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Abstract. The composition and properties of atmospheric
organic aerosols (OAs) change on timescales of minutes to
hours. However, some important OA characterization tech-
niques typically require greater than a few hours of sample-
collection time (e.g., Fourier transform infrared (FTIR) spec-
troscopy). In this study we have performed numerical mod-
eling to investigate and compare sample-collection strate-
gies and post-processing methods for increasing the time
resolution of OA measurements requiring long sample-
collection times. Specifically, we modeled the measurement
of hydrocarbon-like OA (HOA) and oxygenated OA (OOA)
concentrations at a polluted urban site in Mexico City, and in-
vestigated how to construct hourly resolved time series from
samples collected for 4, 6, and 8 h. We modeled two sampling
strategies – sequential and staggered sampling – and a range
of post-processing methods including interpolation and de-
convolution. The results indicated that relative to the more
sophisticated and costly staggered sampling methods, linear
interpolation between sequential measurements is a surpris-
ingly effective method for increasing time resolution. Addi-
tional error can be added to a time series constructed in this
manner if a suboptimal sequential sampling schedule is cho-
sen. Staggering measurements is one way to avoid this ef-
fect. There is little to be gained from deconvolving staggered
measurements, except at very low values of random mea-
surement error (< 5 %). Assuming 20 % random measure-
ment error, one can expect average recovery errors of 1.33–
2.81 µg m−3 when using 4–8 h-long sequential and staggered
samples to measure time series of concentration values rang-
ing from 0.13–29.16 µg m−3. For 4 h samples, 19–47 % of
this total error can be attributed to the process of increasing
time resolution alone, depending on the method used, mean-

ing that measurement precision would only be improved by
0.30–0.75 µg m−3 if samples could be collected over 1 h in-
stead of 4 h. Devising a suitable sampling strategy and post-
processing method is a good approach for increasing the time
resolution of measurements requiring long sample-collection
times.

1 Introduction

Organic aerosols (OAs) comprise 20–90 % of total, dry, sub-
micrometer atmospheric aerosol mass, and therefore have
important influences on air quality and aerosol-climate ef-
fects (Jimenez et al., 2009; Fuzzi et al., 2015). OAs can
be emitted directly into the atmosphere (primary organic
aerosol, POA), or formed in the atmosphere from the oxida-
tion products of precursor gases (secondary organic aerosol,
SOA). It is critical to distinguish between POA and SOA
since they result from different (natural and anthropogenic)
emission and transformation processes, and therefore require
separate control and regulation strategies. This separation is
complicated by the fact that OAs are complex mixtures of
thousands of different individual organic compounds.

A key feature of OA is that its composition and proper-
ties change and evolve continually in time (Jimenez et al.,
2009). These changes happen on timescales of minutes to
hours. OA evolution occurs because organic compounds are
subject to continual oxidation throughout their lifetime in the
atmosphere, while also mixing with freshly emitted OA. Ox-
idation changes basic OA molecular properties such as size
and degree and type of functionalization. These basic molec-
ular properties determine OA volatility, solubility and hygro-
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scopicity, which in turn determine OA concentrations and
the ability of OA to take up water. These effects combined
are relevant for assessing aerosol impacts on health and cli-
mate. Observation of OA composition over time also permits
source resolution important for identifying major contribu-
tors to the OA burden in the atmosphere (Corrigan et al.,
2013). To capture the evolution of OA composition and prop-
erties in the atmosphere it is necessary to measure OA at high
time resolution (Jimenez et al., 2009). We define time reso-
lution here as the number of measured values per unit time.

Due to their complexity, OAs cannot be completely char-
acterized by any single measurement technique. A detailed
OA picture can only be captured by combining a range of
different measurement techniques. Depending on analyti-
cal detection limits, some techniques require long sample-
collection times (typically greater than a few hours) to col-
lect enough aerosol mass for analysis; these samples are of-
ten analyzed off-line in a laboratory facility rather than in
the field. Examples of analytical techniques requiring longer
sample-collection times at atmospherically relevant aerosol
concentrations include: Fourier transform infrared (FTIR)
spectroscopy (4–24 h; Russell et al., 2011; Frossard et al.,
2014; Corrigan et al., 2013); and nuclear magnetic resonance
(NMR) spectroscopy (8–48 h; Finessi et al., 2012; Matta
et al., 2003; Decesari et al., 2006). In contrast, measurement
integration times can be as short as a few minutes (aerosol
mass spectrometry) to 1 h (online GC-MS), and these are of-
ten associated with on-line (or in situ) instruments.

Measurements with longer collection times still provide
molecular- and functional-group-level information that are
valuable for OA characterization (Corrigan et al., 2013).
Therefore, to obtain diverse and detailed chemical informa-
tion at high time resolution, new approaches are desired. One
approach is to develop new instrumentation and hardware for
rapid sample collection and analysis. For example, an on-
line GC-MS instrument has been developed (Williams et al.,
2006). Additionally, aerosol can be concentrated in a parti-
cle concentrator prior to sampling, which can decrease FTIR
sample-collection times from a few hours to 1 h (Maria et al.,
2002). However, due to the costs, complexities, and practi-
cal limitations involved (e.g., aerosol concentrators require
very large flow rates and virtual impactors are sensitive to
operating conditions), instrument development is not always
a viable approach to improving time resolution. As an alter-
native or complement to hardware design, it is possible to
devise sampling strategies and post-processing methods for
constructing higher time resolution measurements from a set
of low resolution samples. This is the approach that we in-
vestigate in this work.

We performed numerical modeling to compare the effec-
tiveness of sampling strategies and post-processing methods
for achieving 1 h time resolution with measurements requir-
ing 4, 6, and 8 h of sample-collection time. We modeled two
sampling strategies: sequential sampling, where successive
measurements are collected one after another, and staggered

sampling, where each new measurement is regularly initi-
ated before termination of the previous measurement. The
time resolution of a sequentially measured time series can
be controlled (and increased) by interpolating between mea-
surements. The resolution of a time series obtained by stag-
gered sampling can be controlled through the choice of the
staggering interval between samples. A time series resulting
from staggered sampling is a running average of the true time
series one seeks to measure. In the ideal case, mathematical
deconvolution can be used to retrieve the original time se-
ries at the resolution of the staggering rather than sample-
collection interval. For actual measurements, the process of
deconvolution is complicated by unavoidable perturbations
to measurement signals due to random measurement errors.
Regularization techniques are required.

We examined two concentration time series with con-
trasting diurnal patterns. Hydrocarbon-like organic aerosol
(HOA) and oxygenated organic aerosol (OOA) are major
contributors to OA as identified by AMS (aerosol mass spec-
trometry) and factor analytic decomposition (Zhang et al.,
2011). HOA is generally associated with primary organic
aerosol (POA) emissions and follows diurnal trends of traf-
fic patterns in urban areas (i.e., early morning and late af-
ternoons during weekdays). OOA is associated with SOA
formed from photochemical oxidation in combination with
aged background aerosol (de Gouw et al., 2009), and ex-
hibits a peak close to solar noon. The data set we used are
AMS measurements of HOA and OOA reported by Aiken
et al. (2009) at a polluted urban site in Mexico City, Mexico
(T0 site MILAGRO field campaign; Molina et al., 2010). The
data set is described fully in Sect. 2.

