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Abstract. Profiles of CFC-11 (CCl3F) and CFC-12 (CCl2F2)
of the Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS) aboard the European satellite Envisat
have been retrieved from versions MIPAS/4.61 to MI-
PAS/4.62 and MIPAS/5.02 to MIPAS/5.06 level-1b data us-
ing the scientific level-2 processor run by Karlsruhe In-
stitute of Technology (KIT), Institute of Meteorology and
Climate Research (IMK) and Consejo Superior de In-
vestigaciones Científicas (CSIC), Instituto de Astrofísica
de Andalucía (IAA). These profiles have been compared
to measurements taken by the balloon-borne cryosampler,
Mark IV (MkIV) and MIPAS-Balloon (MIPAS-B), the air-
borne MIPAS-STRatospheric aircraft (MIPAS-STR), the
satellite-borne Atmospheric Chemistry Experiment Fourier
transform spectrometer (ACE-FTS) and the High Resolution
Dynamic Limb Sounder (HIRDLS), as well as the ground-
based Halocarbon and other Atmospheric Trace Species
(HATS) network for the reduced spectral resolution period
(RR: January 2005–April 2012) of MIPAS. ACE-FTS, MkIV

and HATS also provide measurements during the high spec-
tral resolution period (full resolution, FR: July 2002–March
2004) and were used to validate MIPAS CFC-11 and CFC-
12 products during that time, as well as profiles from the
Improved Limb Atmospheric Spectrometer, ILAS-II. In gen-
eral, we find that MIPAS shows slightly higher values for
CFC-11 at the lower end of the profiles (below ∼ 15 km) and
in a comparison of HATS ground-based data and MIPAS
measurements at 3 km below the tropopause. Differences
range from approximately 10 to 50 pptv (∼ 5–20 %) during
the RR period. In general, differences are slightly smaller for
the FR period. An indication of a slight high bias at the lower
end of the profile exists for CFC-12 as well, but this bias is far
less pronounced than for CFC-11 and is not as obvious in the
relative differences between MIPAS and any of the compar-
ison instruments. Differences at the lower end of the profile
(below∼ 15 km) and in the comparison of HATS and MIPAS
measurements taken at 3 km below the tropopause mainly
stay within 10–50 pptv (corresponding to∼ 2–10 % for CFC-
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12) for the RR and the FR period. Between ∼ 15 and 30 km,
most comparisons agree within 10–20 pptv (10–20 %), apart
from ILAS-II, which shows large differences above∼ 17 km.
Overall, relative differences are usually smaller for CFC-12
than for CFC-11. For both species – CFC-11 and CFC-12 –
we find that differences at the lower end of the profile tend to
be larger at higher latitudes than in tropical and subtropical
regions. In addition, MIPAS profiles have a maximum in their
mixing ratio around the tropopause, which is most obvious
in tropical mean profiles. Comparisons of the standard devia-
tion in a quiescent atmosphere (polar summer) show that only
the CFC-12 FR error budget can fully explain the observed
variability, while for the other products (CFC-11 FR and RR
and CFC-12 RR) only two-thirds to three-quarters can be ex-
plained. Investigations regarding the temporal stability show
very small negative drifts in MIPAS CFC-11 measurements.
These instrument drifts vary between ∼ 1 and 3 % decade−1.
For CFC-12, the drifts are also negative and close to zero
up to ∼ 30 km. Above that altitude, larger drifts of up to
∼ 50 % decade−1 appear which are negative up to ∼ 35 km
and positive, but of a similar magnitude, above.

