed cloud optical depth (COD) of 20 is spectrally in-
dependent within the 320-1400 nm wavelength range. The
spectrally independent optical thickness is a good approxi-
mation for clouds with sufficiently large particles (Deirmend-
jian, 1969). We neglect gaseous absorption in the specified
spectral range. Three models of cloud phase function are
used: (1) ice crystals with an effective diameter of 60 um
(Baum et al., 2014), (2) Deirmendjian’s C1 model of a wa-
ter cloud having droplets with an effective diameter of 12 um
(Deirmendjian, 1969), and (3) the Henyey—Greenstein model
(e.g., van de Hulst and Irvine, 1963) with an asymmetry pa-
rameter of 0.85. We use a simplified model of the spectral
ground reflectance: Ry =0.05 at A <700 um and Ry = 0.2 at
A>700 um. We then calculate f; by inverting Eq. (1) assum-
ing a Lambertian cloud with a reflectivity of 0.8; this is com-
monly used for trace-gas algorithms (Stammes et al., 2008).

If f; does not vary much with wavelength, then it should
be highly correlated with TOA SWF and thus a good pre-
dictor in a statistical model of TOA SWF. We investigate
the spectral dependence of f. in Fig. 1 where we performed
calculations using fg =0.5, SZA=45°, and at nadir for
the three phase functions assuming a cloud single-scattering
albedo of unity. It can be seen that f is nearly invariant with
wavelength over a wide spectral range; it changes by only
a few percent even for the steep change in the ground re-
flectance (simulating the so-called red edge) at 700 nm. COD
of less than 20 at the same geometrical cloud fraction leads
to a lower value of the ECF. However, the spectral variations
of ECF remain similar to that shown in Fig. 1. The weak
spectral dependence of ECF is explained by the fact that the
Lambertian cloud model with cloud reflectivity of 80 % ef-
fectively accounts for Rayleigh scattering in partially cloudy
scenes as it has been shown by Ahmad et al. (2004). This re-
sult holds when other input parameters in our simulation are
varied. We will show the implications of the spectral invari-
ance of f. below.

We have used the following modified cloud fraction pa-
rameter, fc mod, as a predictor to estimate TOA SWF:

fe mod = fe X COS(SZA) x (1 /SEDZ) , 3)

where SED is the Sun—Earth distance. The modification ac-
counts for variation in the incoming solar irradiance with re-
spect to SZA and SED. Figure 2 shows a 2-D histogram for
a month of collocated CERES TOA SWF and OMI f. 104
(collocation criteria described in detail below) that demon-
strates the near-linear relationship between the two param-
eters. It also indicates that the single parameter f; mod cap-
tures much of the variability in TOA SWE.

2.3 Ancillary data

In addition to OMI data, a SeaWiFs-derived chlorophyll
(Chl) concentration climatology is used as an input predic-
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Figure 1. The spectral dependence of the effective cloud fraction
(fe) for land, fg =0.5, SZA =45°, observation at nadir. Red: ice
cloud phase function; green: the Henyey—Greenstein (HG) function;
blue: C1 cloud model.
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Figure 2. Two-dimensional histogram of effective cloud fraction
(ECF or f.) normalized with respect to incoming solar irradiance
(i.e., fe_mod =ECF x cos(SZA)/SED?) vs. CERES TOA short-
wave (SW) flux over ocean for January 2007 showing a highly lin-
ear relationship. The color bar shows the sample density (normal-
ized, in terms of fractional amount, in percent) for each bin in the
collocated data set; when only a single point is in a bin, it is shown
as a dark blue dot. R is the linear correlation coefficient. The solid
black line is a linear fit to the data.

tor when f. < 1. The precipitable water (PW) and 2 m surface
wind speed (wind) are also used as predictors; these are pro-
vided in the CERES SSF data set and are taken from the God-
dard Earth Observing System (GEOS) 4 reanalysis (Bloom et
al., 2005).
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2.4 Coincident sampling of OMI and CERES