Section 3 formerly introduces and describes the different
sampling strategies and post-processing methods we investi-
gated. Section 4 describes the numerical modeling used to
apply these sampling strategies and post-processing meth-
ods to the test data. The modeled conditions were designed
primarily to represent the measurement of functional groups
representing HOA and OOA by aerosol FTIR spectroscopy,
since this is the primary measurement technique of our re-
search group. However, the results should be applicable to
any type of environmental sampling that can be characterized
with parameters falling within the ranges that we modeled.

The numerical modeling results were grouped into
three major categories: sequential (sequential sam-
pling+ interpolation), smeared (staggered sampling with
no data processing), and recovered (staggered sampling +
deconvolution). In Sects. 5 and 6 the best post-processing
methods are identified for the sequential and recovered cate-
gories, respectively. An overall comparison of the best-case
sequential and recovered solutions with the smeared solution
is made in Sect. 7. The advantages and disadvantages of each
method are discussed, taking into account the attainability
of the modeled best-case scenarios and the practical costs
involved. Section 8 discusses the differences between the
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HOA and OOA results. Finally in Sect. 9 we discuss the
interpretation of the error results.

2 Test case: HOA and OOA concentration time series

To test different methods of increasing time resolution we
used time series of HOA and OOA concentrations originally
measured at high time resolution by aerosol mass spectrom-
etry at the T0 site in central Mexico City in 2006 during the
MILAGRO field campaign. The MILAGRO campaign and
T0 site are described by Molina et al. (2010). The aerosol
mass spectrometer measurements and the positive matrix fac-
torization (PMF) analysis used to derive the HOA and OOA
profiles and concentrations are described by Aiken et al.
(2009).

The HOA and OOA concentration time series are dis-
played in Fig. 1a. The original measurements were collected
over the period from 10 to 31 March 2006. To avoid gaps in
the time series greater than 1 h we only used the measure-
ments from 23:00 LT (local time) 19 March 2006 to 10:00
29 March 2006, which amounts to a total period of 228 h.
This period was chosen because 228 has many factors (7
greater than 12), which was desirable for numerically model-
ing the effect of the time-series period measured (see Sect. 4).
The original measurements were averaged over 1 h inter-
vals to generate hourly-resolution data for the inverse model-
ing and to smooth out some of the high-frequency perturba-
tions due to random measurement uncertainties. The hourly-
resolution data certainly still contain measurement noise, but
for the purposes of our modeling we assume that these sig-
nals represent the true changes in HOA and OOA concentra-
tions at the T0 site over this time period.

Both the HOA and OOA concentration time series dis-
played strong and regular daily peaks. The diurnally aver-
aged profiles shown in Fig. 1b indicate that HOA concen-
trations peaked in the mornings around 07:00. These HOA
peaks were coincident with the occurrence of a morning ve-
hicle rush hour period and low atmospheric boundary layer
heights. This peak timing suggests the HOA was predom-
inantly primary OA emitted from combustion sources that
was able to build up to high concentrations in the shallow
morning boundary layers (Aiken et al., 2009). The daily
OOA concentration peaks were broader, beginning around
08:00 and extending to 15:00. This peak timing suggests that
the OOA concentration peaks were the result of photochem-
istry and SOA formation (Aiken et al., 2009).

The two time series in Fig. 1 were chosen for this anal-
ysis because their daily peaks were separated by only a few
hours. If these HOA and OOA concentrations (or the concen-
trations of functional groups or specific molecules represent-
ing these OA classes) were measured at poor time resolution
(> 4 h), the differences between the daily peaks would not be
clearly resolved. In that case it would not be possible to eas-
ily recognize that the concentration peaks resulted from two

distinct processes: primary particle emission and secondary
aerosol formation. Therefore, the ability to clearly resolve
the daily HOA and OOA concentration peaks provided an
ideal test case for different methods of obtaining hourly time
resolution data from measurements requiring longer sample-
collection times.

We note that it is not possible to measure HOA or OOA
concentrations directly with FTIR spectroscopy. FTIR spec-
troscopy is used to measure the absorption spectra of aerosol
samples. Organic functional group and total OA concentra-
tions can be derived from these measured spectra (Russell
et al., 2009; Takahama et al., 2013). The ideal conditions
we have modeled in this study could represent, for exam-
ple, the measurement of organic functional groups that rep-
resent HOA and OOA. Factor analysis can also be used to
calculate the FTIR-equivalent of HOA and OOA species
(Corrigan et al., 2013). In this case the relevant time se-
ries would be multivariate (many wavelengths or functional
group abundances considered together) rather than univari-
ate (concentrations of individual species). The theory devel-
oped in Sect. 3 can be extended to the multivariate case. The
multivariate extension is the topic of future work and is not
covered in the present study. For the current, univariate case
we chose to model the measurement of HOA and OOA con-
centrations because these species display contrasting diurnal
profiles and because they illustrate the variations in OA that
can be captured at high time resolution.

3 Sampling strategies and post-processing methods for
increasing measurement time resolution

Two simulated sampling strategies were applied to the HOA
and OOA test data: sequential and staggered sampling. A
variety of different post-processing methods for increasing
measurement time resolution were investigated with the two
sets of simulated measurements. Figure 2 lists each of the
methods applied and each method is explained in further de-
tail below. For each method, the best-case scenario was con-
sidered in order to determine the theoretically optimal com-
bination of sampling strategy and data processing method for
increasing measurement time resolution.

3.1 Sequential sampling

Aerosol samples (and most other environmental samples) are
typically collected sequentially, one after another. We re-
fer to this as sequential sampling. Sequential measurements
are separated by an interval of time (δτ ) equal to the in-
dividual sample collection or measurement integration time
(1τ ). Post-measurement, the resolution of sequentially col-
lected measurements can be increased by interpolating be-
tween successive points with some chosen function. Here we
consider two interpolation methods: step function and linear
interpolation (Fig. 3). Although it seems likely that linear in-
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Figure 1. (a) Time series of HOA (dark gray) and OOA (green) concentrations measured at the T0 site in Mexico City during the MILAGRO
field campaign (Aiken et al., 2009). Blue and orange circle markers indicate the daily HOA and OOA peaks, respectively, used for the peak
reproduction analysis (Sect. 4). (b) Diurnally averaged HOA and OOA concentrations.

Figure 2. Sampling strategies and post-processing methods for increasing time resolution. Each method is explained in detail in the main
text in Sect. 3. Step: step function, linear: linear function, TSVD: TSVD regularization, Tikh.: Tikhonov regularization, full: no loss of the
boundary values corresponding to partial measurement samples, trunc: loss of all boundary values corresponding to partial measurement
samples, uni: truncated signal uniformly padded to the length of the full, smeared signal, ref: truncated signal reflectively padded to the
length of the full, smeared signal.

terpolation will better represent the original time series we
have tested step interpolation as this case is often assumed
(at least implicitly). For both interpolation cases we repre-
sented a single measurement by the midpoint of a given sam-
ple: each measurement occurs at time tmid = tstart+1τ/2=
tend−1τ/2). It is also possible to represent individual mea-
surements by the start (tstart) or endpoints (tend) of each sam-
ple. We do not consider those options here because the mod-
eled results do not represent the original time series as well
as the simulations with tmid.