1 Introduction

Chlorofluorocarbons (CFCs) have been monitored for some
decades because of their potential to release catalytically ac-
tive species that destroy stratospheric ozone, which was first
discovered by Molina and Rowland (1974). Even though
there are also natural sources of halogens, observations fo-
cus on man-made CFCs, such as CFC-11 and CFC-12, be-
cause increased release of active chlorine species due to ele-
vated amounts of these substances can significantly alter the
equilibrium of stratospheric ozone formation and destruc-
tion. Under certain conditions (sufficiently cold temperatures
for chlorine activation; polar stratospheric clouds, PSCs), this
can lead to severe ozone depletion. Since CFCs have very
long lifetimes in the atmosphere (52 years with an error range
of 43–67 years for CFC-11; 102 years with an error range
of 88–122 years for CFC-12, SPARC, 2013) and are insol-
uble in water, they can easily reach the stratosphere because
they are neither destroyed nor washed out before they arrive
at these altitude regions. In the stratosphere, halogen source
gases, such as CFC-11 or CFC-12, are photolyzed or other-
wise broken up and finally converted to so-called reservoir
gases, particularly hydrogen chloride (HCl) or chlorine ni-
trate (ClONO2), by chemical reactions and under the influ-
ence of solar ultraviolet radiation. Stratospheric abundances
of hydrogen chloride and chlorine nitrate increased signif-
icantly during the later decades of the past century (World
Meteorological Organization, 2011), as a consequence of in-
tensified anthropogenic emissions of CFCs and other ozone-
depleting substances (ODSs), which were used for refriger-
ation, foam blowing and several other purposes. While di-

rect reactions of ozone with the reservoir species HCl and
ClONO2 are not relevant for ozone depletion, these reservoir
species are transformed into active chlorine species (ClOx ;
mainly ClO, Cl and Cl2O2) under sufficiently cold tempera-
tures. The active chlorine species catalytically destroy ozone
via the so-called ClO-dimer cycle (Molina and Molina, 1987)
and the synergistic interaction of ClO and BrO (McElroy
et al., 1986). Here, heterogeneous reactions on the surface of
cold aerosols of PSCs occur and, in combination with sun-
light, result in the reactivation of chlorine which can then
destroy ozone catalytically and ultimately leads to ozone de-
pletion and the formation of the ozone hole.

Once it was observed (Farman et al., 1985) that these pro-
cesses could lead to severe ozone depletion in reality, the
Montreal Protocol was adopted in 1987 to control the emis-
sion of CFCs and other ozone-depleting substances. After-
wards, the emission of CFCs decreased and ceased com-
pletely in 2010 (World Meteorological Organization, 2011),
which led to decreasing amounts of these species in the at-
mosphere. However, since several CFCs have lifetimes of up
to 100 years and more – which makes them excellent tracers
for the Brewer–Dobson circulation (Schoeberl et al., 2005;
SPARC, 2013) – significant amounts of these species are still
present in the atmosphere. Hence, their monitoring and the
closer examination of their evolution in the atmosphere are
important tasks, as Kellmann et al. (2012) have shown by il-
lustrating that there are trends in CFC-11 and CFC-12 which
can so far only be explained by changes in circulation. In ad-
dition to their ozone-depleting potential, CFC-11 and CFC-
12 have a pronounced global warming potential (World Me-
teorological Organization , WMO, e.g., Fig. 1-6-4), which is
another reason for monitoring these species. In the following,
we describe the data products and the different characteris-
tics of the instruments used in the comparisons (Sect. 2), fol-
lowed by an explanation of the validation method (Sect. 3).
Since the Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS) malfunctioned in 2004 and the retrieval
setup had to be changed afterwards to address the altered sit-
uation, two sets of the data exist for either species, one (FR,
full spectral resolution) referring to the period of July 2002
to March 2004 and one (RR, reduced spectral resolution1)
referring to the period of January 2005 to April 2012. The
spectral resolution degraded from the FR to the RR period,
but more scans in the vertical are performed per profile dur-
ing the RR period, which leads to better altitude resolution
(Kellmann et al., 2012, Table 1). Thus, in Sect. 4 we show
the extensive results of the validation of version V5R_220
and V5R_221 (corresponding to the RR period) of MIPAS
CFC-11 and CFC-12 products and also a few comparisons
for version V5H_20 (corresponding to the FR period) of the
same species. The paper concludes with a summary.

1The respective ESA product is referred to as “optimized reso-
lution”.
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Figure 1. Simulated midlatitude emission spectra of the main regions of CFC-11 (left) and CFC-12 (right) at 20 km in July. The spectral
regions used for each instrument are shown. Only ILAS-2 uses a far wider range to retrieve CFC-11 and CFC-12.