Because the sizes of the OMI (13 km x 24 km) and CERES
(20km?) pixels are similar at nadir, we perform a simple
spatial collocation by finding the closest CERES pixel cor-
responding to each OMI pixel. OMI and CERES collocated
pixels are only included in our training and validation sam-
ples when the distance between centers of OMI and CERES
pixels is less than 20 km. We do not include pixels with view-
ing zenith angles>60°. At these angles, OMI and CERES
pixels become significantly larger (~ 150km for OMI and
~ 200 km for CERES in the cross track direction) and there-
fore may contain many different scene types. We also mask
OMI pixels with AI>1 to avoid heavy absorbing aerosol
loaded scenes where the f. and OCP are known to contain
errors (Vasilkov et al., 2008). This does remove not non-
absorbing aerosols. Non-absorbing aerosols are essentially
treated as clouds within the OMI cloud data sets. We exam-
ined the frequency distribution of the distance between OMI
and CERES pixels of all the collocated data sets and found
that most of the collocated data, 98 and 60 % have distances
less than 20 and 10 km, respectively. The quality-controlled
collocated data are then averaged on equal latitude and lon-
gitude grids of 1° x 1° (unless otherwise specified) for train-
ing, testing, and validation of the neural networks.

The NN inputs (predominantly retrievals from OMI mea-
surements) are used to train the NN to match the output
(CERES-derived TOA SWF). Once the network is trained,
input data sets can be used to calculate TOA SWF with char-
acteristics similar to the CERES product. Therefore, the NN-
produced TOA SWF will be referred as OMI estimated SWF
throughout the paper.

3 Artificial neural network model
3.1 General NN architecture and training approach

The general neural network architecture has three layers of
neurons: an input layer, a hidden layer, and an output layer
with standard multi-layer network architecture. We use the
same number of neurons in the hidden layer as in the input
layer as this produced generally good results. The input layer
has an identity activation function; all other layers are con-
nected by sigmoid activation functions (Eq. 4).

1
14+e*

y(x) = “
The network normalizes both input and output data sets with
a unique linear mapping for each input and output parameter.
Figure 3 provides an example of a schematic of the network
used in our study. Here we used two different NNMs: one
with nine nodes or parameters (NNM1) and a second with
seven nodes (NNM2) in the input layer. Both of these models
have one node (TOA SWF) in the output layer. Figure 3 also
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Output layer

INPUT layer Hidden layer

(Sigmoid activation function)

Neural network model Input parameters

NNM -1 [f<1.0] f._ mow VZA, RAA, OCP, 03, WINDS, PW, CHL, LER

NNM -2 [f21.0] SZA, VZA, RAA, OCP, LER, 03, PW

Figure 3. A schematic of the neural network model used for esti-
mation of TOA SW flux with OMI UV retrieved parameters. The
table in the bottom lists all the input parameters corresponding to
two NN models used.

lists the input parameters corresponding to the NNM1 and
NNM2 models. The NNM1 model is optimized for ocean
cases where the OMI f; < 1.0, whereas NNM2 is optimized
for cases where f. = 1 (saturated cases).

NNMs require optimized training to produce accurate out-
puts. Here we use a standard back propagation training al-
gorithm (Hertz et al., 1991), where inputs are iteratively sent
to the neural network. In back propagation, the hidden layer
weights associated with each input parameter are modified
through the training process that minimizes errors between
the targets and outputs (Bishop, 1995; Gardner and Dorling,
1998). After each iteration, the error is propagated backward
through the network and weights are modified to bring the
actual response of the network closer to the desired output in
a statistical sense. The function minimized during the train-
ing is a sum of squared errors of each output for each training
pattern. Once the network is trained, it can be evaluated using
independent data (i.e., not used in the training data set).

3.2 Impact of different input parameters

Here we examine the impact of using various input param-
eters on the derived neural networks. This exercise is per-
formed using data with f. <1 with 1 month of the data over
ocean (January 2007). Table 1 presents the performance of
eight different NNMs, denoted models “a” through “h”, with
various input parameters listed in Table 1 and described in
more detail in Sect. 3.2.1-3.2.2.

3.2.1 Inclusion of OMI UV-derived parameters

In model a, we have combined the effects of SZA, SED,
and f; into a single input parameter called f. mod, Which
was defined in Sect. 2.2. Use of this modified input param-
eter alone explains about 94 % (R = 0.97) of the variabil-
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Table 1. Statistical analysis of the input parameter selection exercise. The correlation coefficient (R), slope, bias, and standard deviation (SD)
of OMI-CERES TOA SW flux for eight different NN models are presented. These numbers correspond to daily intercomparison between
OMI and CERES TOA SW flux. Data from January 2007 are used for this exercise.