3.2 Staggered sampling

Aerosol sample collection can also be staggered, such that
each new sample is regularly initiated before termination
of the previous sample. By separating successive measure-
ments by a staggering interval δτ less than the individual
sample-collection time 1τ , it is possible to increase mea-
surement time resolution. The principle of combining multi-
ple, overlapping, lower-resolution samples in order to con-
struct higher spatial- and temporal-resolution information
has been used extensively for image processing (Borman and
Stevenson, 1998; Shechtman et al., 2005).

Staggered sampling effectively applies a running average
to a time series of aerosol concentrations, which produces a
smeared version of the original signal, denoted here as g(t).
If f (t) represents the true change in aerosol concentrations
at some point in the atmosphere from time t = 0 to T , g(t)
is the product of the convolution of a boxcar kernel function
h(1τ) and f (t). This is a specific example of a Fredholm
integral equation of the first kind:

g(t)=

T∫
0

h(1τ)f (t)dt . (1)

In the case of measured data a smeared signal is more
appropriately represented by a finite series of n measure-
ment points g separated by δτ than by the continuous func-
tion g(t). In addition, all measurements are subject to some
amount of measurement uncertainty ε. A discrete formula-
tion of Eq. (1) that more accurately reflects the actual mea-
surement process is the matrix equation:

g =Hf + ε, (2)

where H is a convolution matrix and f is a finite series of m
data points representing f (t). The temporal resolution of f
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is the same as that of g (i.e., δτ ). For staggered samples, the
convolution matrix H is an n-by-m Toeplitz matrix. Each of
the n rows of H contains a shifted copy of a boxcar function
with k =1τ/δτ non-zero values equal to 1/k. In general,
n=m+k−1. Figure 5 displays examples of a true time series
f of HOA concentrations and corresponding smeared time
series without (Fig. 5a) and with (Fig. 5c) measurement error.

Equation (2) suggests the following two post-processing
methods for recovering a higher time resolution estimate f̂
of the true time series f from staggered measurements.

1. The measured time series is taken as an approximation
of the true time series. No further data processing is ap-
plied.

2. One attempts to recover f̂ through a deconvolution op-
eration. For example, if H+ is the pseudo-inverse matrix
of H one can solve the following inverse problem

f̂ =H+g. (3)

In principle, the true aerosol concentrations f can be re-
covered precisely from a set of staggered measurements g
and solution of Eq. (3) (Fig. 5b). However, in practice the
problem is ill-posed. The small perturbations ε to g due to
random measurement uncertainty are strongly amplified in
f̂ . One can only ever hope to find a solution f̂ that is a good
approximation of f (Fig. 5d and e).

A variety of different deconvolution methods exist for
finding the inverse solution of Eq. (2). For example, the con-
volution theorem (Arfken and Weber, 2005) states that de-
convolution amounts to simple division of the frequency do-
main representations of f and H (which are typically ob-
tained by Fourier and/or Z transforms). This deconvolution
approach has recently been used to improve the time res-
olution of slow response, broadband terrestrial irradiance
measurements (Ehrlich and Wendisch, 2015). However, we
choose to frame the deconvolution problem with the discrete
matrix-based approach shown by Eq. (3) because it is well
suited to the natural, discrete form of measurement data, does
not assume periodicity of the time series being studies (as
taking Fourier transforms would implicitly do), and allows
easy and intuitive implementation of regularization methods
(discussed in further detail below). For this work, we use
a well-established and tested software package for inverse
modeling by regularization (Regularization Tools Version 4.1
for MATLAB Hansen, 2007).

A further limitation of measured data relates to the extra
k measurement values at the boundaries of g (recall for an
n-by-m H matrix, n=m+ k− 1 where k =1τ/δτ ). These
boundary elements correspond to partial samples with in-
tegration times <1τ . In some experiments, it may be pos-
sible to obtain the boundary values of g by initiating and
concluding experiments with partial samples. However, this
is not possible in experiments where 1τ corresponds to the

lowest possible sampling time required to exceed the detec-
tion limit. Therefore, only a truncated measurement vector
gt with n− 2(k− 0.5) elements will be accessible for mea-
surement in most cases (Fig. 4). There are two general ap-
proaches for deconvolving a system with gt .

1. Accept that the boundary values cannot be known and
solve the resulting system of equations where H has
more columns than rows, further adding to the ill-
posedness of the problem. We refer to this as the trun-
cated method for dealing with unknown boundary val-
ues.

2. Pad the truncated measurement vector gt so that it has
the same number of elements as the ideal, full con-
volution product g. The resulting system of equations
will be overdetermined, but g will contain estimated (or
guessed) values as well as actually measured values.

For option (2), a variety of different padding methods ex-
ist (e.g., Lane et al., 1997). Simple methods include the rep-
etition of the final boundary values (uniform padding) or
a reflection of the values about the boundaries (reflective
padding). These padding methods are illustrated in Fig. 4.
More refined methods concede that boundary conditions can-
not be known a priori (e.g., Aristotelian boundary condi-
tions, Calvetti et al., 2006). Here we consider only the simple
methods of uniform and reflective padding and compare the
results with those obtained from the truncated method (op-
tion (1) above) and also from the ideal scenario where the
full measurement vector g is accessible for measurement.

To deal with the sensitivity of the solution to measurement
uncertainty perturbations and the loss of boundary measure-
ments some form of regularization is required. Regulariza-
tion is the introduction of additional information in order
to stabilize a solution. In this context, regularization can be
achieved by modifying the convolution matrix H so that the
components of the matrix that are responsible for explaining
most of the variation in the underlying data are emphasized,
while the components that are associated with high frequency
measurement noise are deemphasized or removed. Regular-
ization methods can be defined through the singular value
decomposition (SVD) components of H. SVD is also an im-
portant practical tool for solving Eq. (3) (Hansen, 2007) and
is defined as

H= U6VT , (4)

where U is an m×m matrix consisting of the left singular
vectors u1, . . . ,um, V is an n× n matrix consisting of the
right singular vectors v1, . . . ,vn, and 6 is an m× n diag-
onal matrix consisting of diagonal elements σi arranged in
descending order. The σi are non-negative values and charac-
teristic of a given matrix. They are known as singular values.
Small singular values are responsible for making f̂ sensitive
to perturbations in g (Hansen, 2002).
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Figure 3. An illustrative example of interpolation between sequen-
tial samples. An original time series f of HOA concentrations, and
the time series resulting from step (red) and linear (yellow) interpo-
lation between successive sequential samples, which are indicated
by the circle markers.