2 Instruments

All the instruments used in this study and their main charac-
teristics are summarized in this section. Information on ver-
tical coverage, vertical resolution and utilized spectral region
is collected in Table 1. The table also gives an overview of
the observation period and spectroscopic data used for the re-
trievals. The spectral regions used for each remote sensor un-
der consideration are illustrated in Fig. 1, along with the con-
tributions of all interfering species. Besides the Institute of
Meteorology and Climate Research/Instituto de Astrofísica
de Andalucía (IMK/IAA) data product, MIPAS CFC data by
ESA (Raspollini et al., 2013, validated by Engel et al., 2016),
Oxford University (The University of Oxford Physics De-
partment, 2008), Forschungszentrum Jülich (Hoffmann et al.,
2008) and MIPAS Bologna Facility (Dinelli et al., 2010) also
exist. Since these retrievals rely on the same measurements
as our data, they are not independent and thus have not been
used for comparison.

2.1 MIPAS data and retrieval

The Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS) was one of 10 instruments aboard Envisat
(Environmental Satellite). The satellite was launched into a
polar, sun-synchronous orbit on 1 March 2002. The last con-
tact with the satellite was made on 8 April 2012. This adds
up to an observation period of 10 years. Envisat orbited the
Earth 14 times a day at an altitude of approx. 800 km. The
equator crossing times were 10:00 and 22:00 local time for
the descending and ascending node, respectively.

The MIPAS instrument was a high-resolution Fourier
transform spectrometer. It measured thermal emissions from
the atmospheric limb in the mid-infrared range between 685
and 2410 cm−1 (14.6 and 4.1 µm) (Fischer et al., 2008). The
MIPAS measurement period is split into two parts based on

the spectral resolution of the measurements. Until March
2004, the measurements were performed with a spectral res-
olution of 0.025 cm−1 (unapodized), which was the nomi-
nal setting. Due to an instrumental failure, later measure-
ments, commencing in January 2005, could only be per-
formed with a reduced spectral resolution and a spectral sam-
pling of 0.0625 cm−1. In correspondence, we denote the two
periods as full (FR) and reduced (RR) spectral resolution pe-
riods, respectively. In the present validation study we focus
on measurements that were performed in the “nominal ob-
servation mode”. In this mode, spectra at 17 tangent heights
between 6 and 68 km were obtained in the FR period. The
horizontal sampling was about 1 scan per 510 km and over-
all, more than 1000 scans were performed per day. During
the RR period the sampling improved in the horizontal do-
main to one scan per 410 km and in the vertical domain to
27 spectra between 7 and 72 km. More than 1300 scans were
obtained on a single day, covering the entire latitude range.

The CFC-11 and CFC-12 data sets that are used in this
study have been retrieved with the IMK/IAA processor that
has been set up together by the Institute of Meteorology
and Climate Research (IMK) in Karlsruhe (Germany) and
the Instituto de Astrofísica de Andalucía (IAA) in Granada
(Spain). The retrieval employs a nonlinear least-squares ap-
proach with a first-order Tikhonov-type regularization (von
Clarmann et al., 2003, 2009). The simulation of the radia-
tive transfer through the atmosphere is performed by the
KOPRA (Karlsruhe Optimized and Precise Radiative trans-
fer Algorithm) model (Stiller, 2000). In the comparisons,
we consider data that were retrieved with the retrieval ver-
sions V5H_CFC-11_20 and V5H_CFC-12_20 for the FR
period as well as V5R_CFC-11_220/221 and V5R_CFC-
12_220/221 for the RR period (Kellmann et al., 2012). Ver-
sion 220 covers the time period from January 2005 to April
2011 and version 221 is attributed to the time afterwards.
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The only change between these two versions is the source
of the temperature a priori data. Initially, the a priori data
were based on NILU’s (Norwegian Institute of Air Research)
post-processing of ECMWF (European Centre for Medium-
Range Weather Forecasts) data. Later, they were taken from
ECMWF directly as NILU’s processing had ceased. Over-
all, the CFC data sets comprise more than 480 000 individual
profiles for the FR period and more than 1.8 million profiles
for the RR period. For reasons of legibility, MIPAS Envisat
is referred to as MIPAS throughout this document, although
other versions of the MIPAS instruments are also considered
in this paper.