Model Parameters R Slope Bias SD (Wm_z)
a fe_mod 0971 0941  0.051 37.1
b Je_mod: VZA, RAA 0.979  0.959 0.000 314
c LER, SZA, VZA, RAA 0.979 0959 —0.030 31.1
d fc_mod» VZA,RAA, O3 0.980 0.960 —0.009 30.9
e Je_mod» VZA, RAA, OCP 0981 0962 —0.004 30.0
f fc_mod> VZA,RAA, O3, OCP 0.981 0.963 0.002 29.9
g fc_mod» VZA, RAA, O3, OCP, PW, Wind 0.982 0.964 0.002 29.2
h fec_mod» VZA, RAA, O3, OCP, PW, Wind, Chl, LER  0.983  0.967 —0.010 28.3

OMI-CERES (%)
]
<12 -8 -5 -2 2 5 8 >12
Figure 4. Monthly mean (January 2007) maps of OMI minus
CERES TOA SW flux (percent) for eight different NN models. The
letters on the map corresponds to model number in Table 1.

ity in TOA SWEF. As we add other parameters in models
b through h, we observe small improvements in the OMI-
estimated TOA SWF. Figure 4 shows the spatial distribution
of monthly mean OMI-CERES SWF differences for these
models.

The TOA SWF is estimated from a measured radiance and
therefore the observational geometry factors in. The addi-
tion of satellite-viewing geometry parameters (VZA, RAA)
to model a provides improvements in areas of high biases

Atmos. Meas. Tech., 9, 2813-2826, 2016

and reduces the standard deviation from 37.1 to 31.4 Wm™2.
Model c tests the ability of the 354 nm reflectivity (LER) to
predict TOA SWF in place of f; mod. Although the statis-
tical parameters in Table 1 corresponding to models b and
c are very similar, we note spatial differences in the OMI-
CERES TOA SWF in Fig. 4. Further analysis reveals that the
fc-based model b provides more accurate flux estimation as
compared with the LER-based model for a larger range of
fluxes.

The inclusion of TCO (model d) as an input parameter pos-
itively impacts TOA SWF estimation as shown in Fig. 4d; the
high positive biases in the tropical Pacific and Indian oceans
and in the region near 60° N have been reduced. The per-
centage of monthly mean OMI-CERES data that fall within
+8 % increases from 91 % in model ¢ to 94 % in model d.

Model e adds cloud OCP to the input parameters included
in model b. OCP also improves SWF estimates; the regions
where improvement occurs are different from those improved
by using TCO. Model f shows that when TCO and OCP are
used together as input parameters, there is further improve-
ment in SWF estimation. Although the global statistics in Ta-
ble 1 do not clearly reflect this improvement, Fig. 4f shows
that inclusion of OCP and TCO reduces biases in many re-
gions, most prominently in the tropics. The percentage of to-
tal OMI samples (monthly mean) within £8 % of CERES
increases from 92 % in model b to 95 % in model f. Apart
from these parameters, we also evaluated the inclusion of Al
as an input parameter (not shown here). We found that over-
all it does not significantly improve the results; however it
does provide some improvement in regions with positive Al
values.

3.2.2 Addition of meteorological and other ancillary
data

The impact of surface winds and total column water vapor
(model g in Fig. 4g) is more prominent in the tropics than in
other regions. Inclusion of Chl and LERs in model h removes
some of the notable low biases in TOA SWF near the coast of
northern China, the Caspian Sea, and the Black Sea. Further-
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Figure 5. Two-dimensional histograms (similar to Fig. 2) of daily
mean CERES- and OMI-derived (NN) TOA SW flux for Jan-
uary 2007: (a) the NN is trained on and applied to data from Jan-
uary 2007 and compared with CERES data from that month and
(b) the NN is trained using data from January 2007 and applied
with input data from January 2006 and compared with CERES data
from January 2006. The color bar shows sample density (in frac-
tional (percent) amount) of the collocated data set (see text for more
details). The three dotted lines are 5, 10, and 15 % error envelope
lines.

more, model h corrects for negative biases in areas with high
TOA SWFs, most likely due to the inclusion of LER. The
model “h” produces 89 % (99 %) of OMI-estimated monthly
mean TOA SWFs within £5 % (12 %) of CERES and is
the best of the eight models. In all of the results, some striped
patterns appear in the difference maps. These stripes are also
seen in difference maps for July and will be discussed below
in Sect. 4.3.