For example, truncated SVD (TSVD) regularization is
the most straightforward regularization method. TSVD in-
volves retaining the first k SVD components of H, which
correspond to the largest singular values σi , and simply dis-
carding the rest. Tikhonov regularization is another common
regularization method (Tikhonov and Arsenin, 1977). It in-
volves minimizing a weighted sum of the residual and so-
lution norms, with weighting parameter λ determining the
importance given to the solution norm, or smoothness of the
solution. The pseudo-inverse matrix is then defined by each
method as (Aster et al., 2012)

H+ = VkS−1
k UTk TSVD (5)

H+ = (HTH+ λI)−1HT Tikhonov, (6)

where the subscript k indicates the number of components
retained, and I is the identity matrix. As with TSVD, the ef-
fect of Tikhonov regularization is to favor the large singu-
lar values and deemphasize small singular values. It can be
seen that both regularization methods require the introduc-
tion and setting of an additional parameter: k for TSVD and
λ for Tikhonov regularization. Figure 5d and e illustrate how
critical it is to set the regularization parameter to an appro-
priate value. If too many singular values are retained (large
k) or emphasized (small λ), then the solution becomes highly
unstable with strongly amplified perturbations. If too few sin-
gular values are retained (small k) or emphasized (large λ),
then the solution is overly smoothed.
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Figure 4. An original time series f of period T = 12 h measured
with 4 h samples (1τ = 4 h) staggered at intervals of 1 h (δτ = 1 h).
The resulting smeared signal g is the full convolution product of
f and a convolution matrix H(1τ,δτ). Since f contains 12 data
points, g contains 15 (= 12+ (4/1)− 1) data points. The values
at the boundaries of g correspond to partial averages of f (sam-
ples with sampling time <1τ ). In practice these values are often
not accessible for measurement, and one is left with a truncated
measurement vector gt consisting of only eight (= 15−2(4−0.5))
data points. The truncated measurement vector can be padded on its
edges by the uniform (guni) or reflective (gref) methods so that is
has the same number of elements as the full convolution product g.

4 Description of the modeling

Numerical inverse modeling was conducted with the two test
time series to compare the different methods of increasing
time resolution (Fig. 2). Table 1 lists the model parameters
and their values. The model parameters and values were cho-
sen primarily to represent aerosol sampling for FTIR spec-
troscopy as detailed further below. However, the calculations
are more general, and the results of the numerical modeling
are applicable to any type of environmental sampling that
can be characterized by parameters falling within the ranges
indicated in Table 1.

We considered filter sampling periods of 4, 6, and 8 h. A
minimum sample length of 4 h represents a typical value for
the shortest possible sampling period required for aerosol
FTIR spectroscopy (assuming the aerosol is not concentrated
before sampling; if the sample is concentrated, FTIR sample-
collection time can be as brief as 1 h, Maria et al., 2002). Se-
quential sampling was modeled by averaging the true aerosol
concentrations over sequential intervals of 1τ hours (e.g.,
circle markers in Fig. 3) centered at the sample midpoints.
Staggered sampling with a staggering interval δτ of 1 h was
simulated by constructing a convolution matrix H (which de-
pends on 1τ ) and evaluating Eq. (2).

The period of the time series (T ) measured by sequential
and staggered sampling was varied from 12 to 228 h. To en-
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time series g in the corresponding left panels. When κm = 0 % (b), the true time series can be completely recovered by deconvolution. No
regularization is required. When κm = 20 %, (d) TSVD regularization with appropriate choice of k(= 23), or (e) Tikhonov regularization
with appropriate choice of λ(= 0.39) are required to obtain solutions that approximate the true time series well.

Table 1. Modeling parameters

Parameter Description Value(s)

1τ (h) Sample collection or measurement integration time 4, 6, 8
δτ (h) Staggering interval 1
T (h) Period of time series being measured 12, 19, 38, 57, 76, 114, 228
κm (% of mass) Relative measurement error 0, 1, 5, 10, 20, 30
σ0,m (µg) Fixed or blank measurement error 0.5

sure that the same, full, 228-hour-long HOA and OOA time
series were used for each value of T , multiple time series seg-
ments were modeled for each T < 228 h, and the results are
reported as averages over these multiple segments. For ex-
ample, for T = 12 h, 19(= 228/12) separate time series seg-
ments were modeled. For T = 228 h only a single HOA and
a single OOA input time series were required.

Initial testing indicated that the start time of a series of
sequential samples affected the ability of the resulting mea-
surement signal to represent the true aerosol concentrations.
For example, if a long filter sample is initiated at the apex

of a sharp peak in concentration, the resulting measurement
does not represent the true changes in aerosol concentrations
well. This does not occur for staggered filter samples since
more than one sample is collected during a sharp peak (as-
suming δτ < peak width, which is the case for our test data).
Therefore, multiple sequential time series, but only a sin-
gle staggered time series, were generated for each modeling
run. For example for 1τ = 4 h, four unique sequential sam-
pling schedules were possible as defined by the following
filter start times: [. . . , 04:00, 08:00, . . . ], [. . . , 05:00, 09:00,
. . . ], [. . . , 06:00, 10:00, . . . ], and [. . . , 07:00, 11:00, . . . ].
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For1τ = 6 h, six unique sequential sampling schedules were
possible, and for1τ = 8 h, eight unique schedules were pos-
sible.

For both the sequential and staggered cases perturbations
due to random measurement error (ε, see Eq. (2) were added
to the simulated measurements. Relative measurement errors
(κm) of 0, 1, 5, 10, 20 and 30 % were considered. A relative
measurement error of 20 % is typical for aerosol FTIR spec-
troscopy (Russell, 2003). The relative errors were applied to
aerosol mass, not concentration, since this is the quantity ac-
tually probed by FTIR spectroscopy (we use the subscript m
to denote mass units). A sampling flow rate of 10 L min−1

was multiplied by the given sampling intervals 1τ to calcu-
late the sampling volumes used to convert between mass and
concentration. We assumed that the relative error in the mea-
surement of sampling flow rate was 2 %. The relative error
in the measurement of the sampling time interval1τ was as-
sumed to be so small in comparison to the errors in measured
mass and flow rate that it could be neglected. The relative un-
certainties in measured mass and flow rate were summed in
quadrature to calculate total, relative uncertainty in aerosol
concentration, denoted as κc, where the subscript c indicates
concentration units.

The relative error was combined with a fixed error term
(σ0,m). The fixed error term represents, for example, the stan-
dard deviation of masses detectable on blank filter samples.
The fixed error term is typically on the order of 0.1 µg for
aerosol FTIR samples on Teflon filters. We conservatively
set σ0,m to 0.5 µg, which is at the upper end of the range of
blank uncertainty values measured in previous FTIR studies
(Maria et al., 2003; Gilardoni et al., 2009, 2007). A fixed
error of 0.5 µg is consistent with the selected minimum sam-
pling interval of 4 h (Table 1). Defining detection limit as
3σ0,m, 4 h of sampling would be required to ensure that al-
most all (> 97 %) of the organic functional group samples
representing HOA and OOA collected during the time period
covered by the test time series were above detection limit
(Fig. S1 in the Supplement). We also modeled σ0,m = 0.1 µg.
The results were insensitive to this change so are not included
here.

Taking the relative and fixed errors, total measurement er-
ror σ as a function of concentration c was calculated with the
linear error model described by Eq. (7). Linear dependance
of total measurement error on concentration is a widely ap-
plicable assumption (e.g., Ripley and Thompson, 1987). σ0,c
is in units of concentration and is therefore a function of a
given 1τ and the sampling flow rate. The concentration per-
turbations ε due to the total measurement error were assumed
to be normally distributed around a mean of 0 with σ repre-
senting 1 standard deviation of the distribution:

σ(c)= κcc+ σ0,c (7)
ε ∼N (0,σ (c)). (8)

By setting the means of the ε distributions to 0 we have as-
sumed that the simulated measurements are not affected by
systematic measurement artifacts. Systematic measurement
artifacts depend strongly on the measurement technique in
question and even the specific batch of materials used (e.g.,
filter lot). They can be positive or negative, and can depend
on sampling time (e.g., Kirchstetter et al., 2001; Subrama-
nian et al., 2004). If known, measurement artifacts could
be addressed in this modeling framework by the setting the
means of the ε distributions to non-zero, time-dependant val-
ues.

For κm = 0 %, σ (c) and hence ε were set to 0 to represent
the ideal case of absolutely no perturbations due to measure-
ment error. For each modeling run with non-zero κm, 20 dif-
ferent realizations of the randomly generated error perturba-
tions ε were generated and added to the measurement signal.
Results are reported as averages over the 20 different realiza-
tions of each noisy measurement signal.

Hourly resolved time series were constructed from the
simulated measurement signals using the post-processing
methods outlined in Fig. 2 as follows. The sequential-
interpolated solutions were constructed by interpolating be-
tween sequential data points at the chosen resolution of 1 h
with step and linear functions. The smeared solutions re-
quired no further data processing: the time series g pro-
duced by simulating staggered sampling were taken as is.
The deconvolution solutions were obtained by first modi-
fying the simulated measurement vectors according to the
chosen boundary value method: full – the full measurement
vectors were used in subsequent calculations; truncated –
values at the boundaries of the measurement vectors corre-
sponding to partial samples were removed (and a correspond-
ing truncated convolution matrix Hr was calculated by re-
moving rows in H corresponding to these boundary values);
uniformly and reflectively padded – boundary values corre-
sponding to partial samples were removed but the measure-
ment vector was then padded back to the original length of g
via the uniform and reflective methods, respectively.

Following treatment of the boundary values, deconvolu-
tion with TSVD and Tikhonov regularization was performed
with the respective functions in Regularization Tools Ver-
sion 4.1 for MATLAB (Hansen, 2007). These functions uti-
lize the SVD of the given H to find the pseudo-inverse matrix
H+ and solve Eq. (3). The choice of the TSVD and Tikhonov
regularization parameters is critical as illustrated in Fig. 5d
and e. Since we aimed to model the best-case scenario and
we had access to the true time series, we chose optimal regu-
larization parameters k and λ that minimized the RMSE error
between the hourly resolved solution and true time series for
each simulation run. In reality, the true time series one seeks
to measure can not be known a priori and one must employ an
alternative parameter choice method based only on available
measurement data. A number of such methods have been de-
vised (e.g., Hansen, 2007, 1992) and two of these methods
are discussed briefly in Sect. S1 in the Supplement. Inves-
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tigation of these methods is beyond the scope of this work,
but it must be stressed that less accurate solutions would be
obtained with these parameter choice methods than with the
optimal, RMSE-minimizing method employed here.

The post-processing methods for increasing time resolu-
tion were judged according to two criteria:

1. Recovery error (RE): the overall ability to recover the
true time series from a set of simulated measurements.
We define RE as the mean absolute error (MAE) be-
tween a given calculated, hourly resolved time series f̂
consisting of n data points and the corresponding true,
original time series f :

RE=MAE=
1
n

n∑
i=1
|f̂ i −f i | . (9)

RE is the combination of two types of errors: the error
due to the measurement noise simulated by the linear
error model described by Eq. (7) (which we denote as
Measurement Error, ME), and the error resulting from
increasing the measurement time resolution from 4, 6,
or 8 h to 1 h via one of the post-processing methods. We
denote this latter error as upsampling error, UE (upsam-
pling is a signal processing term used to describe the
use of interpolation to increase the resolution of a sig-
nal; our use of the term here is not strictly applied to
interpolation, but to methods of increasing resolution in
general). UE can be calculated by the following equa-
tion

UE= RE−ME= RE−
1
n

n∑
i=1
|f i −f

′

i |, (10)

where ME is defined as the mean absolute error between
a true time series f consisting of n data points and a
time series f ′ produced by a hypothetical instrument
subject to the same random error modeled by our linear
error model, but capable of measuring at hourly rather
than 4–8 h time resolution. We choose to report the bulk
of the results as RE to represent the total error result-
ing from the upsampling of noisy measurements. In the
final discussion Sect. 9 we also report typical UEs to
illustrate how much of the total error can be attributed
solely to the upsampling process.

2. Peak capture: the specific ability to recover the magni-
tude and timing of the daily concentration peaks (indi-
cated by the circle markers in Fig. 1). The ability of a
method to accurately capture peaks in concentration is
important for health and regulatory concerns (e.g., for
identifying exceedances of particulate matter air quality
guidelines). We assess peak capture through a peak plot,
which displays the mean difference between the daily
peak concentrations in a calculated hourly resolved time
series and the corresponding peak concentrations in the

true time series, against the mean difference between the
times that the peaks occur in the calculated time series
and in the corresponding true time series.

In the discussion of the modeling results we pay particular
attention to the measurements of 57 h-long time periods with
4 h samples subject to 20 % measurement error. This repre-
sents a typical FTIR experiment. However, the dependance
of recovery error on time-series period, filter sample length,
and the level of measurement error is also discussed.

5 Sequential sampling results

This section identifies the best representation (step or linear)
of atmospheric concentrations using sequential samples and
discusses the issue of sequential sampling schedule. These
questions are answered with reference to overall recovery er-
ror (RE, Sect. 4) since the ability to capture peak concentra-
tions with sequential samples does not depend on the inter-
polation method employed (unless higher order interpolation
functions are used).

Figure 6a–f shows the dependance of RE on the start time
of the second sample of the day for HOA and OOA time
series that were constructed by step and linear interpolation
between sequential samples of sampling length (1τ ) 4, 6,
and 8 h (T = 57 h and κm = 20 %). The start time of the sec-
ond sample of the day represents sample schedule. For both
HOA and OOA, RE is generally lower for the linearly in-
terpolated solutions than the step interpolated solutions, and
RE increases with increasing 1τ . Figures S2 and S3 indi-
cate that linear interpolation results in lower recovery error
than step interpolation over the full ranges of simulated time-
series periods and relative measurement errors, respectively.
Therefore not surprisingly, linear interpolation is a more ef-
fective method for post-processing sequential measurement
than step interpolation.