3.3 Consistency over time

We next examine the performance of the NN model h with
respect to different input samples. We first examine the ro-
bustness of the NN for detection of interannual variability.
In this exercise, we trained the NN with data from the first
15 days of January 2007 as above and applied it to input
data from the entire months of January 2007 (Fig. 5a) and
January 2006 (Fig. 5b). Figure Sa—b present 2-D histograms
similar to that in Fig. 2 but here compare the TOA SWF from
the NN with that from CERES for January of the 2 different
years over ocean. The colors represent the 2-D histogram (or
density) of coincident pairs using a bin size of 10 Wm™2. The
solid black 1 to 1 line is shown with three dotted lines on both
sides that represent envelopes of £5, 10, and £15 % OMI-
CERES differences. Figure 5a-b show that the NN perfor-
mance is consistent between years. Although the number of
samples in January 2006 and 2007 is a bit different, the NN
model produces similar statistics.

A NN trained on 1 particular month of data is not guaran-
teed to perform well for a different month. In the next test, we
used the NN model trained on January 2007 data with input
data from July 2007. Results for July (using CERES as the
benchmark) were degraded as compared with application to
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January data. This is due presumably to changes in observing
conditions between the 2 different months (changes in solar
angles).

We then trained the same NN (identical input parameters)
using a subset of data from July 2007 and applied it to data
from the entire month of July 2007. Results (again using
CERES as the benchmark) were of similar quality to those
where the NN was trained and applied to January. This ex-
ercise suggests that we may need to use different models for
different months or expand our training data set for applica-
tion to different months.

We next use data from the 1st day of each month of 2007
for training and data from the 16th day of each month of
2007 for evaluation. The comparisons with CERES using the
training and validation data are consistent as shown in Fig. 6.
The almost identical values of statistical parameters for train-
ing and validation data demonstrate that the neural network
has been well trained. For example, there is a high degree of
linear correlation (R = 0.98 or R? =0.96) and slopes close
to 1 (0.96) in both training and validation comparisons. The
mean bias in both training and validation data sets is close
to zero, whereas the global standard deviation remains stable
and close to 30 Wm™2 in the two independent model runs.
Further analysis shows that 83, 70, and 43 % of TOA SWF
estimated from OMI (training and validation data combine)
lie within the 15, 10, and 5 % of the CERES TOA SWFE, re-
spectively.

Further evaluation of the entire year reveals that this NN
(model h) is appropriate for all months. Therefore this model
will be used for subsequent analyses in this study. Creating
more networks as a function of scene type or for different lat-
itude belts or even for different months/seasons may improve
results in certain regions. However, based on our results, we
simplified the approach by minimizing the number of net-
works.

34 Caseof fc=1

About 1-2 % of total coincident data correspond to f. =1,
typical of overcast conditions with optically thick clouds.
These cases were modeled using a simpler NN model with
inputs of LER, SZA, VZA, RAA, OCP, O3, and PW; the
surface-related parameters (surface wind speed and Chl con-
tent) do not produce a significant impact for ECF=1 and
have therefore been removed. Subsequent all-sky results
shown in Fig. 6 use combined outputs from the two separate
models for f;<1and f, = 1.

4 Results and discussion

4.1 Bias and root mean square error (RMSE) as a
function of ECF

Here onward, all the results presented in Figs. 7-12 and dis-
cussed are produced using model h, which is the most op-
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Figure 6. Two-dimensional histogram similar to Fig. 5 but showing
training (top) and validation (bottom) results from the combined
all-sky NN models (input parameters listed in Fig. 3, model “h”
for foc <1 and as in Fig. 3 for f;>1) as final selected models for
estimation of TOA SW flux. The data from two NN models have
been combined in these plots. These are instantaneous flux values
averaged over 1° x 1° grid boxes. Data from the Ist day of each
month of 2007 are used for training and data from the 16th day of
each month of 2007 are used for validation. The three dotted lines
are 5, 10, and 15 % error envelope lines.
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Figure 7. Root mean square errors (RMSE), normalized RMSE
(NRMSE in percent), data samples (percent), and bias (percent) in
training and validation data sets (same model and data as used in
Fig. 6) as a function of effective cloud fraction for the data pre-
sented in Fig. 4. Model “h” is used to produce these results.

timized model. Figure 7 presents the RMSE, RMSE nor-
malized by CERES flux (NRMSE in percent), data sam-
ple (percent), and bias (percent) for 5% ECF bins. This
analysis includes both training and validation data as pre-
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Figure 8. Two-dimensional histograms (similar to Fig. 5) of the
daily OMI and CERES TOA SW flux averaged over different spa-
tial grid sizes for July 2007: (a) at OMI’s native pixel resolu-
tion, (b) 0.5° x 0.5°, (¢) 1° x 1°, (d) 2° x 2°, (e) 5° x 5°, and
(f) 10° x 10°. The corresponding statistical parameters are listed
in Table 2. Model “h” is used to produce these results. The three
dotted lines are 5, 10, and 15 % error envelope lines.

sented in Fig. 6. The RMSE varies between about 24 and
35Wm~2 and continuously increases with cloud fraction
(and observed TOA SWF). The NRMSE, in contrast, contin-
uously decreases with ECF from about 18 % for 5 % ECF to
~ 6 % for overcast conditions. The bias represents the mean
error (in percent) for each ECF bin. The mean global bias
shows more variability than RMSE and is highest (2.9 %) for
about 10 % ECF. The bias decreases sharply from 2.9 % at
fc=0.1 to about 1.2% at f. =0.4. The bias remains low
(< 1.2 %) for f.>0.4 (usually associated with frontal or deep
convective clouds). The higher biases for lower f; (usually
associated with thin cirrus and broken clouds) are likely re-
lated to higher noise and uncertainties in OMI cloud parame-
ters. For example, Joiner et al. (2012) showed that cloud OCP
errors increase with decreasing f.. The biases may also be re-
lated to absorbing aerosol in the scene, particularly when it
overlies clouds. This will be illustrated in more detail below
as we show spatial variations in OMI-CERES differences.
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Figure 9. Similar to Fig. 8 but for monthly mean data (July 2007)
OMI and CERES TOA SW flux averaged over different spatial grid
sizes: (a) 0.5° x 0.5°; (b) 1° x 1°; (¢) 2° x 2°; (d) 5° x 5°. The
corresponding statistical parameters are listed in Table 2. The three
dotted lines are 5, 10, and 15 % error envelope lines.

4.2 Effects of spatial and temporal averaging

In order to evaluate the NN performance at different spatial
and temporal scales similar to those used by the climate com-
munity, we use data from July 2007. Figure 8 presents a com-
parison of daily CERES and OMI TOA SWF over ocean for
six spatial scales: the OMI native pixel (13 x 24 km? at nadir)
and 0.5, 1, 2, 5, and 10° gridded spatial resolutions. Statisti-
cal parameters for these comparisons are reported in Table 2.
As expected, the pixel level data are much noisier than the
gridded data due to collocation noise in partly cloudy cases.
This collocation noise averages out over larger spatial and
temporal scales. Regardless of the noise, the slope (0.96) is
still close to 1, and the linear correlation coefficient is 0.96
with a standard deviation of 47.7 Wm~2. Below 300 Wm 2,
where the sample density is highest, the NN slightly un-
derestimates the CERES SWEF. The mean bias of the OMI-
estimated SWF with respect to CERES is —1.4 Wm™2. This
bias may be due to a combination of effects including uncer-
tainties in the input parameters as well as the limitations of
the NN model itself. For example, we have excluded pixels
with a clear signature of absorbing aerosols (OMI-derived
AI>1) where OMI ECFs and pressures may be in error in
both the training and validation data. However, in some re-
gions where smoke and dust overlaying clouds is common
(e.g., western coast of Africa), pixels with erroneous cloud
fractions due to small amounts of absorbing aerosol may be
present in both the training and validation data. This may pro-
duce errors in the NN model and will be examined in more
detail below.
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Figure 11. Similar to Fig. 10c and d but with a NN trained using
data from the OMI cloud O,—O5 product for July 2007.

For the daily data, as the spatial averaging scales in-
crease from 0.5 to 10°, the OMI-estimated SWF becomes
almost identical to CERES; the correlation coefficient in-
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Table 2. Statistical parameters corresponding daily and monthly intercomparisons of pixel and gridded TOA SW flux data from CERES and

OMLI.