Figure 6g plots the maximum difference in RE between
two different sampling schedules (designated as maximum
1RE) against1τ . Maximum1RE can be thought of the ex-
tra error that may be incurred if a bad sampling schedule is
chosen for a particular type of time series. For 1τ = 4 h, RE
is relatively independent of the particular sampling schedule
employed. Additional error of 0.13 to 0.20 µg m−3 is possi-
ble if the suboptimal sampling schedule is chosen. This com-
pares with mean REs of 1.49 for HOA and 1.85 µg m−3 for
OOA time series constructed with linear interpolation. Max-
imum 1RE increases with 1τ . For 1τ = 8 h, additional er-
ror of 0.42 to 0.90 µg m−3 is possible if the suboptimal sam-
pling schedule is chosen. In comparison mean REs were 1.96
for HOA and 2.51 µg m−3 for OOA time series constructed
by linear interpolation. Since the optimal sequential sam-
pling schedule cannot be known a priori, the additional error
that may be incurred due to this scheduling effect must be
kept in mind when interpolating between sequential samples,
particularly for measurements requiring sample-collection
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Figure 6. (a)–(f) Mean recovery error (RE) as a function of the start time of the second sample of the day for HOA and OOA time series
constructed by step and linear interpolation between sequential measurements of length (1τ ) 4, 6, and 8 h. κm = 20 % and T = 57 h, meaning
each data point is an average over 4(= 228/57) time series segments. The start time of the second sample of the day represents the 4, 6, and
8 unique sequential sampling schedules that are possible with 4, 6, and 8 h samples, respectively (Sect. 4). The vertical bars represent 95 %
confidence intervals determined by bootstrapping the mean estimates. (g) Maximum 1RE vs. 1τ . Maximum 1RE represents the maximum
difference in RE between two unique sampling schedules for a given 1τ . It is the maximum possible potential error that may be incurred if
a suboptimal sampling schedule is chosen for a given type of time series.

times > 6 h. This scheduling effect is not as important for
staggered samples, assuming the staggering interval is small
enough, since measurement data points are collected more
frequently.

6 Deconvolution results

Eight different combinations of regularization and bound-
ary value methods (Fig. 2) were used to recover time series
by deconvolution for each set of simulated staggered mea-
surements. For T = 57 h and κm = 20 %, Fig. 7 displays the
mean RE of deconvolution solutions recovered by TSVD and
Tikhonov regularization as a function of the boundary value
method employed (tiled by 1τ and time series type), and
Fig. 8 displays a peak plot for each combination of regular-
ization and boundary value method.

At this relatively high level of measurement error, only a
small reduction in RE is gained from having access to the
full measurement vector (which would require the collection
of partial samples, Sect. 3). Furthermore, there is little differ-
ence in the mean RE of the three methods that assume bound-
ary values are not accessible for measurement: no clear and
consistent advantage can be discerned between the truncated,
uniformly, and reflectively padded methods for this T and
κm. Assuming the boundary values are known, the average
RE of HOA time series sampled with 4 h filters and recov-
ered with TSVD regularization is 1.16 µg m−3. If the bound-
ary values are not known, the corresponding value averaged
over the three other boundary value methods is 1.34 µg m−3.

The corresponding OOA-TSVD results tell the same story:
RE of 1.42 µg m−3 with the full measurement vector vs. an
average of 1.65 µg m−3 over the three methods without. The
results are similar over the full range of time-series periods
simulated (Fig. S4).

In addition, at this level of measurement error similar re-
covery errors are obtained with TSVD and Tikhonov regu-
larization. It is only for the OOA time series measured with
4 h samples that a difference between the two regularization
methods can be clearly discerned, with TSVD regularization
resulting in lower recovery error than Tikhonov regulariza-
tion. Although the REs are similar, concentrations recovered
with Tikhonov regularization are generally lower than the
true concentrations. As a result, the overall average concen-
trations of time series recovered with Tikhonov regulariza-
tion are 10–20 % below the corresponding averages of the
original time series. The average concentrations of the time
series recovered with TSVD regularization are very similar
to the true values (Fig. S6).

The peak plots (Fig. 8) indicate that in terms of peak cap-
ture no boundary value method is clearly better than the oth-
ers for κm = 20 %. Solutions with TSVD regularization are
marginally better at capturing peak concentrations than solu-
tions with Tikhonov regularization, although the differences
are still well within 1 standard deviation of all the modeled
solutions (vertical bars in Fig. 8). On average, for any of the
methods, HOA peak concentrations averaging 15.8 µg m−3

can be reproduced to within 4 µg m−3 and OOA peak concen-
trations averaging 17.8 µg m−3 can be reproduced to within
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Figure 7. Mean recovery error (RE) for different boundary value methods for HOA and OOA time series constructed by deconvolution with
TSVD and Tikhonov regularization of staggered measurements of length (1τ ) 4, 6, and 8 h. κm = 20 % and T = 57 h, meaning each data
point is an average over 4(= 228/57) time series segments. The boundary value methods are full; trunc, truncated; unipad, uniformly padded;
and refpad, reflectively padded. The vertical bars represent 95 % confidence intervals determined by bootstrapping the mean estimates.

2 µg m−3. The daily HOA and OOA peak times can generally
be reproduced to within 1 h.

If the level of random measurement error is very low, less
than approximately 5 %, recovery error is strongly reduced
if one has access to the full measurement vector (Fig. S5). If
partial samples cannot be known, solving the system of equa-
tions with a truncated measurement vector results in lower er-
ror than padding the measurements out via the uniform or re-
flective methods. Taking all of these together we recommend
TSVD regularization with the truncated method for dealing
with boundary values if partial samples cannot be known. In
addition to the analysis presented in this work, further advan-
tages of TSVD regularization are that it is conceptually sim-
ple and intuitive, and it is straightforward to apply through
the SVD products of the convolution matrix H.

7 Overall comparison of methods

Based on the findings of the previous two Sects. 5 and 6 we
now make an overall comparison of methods for increasing
measurement time resolution in the context of the practical
considerations and limitations of each method. Interpolation
between sequential measurements is the least sophisticated,
cheapest and easiest of the methods for increasing time res-
olution out of those that we have investigated. Staggered
sampling requires multiple sampling lines to collect multi-
ple samples at once. More staggered samples are required to

cover a given time period than would be required to cover the
same time period with sequential samples. This extra cost of
staggered sampling compared to sequential sampling is illus-
trated in Fig. 9. For example, to measure a time series of pe-
riod 64 h, 61 staggered 4 h samples would be required com-
pared to only 16 sequential 4 h samples. The sample number
difference is even greater for larger 1τ . To measure a time
series of period 64 h, 57 staggered 8 h samples would be re-
quired compared to only 8 sequential 8 h samples.

Attempting to recover the true time series from a set of
staggered measurements by deconvolution requires even fur-
ther effort and analysis time and expertise. Although tried
and tested deconvolution and regularization algorithms are
readily available (Hansen, 2007), the choice of a reasonable
regularization parameter may not be straightforward. If a bad
regularization parameter is chosen, a substantial additional
error could be added to a solution (Fig. 5). Given the extra
cost of staggered sampling and the error risk associated with
regularization, it is necessary to establish precisely what, if
anything, can be gained from the use of these more sophis-
ticated tactics for a variety of different experimental condi-
tions.

Figure 10 displays the mean recovery error as a func-
tion of κm for HOA and OOA time series processed by
the sequential, smeared, and recovered methods (T = 57 h
and 1τ = 4 h). Two sequential cases are displayed. Both
were obtained by linear interpolation. “Sequential low” cor-
responds to the sampling schedule that resulted in the low-
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samples is given by (T −1τ + 1)/δτ .

est RE, and “sequential high” corresponds to the sampling
schedule that resulted in the highest RE. The RE difference
between these two cases is the sequential sampling effect
identified in Fig. 6g. The recovered solutions were produced
by deconvolution with TSVD regularization and the trun-
cated method for dealing with inaccessible boundary values
(Sect. 6). As expected, in the absence of measurement error,
recovering a time series through the deconvolution of stag-
gered measurements is the best method for achieving high
time resolution. On average, true concentrations can be re-
produced to within 0.25 µg m−3 for HOA and 0.48 µg m−3

for OOA with this method (RE is not zero because of the
truncated measurement vector). However, measurement er-
ror is unavoidable, and the presence of only 5 % error is suf-
ficient for the recovered method to lose its RE advantage over
the less sophisticated sequential and smeared methods.