N R M I Bias SD EE5% EE1I0% EEI5%
Pixel 8109323 096 096 105 —1.4 477 30 53 69
Daily
0.5° 1512726 097 096 112 094 344 37 62 77
1° 529679 098 096 11.2 1.0 279 43 69 83
2° 168181 098 096 11.0 033 237 50 76 87
5° 35454 099 096 92 —-18 203 60 84 92
10° 10834 099 0.97 70 —-00 146 69 90 97
Monthly
0.5° 108620 0.99 0.98 6.1 1.5 129 74 93 97
1° 28849 099 098 6.9 12 114 79 94 98
2° 7642 099 096 98 025 6.6 94 99 100
5° 1325 099 09 99 -18 7.0 95 99 100

Note: N is number of pairs, R is the correlation coefficient, M the slope, I is the intercept, bias is the mean of (OMI-CERES
in Wmfz), SD is standard deviation of (OMI-CERES) in Wmfz, EE is the error envelope for 5, 10, and 15 % errors. All
flux values have units of Wm™2
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eraged along each latitude belt and OMI-CERES (percent) on the
secondary x axis; (c) same as (b) but along longitude belts. The data
used in (b) and (c) are from July 2007.
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Figure 13. Similar to Fig. 10a, ¢, and d except over land for July
2007.

creases from 0.97 to 0.99, and the slope increases from 0.96
to 0.97. The percentage of OMI data that fall within 5 % of
CERES increases from 37 % for 0.5° to 69 % for 10° grids.
About 87 % percent of OMI-estimated 2° gridded daily mean
TOA SWFs are within 15 % of CERES data.

Figure 9a—d show 2-D histograms of monthly mean grid-
ded data over ocean at 0.5, 1, 2, and 5° spatial resolu-
tions, respectively. The monthly intercomparisons of OMI
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and CERES SWF show excellent agreement at all spatial
resolutions with correlation coefficients of 0.99 and slopes
of 0.98 (Table 2). The global mean biases vary between
—1.8 and 0.25 Wm™2. The standard deviations vary between
6.6 and 12.9 Wm~2 for the different spatial resolutions. Of
monthly mean 1° gridded OMI estimated TOA SWFs, 97 %
are within 15 % of those derived from CERES and 93 % are
within 10 %.

4.3 Spatial distribution of TOA SWFs over ocean

Figure 10 presents the spatial distribution of 1° grid-
ded monthly mean (July 2007) TOA SWF from CERES
(Fig. 10a) and the difference with the OMI in Wm2
(Fig. 10b) and percent difference (Fig. 10c). There are subtle
differences between the NN and CERES estimates of TOA
SWEF as shown in Fig. 10b and c. The OMI minus CERES
histograms (Fig. 10d) show that for 44 % (79 %) samples,
NN fluxes are within +2 (£5) % of CERES fluxes. About
9% of the samples have biases of 8 % or more. Over-
all, the Northern Hemisphere shows better agreement than
the Southern Hemisphere during July (boreal summer). This
could be due to larger errors in the OMI cloud products
at higher SZAs in the Southern Hemisphere. The low bi-
ases on the western coast of Africa may be due to the pres-
ence of absorbing aerosols, particularly when they occur over
clouds. The striped pattern in the Southern Hemisphere (lat-
itudes >40° S) is mainly associated with high VZAs in con-
junction with high SZAs that occur on one side of the OMI
swath.

Figure 11 similarly shows differences between CERES
and OMI TOA SWF over ocean derived using f. and OCP
from the OMI O,—0; product in place of the OMI RRS prod-
uct. Because there are slight differences in the two cloud
products, we retrained the network with OMI O,-0; cloud
parameters to be consistent. The use of the O,—0; f. and
OCP improves the accuracy of the estimated TOA SWF
The regions of improvement include the western coasts of
South America and southern Africa and some parts of the
Indian Ocean. The O;—0; cloud product, which uses visi-
ble wavelengths, is less affected by absorbing aerosol; this
may explain the improvement in these areas where absorbing
aerosol, especially over clouds, is common. However, nega-
tive biases remain over large regions off the western coast of
Africa.

Figure 12a shows a time series of daily global mean values
of TOA SWF over ocean from OMI and CERES for 2007.
Both instruments show almost identical daily variations with
differences within 1 %. Figure 12b and c¢ provide monthly
averaged (July 2007) CERES and OMI zonal and meridional
means of TOA SWF. The OMI-derived TOA SWEF is able to
reproduce the variability shown in the CERES data well.
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4.4 Spatial distribution of TOA SWFs over land

We developed a similar land-only NN model that utilizes
most of the input parameters from our ocean NN (e.g., OMI
RRS cloud parameters). The only change is that for surface
characterization we use a monthly climatology of surface
broadband albedo in place of the Chl concentration and sur-
face wind speed. The albedo product is derived using a com-
bination of CERES and MODIS observations at 1° spatial
resolution (Rutan et al., 2009). The land NN model is trained
and validated over land only and it follows a similar approach
as was used over ocean but with a slightly different set of
input parameters. We have not performed extended analy-
ses and testing over land as we have over ocean. Here, we
demonstrate that the same methodology with different input
parameters can reproduce CERES TOA SWF over land with
similar accuracy and precision as was obtained over ocean.
Figure 13 shows results from the OMI-derived CERES-
trained NN that produces TOA SWF over land. Statistical
comparison with CERES over land provides results similar
to those over ocean. The NN performs well over Asia and
parts of Europe and the Americas. The OMI-based NN tends
to underestimate TOA SWF over the high albedo desert areas
of Northern Africa, Australia, and also over some regions of
South America. Note that the large differences that occur in
coastal regions may be due to imperfect collocations.

5 Summary and conclusions

We have developed a neural network approach to estimate
TOA SWF based primarily on UV parameters retrieved with
the Aura OMI and Aqua CERES-derived TOA SWF used
for training. One year of data from OMI and CERES has
been used to train/validate/analyze several separate neural
networks for different conditions, which together provide es-
timation of TOA SWF under all-sky conditions. The most
important input parameters are ECF and sun-satellite geom-
etry. TCO and cloud optical centroid pressure from OMI, as
well as surface-related parameters, provide secondary posi-
tive impacts.

Independent validation at different spatial and temporal
scales shows that the OMI NN-based approach reproduces
CERES-derived TOA SWF with high fidelity. Correlation
coefficients for all comparison are >0.95, and slopes are
close to unity. A high percentage of OMI-estimated monthly
mean TOA SWF at 0.5° spatial resolution over global oceans
(97 %) falls within 15 % of CERES. The global mean bias
in pixel level data of about —1.4 Wm™2 over oceans with re-
spect to CERES is likely due in part to errors in OMI cloud
parameters that occur in the presence of absorbing aerosols.

We plan to apply our derived neural networks to long-
term, well-calibrated UV measurements from TOMS. The
TOMS series provides a long-term data record dating back to
late 1978 (about half a decade before the first ERBE launch)
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with a few small gaps between that time and the first CERES
launch. We should be able to apply NN models derived with
CERES/OMI to TOMS, provided that the input parameters
are either available and compatible or can be estimated inde-
pendently. For example, in place of actual cloud OCPs that
are available from OMI, but not from TOMS, we could use
a cloud OCP climatology that was developed from OMI data
for use in the TOMS total ozone algorithm. The lower spa-
tial resolution of TOMS is not expected to present any dif-
ficulties. This approach can also be extended to the future
geostationary missions that provide the relevant input data,
such as the NASA Earth Ventures Tropospheric Emissions:
Monitoring of Pollution (TEMPO), the Korean Geostation-
ary Environmental Monitoring Spectrometer (GEMS), and
the European Space Agency (ESA) Sentinel 4 (Al-Saadi et
al., 2015). Finally, we may apply the NN training and evalu-
ation approach to data from CERES and the nadir mapper on
the Ozone Mapping Profiling Suite (OMPS) that provides in-
formation similar to OMI. Both instruments fly on the Suomi
NPP satellite. This may reduce collocation noise and small
biases that result from the time difference between OMI and
CERES measurements. The final NN models developed in
this study (e.g., NNM-1 and NNM-2 in Fig. 3) along with
the instructions on how to use them have been provided in
the Supplement.

The Supplement related to this article is available online
at doi:10.5194/amt-9-2813-2016-supplement.
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