At the 20 % level of relative measurement error character-
istic for aerosol FTIR spectroscopy, the differences in mean
RE between the optimally scheduled sequential, smeared,
and recovered are very small. For HOA, mean RE is 1.49,
1.39, and 1.33 µg m−3 for the sequential low, smeared and
recovered time series, respectively. However, if a suboptimal
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Figure 10. Mean recovery error (RE) against relative measure-
ment error for HOA and OOA time series processed by the se-
quential, smeared and recovered methods. T = 57 h and 1τ = 4 h.
The “sequential high” and “sequential low” time series are con-
structed by linear interpolation between suboptimally and optimally
scheduled sequential measurements, respectively. The recovered so-
lutions were obtained with TSVD regularization and the truncated
boundary method.

sampling schedule is chosen, mean RE for the HOA time se-
ries could be as high as 1.58 µg m−3. In a real experiment
there would be no way of knowing what the optimal sequen-
tial sampling schedule was (unless a complementary inde-
pendent measurement was available), and therefore whether
a sequentially measured time series would be subject to the
higher amount of error or not. Collecting staggered samples
is one option for avoiding the sample scheduling effect.

The peak plots corresponding to the REs shown in Fig. 10
for κm = 20 % are displayed in Fig. 11. Both the optimally
and suboptimally scheduled sequential solutions are slightly
worse at capturing peak concentrations then the smeared and
recovered solutions. For example, peak HOA concentrations
are underestimated by an average of 4.28 µg m−3 in the op-
timally scheduled sequential solution compared to 3.32 and
2.74 µg m−3 for the smeared and recovered solutions respec-
tively. For the OOA time series, peak concentration values
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Figure 11. Peak plots for time series of period 57 h measured with
4 h samples subject to 20 % measurement uncertainty processed
by the sequential, smeared and recovered methods. The “sequen-
tial high” and “sequential low” time series are constructed by lin-
ear interpolation between suboptimally and optimally scheduled se-
quential measurements, respectively. The recovered solutions were
obtained with TSVD regularization and the truncated boundary
method. The peak plots are explained fully in the main text in
Sect. 4.

are reproduced, on average, very accurately in the smeared
and recovered solutions, being overpredicted by only 0.85
and 0.43 µg m−3, respectively. The same peak concentrations
are underestimated by 1.94 µg m−3 in the optimally sched-
uled sequential solution.

A key variable included in our numerical model is the fil-
ter sample length 1τ . Figure 12 displays mean RE against
1τ for the same cases shown in Figs. 10 and 11. Again
T = 57 h and κm = 20 %. It is interesting to note that mean
RE does not depend strongly on 1τ for the optimally sched-
uled sequential, smeared and recovered cases. For example,
if 4 h samples are used to construct an hourly resolved OOA
time series using the smeared method, true concentrations
can be reproduced to within an average of 1.81 µg m−3. If
8 h samples are used to construct the same hourly resolved
time series via the same smeared method, the reproduction
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Figure 12. Mean recovery error (RE) against sample-collection
time for HOA and OOA time series processed by the sequential,
smeared and recovered methods. T = 57 h and κm = 20 %. The
“sequential high” and “sequential low” time series are constructed
by linear interpolation between suboptimally and optimally sched-
uled sequential measurements, respectively. The recovered solu-
tions were obtained with TSVD regularization and the truncated
boundary method.

error is only slightly greater, 2.15 µg m−3. However in the
case of suboptimally scheduled sequential measurements the
increase in RE with 1τ is considerably greater because the
sequential sampling scheduling effect increases with increas-
ing sample-collection time (Fig. 6g).

Whether or not the differences between the sequential,
smeared and recovered methods are significant depends on
the specific aims of a given experiment. If the priority is to
achieve low overall error over long time periods when mea-
suring a concentration time series with 4 h samples subject
to 20 % relative measurement error, linear interpolation be-
tween sequentially collected samples is likely to be a suitable
enough choice for achieving hourly time resolution. Addi-
tional error may be inadvertently introduced through choice
of a suboptimal sampling schedule but the extra practical
costs of staggered sampling (Fig. 9) would be avoided. On
the other hand, if one was particularly interested in accurately

measuring peak OA concentrations and had the ability to
run multiple sampling lines at once, then staggered sampling
with no further data processing would be the best option for
achieving hourly time resolution (Fig. 11). A combination of
sequential sampling during stable OA concentration periods
and staggered sampling during peak periods (e.g., morning
rush hours, afternoon peak in photochemistry) could be an
excellent strategy for intensive field campaigns.

Our analysis suggests that in scenarios similar to the case
studied in this work there is little benefit to be gained (in
terms of both overall error and peak capture) by running
staggered measurements through a deconvolution algorithm.
This is surprising given that in the absence of perturbations to
a measurement signal, true concentrations can be recovered
precisely from a set of staggered measurements (Fig. 5b).
However, once non-ideal, practical realities such as random
measurement error (even as low as 5 %) and the inability to
collect partial samples are taken into account, signals recov-
ered by deconvolution approximate true concentrations only
as well as smeared and interpolated signals, even with opti-
mal choice of regularization parameter. Considering that in
a real experiment the optimal regularization parameter is not
known, we do not recommend the deconvolution of staggered
measurements as a method for increasing time resolution, un-
less the level of relative measurement error is extremely low
(< 1 %).

8 Comparison of HOA and OOA results

Differences between the HOA and OOA test time series were
reflected in the modeled recovery errors and peak concen-
trations. The absolute concentrations averaged (±1 standard
deviation) 4.99± 4.85 µg m−3 in the HOA time series com-
pared to 8.09± 5.66 µg m−3 in the OOA time series. The
daily HOA concentration peaks were sharp and occurred
early in the mornings, while the daily OOA concentrations
peaks were broad and generally extended throughout the full
afternoon (Fig. 1). For all post-processing methods, the HOA
REs were ∼ 0.5 µg m−3 less than the OOA REs, which is
likely because average HOA concentrations were lower than
average OOA concentrations. However, OOA peak concen-
trations were captured more precisely than HOA peak con-
centrations. On average for 4 h samples, HOA peak con-
centrations were underestimated by 2.34–4.16 µg m−3 more
than OOA peak concentrations (Fig. 11). We speculate that
sharper peaks are more difficult to reproduce by upsampling
low time resolution measurements than broader peaks. Sys-
tematic studies are required to further explore how time se-
ries characteristics (e.g., average concentrations and peak
widths) affect various metrics of recovery.
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9 Interpretation of errors

The REs (Eq. 9) we have reported indicate to within what
concentration range one can measure true aerosol concen-
trations, on average, with hourly resolved time series con-
structed from noisy measurement samples of length 4–8 h.
These REs are a combination of random measurement er-
ror (ME, which we modeled with the linear error model de-
scribed by Eq. (7) and upsampling error (UE), as explained
in Sect. 4. UE represents the error associated solely with the
increase in time resolution from 4–8 to 1 h. UE can be calcu-
lated with Eq. (10).

To illustrate how the errors break down for the case T =
57 h and 1τ = 4 h, Fig. 13 displays the upsampling errors,
and the UE fractions of the total error as a function of κm
for HOA and OOA time series constructed for the sequen-
tial high and low, smeared and recovered cases. In each case,
the UE/RE fraction decreases substantially with increasing
κm from 76–84 % at κm = 1 % to 10–27 % at κm = 30 %.
For the sequential and smeared cases this is because UE de-
creases and ME increases with increasing κm. For the recov-
ered case, absolute UE is less dependent on κm (it is always
less than 0.83 µg m−3), and the decreasing UE/RE fraction
results mainly from the increase in ME with increasing κm.
The inverse relationship between UE/RE and κm indicates
that although total recovery error decreases with an increase
in analytical accuracy (decrease in κm, Fig. 10), the fraction
of the total error resulting from the upsampling process in-
creases.

For FTIR levels of relative measurement error of 20 %,
UEs represent only 19–47 % of total RE in the sequen-
tial, smeared and recovered cases. In absolute terms, 0.30–
0.75 µg m−3 of error can be attributed specifically to the pro-
cess of constructing an hourly resolved time series from a
set of 4 h samples. This means that if FTIR sample collec-
tion was improved so that it was possible to collect samples
over 1 h instead of 4 h, the precision of the resulting hourly
resolved measurements would be improved by only 0.30–
0.75 µg m−3, relative to hourly resolved time series con-
structed from 4 h samples (the accuracy of the measurement
will depend on the analytical bias and measurement artifacts
of the technique in question). This statement is true even for
the simple case of linear interpolation between suboptimally
scheduled sequential measurements. This absolute upsam-
pling error range represents only 1.7–4.7 % of the average
daily HOA and OOA peak concentrations, and 3.7–15.2 %
of the average of all HOA and OOA concentrations in the
test time series (Fig. 1).

One way to frame these errors is to consider each com-
bination of noisy 4–8 h measurement samples and post-
processing method as a self-contained measurement tech-
nique or instrument that measures OA concentrations at
hourly resolution. For example, submicrometer size dis-
tributions measured with a scanning mobility particle
sizer (SMPS) are typically considered as a standard, self-

contained measurement. In fact, SMPS measurements are
a combination of particle electrical mobility measurements
and an inversion algorithm. SMPS inversion algorithms are
analogous to the post-processing methods we have tested
here, and are even based on the same underlying mathemat-
ics of deconvolution (e.g., Pfeifer et al., 2014), although it is
not necessary for the modern SMPS user to know this fact. In
this framing, the total error of each hourly resolved OA con-
centration measurement (RE) can be considered as a combi-
nation of random error in the underlying measurement (ME)
and error introduced by the processing algorithm (UE). UE is
the error cost of increasing the measurement time resolution.

Taking this interpretation further, one can also use esti-
mated concentrations to characterize the equivalent bias and
error of the hourly-resolution measurements as a whole, anal-
ogously to the way bias and error would be characterized for
any new instrument. An example of equivalent bias and er-
ror characterization is provided in Sect. S5 for the sequen-
tial high and low, smeared, and recovered cases considered
in Sect. 7. We have not quantitatively characterized equiva-
lent errors for these cases because Fig. S7 indicates that the
post-processing methods alter the structure of the errors in
the estimated concentrations, and the linear error model de-
scribed by Eq. (7) is no longer applicable. Therefore, further
work would be required to find a more suitable error model
and to quantify equivalent error. However, the example still
demonstrates how the hourly resolved outputs of the post-
processing methods that we have tested can be treated in the
same manner as the output of any given instrument or mea-
surement technique.

10 Conclusions

Aerosol measurement techniques with high analytical de-
tection limits require long sample-collection times at atmo-
spherically relevant concentrations, which results in poorly
time-resolved measurements. We investigated combined
sampling and post-processing methods for increasing the res-
olution of time series produced with 4–8 h-long samples. The
absolute concentrations we sought to recover ranged from
0.13 to 29.16 µg m−3 with mean values of 4.99 (HOA) and
8.09 µg m−3 (OOA) (Fig. 1). Linear interpolation between
sequentially collected samples is cheap, simple and surpris-
ingly effective in terms of both overall recovery error and
daily peak capture. However, sequential samples are subject
to a sample schedule effect, which can add up to 0.56 µg m−3

to overall recovery error (Fig. 6). Staggered sampling avoids
the sample schedule effect and it is up to the experimenter
to decide if the extra practical costs of staggered sampling
(e.g., Fig. 9) are worth this benefit. Recovering a time se-
ries through deconvolution of staggered measurements is
only useful at low values of relative measurement error. For
κm > 5 % the recovery errors of recovered solutions are com-
parable to those obtained via the smeared method (Fig. 10).
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Figure 13. Left panels: upsampling error (UE) vs. κm for HOA and OOA time series (T = 57 h) measured with 4 h samples. Right panels:
the corresponding UE fractions of the total error (RE) as a function of κm.

Since deconvolution costs extra analysis time and expertise,
and there is a risk that further error can be added to a solution
through the bad choice of regularization parameter, we do
not recommend this approach for post-processing staggered
measurements in scenarios similar to the case studied in this
work. If a deconvolution algorithm is applied, we recom-
mend using TSVD regularization because it resulted in more
accurate average concentrations over full sampling periods,
and marginally better peak capture and REs than Tikhonov
regularization.

Our numerical modeling has indicated that for κm = 20 %,
one can measure concentrations to within a range of 1.33–
2.25 µg m−3, on average, with hourly resolved time series
constructed from samples of length 4–8 h using the best-case
sequential, smeared or recovered methods. Daily peak con-
centrations can be reproduced to within an average of 0–
4.3 µg m−3 and peak times can be reproduced to within an
hour. Surprisingly, for the case T = 57 h and 1τ = 4 h, only
19–47 % of the overall recovery error can be attributed to
the actual upsampling process. In absolute terms, this indi-
cates that measurement precision would only be improved
by 0.30–0.75 µg m−3 if samples could be collected over 1 h
instead of 4 h.

The total and upsampling errors we have reported rep-
resent only small fractions of the average daily peak con-
centrations in the HOA and OOA test time series. There-

fore, post-processing methods are effective techniques for in-
creasing the time resolution of OA measurements requiring
long sample-collection times. Application of these methods
should be considered as a good alternative or complement to
other methods of achieving high time resolution, such as in-
strument redesign for rapid sample collection, which in many
cases may be prohibitively expensive.

These conclusions are based on the two time series we
have investigated, which included sharp (high gradients),
broad (low gradients), large magnitude, and relatively flat
regions (Fig. 1). However, further work is required to test
the generality of the conclusions by applying these sampling
strategies and post-processing methods to different time se-
ries types (e.g., cooking organic aerosols, which may display
even sharper peaks in concentrations). The theoretical and
modeling frameworks provided in Sects. 3 and 4 do not de-
pend on the specific test case in question and can be applied
to time series of any variable.

The Supplement related to this article is available online
at doi:10.5194/amt-9-3337-2016-supplement.
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