2.2 Comparison instruments

2.2.1 Cryosampler data

The cryosampler instrument is a balloon-borne cryogenic
whole air sampler originally developed at Forschungszen-
trum Jülich (Germany) in the early 1980s (Schmidt et al.,
1987). The cryosampler used in this comparison is the BON-
BON instrument. The first observations date back to 1982.
The instrument consists of a Dewar with 15 stainless steel
sampling containers which is filled with liquid neon to cool
the sampling containers down to 27 K. This allows the sam-
pling of a sufficient mass of air even at low pressures, which
will freeze out immediately. The sampler inlets face down-
ward; hence the BONBON measurements are optimized for
the descending leg of the flight in order to avoid contamina-
tion from balloon outgassing. After the flight, the collected
samples are analyzed on the abundance of a long list of trace
gases by means of gas chromatography. In this comparison
we consider five balloon flights that were performed by the
University of Frankfurt (Germany) (e.g., Laube et al., 2008).

2.2.2 MkIV data

The Mark IV interferometer is a balloon-borne high-
resolution Fourier transform spectrometer which has been
developed at the Jet Propulsion Laboratory in Pasadena
(USA) in the 1980s. The instrument employs the solar occul-
tation technique measuring absorption spectra over a wide
wavelength range from 650 to 5650 cm−1 (15.39–1.77 µm)
with a very high spectral resolution of up to 0.006 cm−1.
Since 1989, more than 20 flights were conducted (Toon,
1991; Velazco et al., 2011). The flight duration varies be-
tween a few hours and up to 30 h, allowing one or two occul-
tations to be taken during one flight. The occultations cover
the altitude range between the tropospheric cloud tops and
the floating altitude, which is typically within the 35–40 km
range. The vertical sampling is about 2 to 4 km. The pro-
file retrieval is based on an iterative nonlinear least-squares
fitting algorithm with a derivative constraint. MkIV CFC-11
retrievals were performed using an empirical pseudo-linelist
derived from the laboratory measurements of Li and Varanasi

(1994). MkIV CFC-12 retrievals used a pseudo-linelist de-
rived from the laboratory measurements of Varanasi and
Nemtchinov (1994). These linelists, and a description of
their derivation, can be found at http://mark4sun.jpl.nasa.
gov/pseudo.html. The vertical resolution of the retrieved data
is close to the vertical sampling.

2.2.3 MIPAS-B data

MIPAS-B denotes a balloon-borne version of the MIPAS
type of instruments and can be regarded as a precursor of
the satellite instrument that flew on Envisat as described in
Sect. 2.1. The instrument was developed in the late 1980s
and early 1990s at the Institut für Meteorologie und Kli-
maforschung in Karlsruhe (Germany) and two models were
built (Fischer and Oelhaf, 1996; Friedl-Vallon et al., 2004).
MIPAS-B interferometers have been operated since 1989
(von Clarmann et al., 1993) and more than 20 flights have
been carried out to date. MIPAS-B covers the wavenumber
region from 750 to 2500 cm−1 (13.3 to 4 µm). Balloon-borne
observations require excellent pointing accuracy which is re-
alized by a sophisticated line of sight stabilization system.
Also, multiple spectra taken at the same elevation angle are
averaged to reduce the noise of the measurement data for the
comparison with MIPAS. Typically, the MIPAS-B floating
altitude lies between 30 and 40 km ,and limb scans are per-
formed with a vertical sampling of about 1.5 km up to this
altitude. The retrieval algorithm for MIPAS-B observations
is based on the same retrieval strategy and forward model
as that employed by the MIPAS IMK/IAA processor; how-
ever the microwindows from which the CFC information is
derived are slightly different. In total, eight balloon flights
were performed during the lifetime of MIPAS. Five of these
flights were conducted during the RR period from 2005 to
2012 which is the key period of the present comparisons.

2.2.4 MIPAS-STR data

The cryogenic Fourier transform infrared limb sounder
Michelson Interferometer for Passive Atmospheric Sounding
– STRatospheric aircraft (MIPAS-STR; Piesch et al., 1996)
aboard the high-altitude research aircraft M55 Geophysica
is the airborne sister instrument of MIPAS. Here, we use
MIPAS-STR observations during the Arctic RECONCILE
campaign (Reconciliation of essential process parameters for
an enhanced predictability of Arctic stratospheric ozone loss
and its climate interactions; von Hobe et al., 2013) for the
validation of MIPAS observations. The characterization, cal-
ibration, retrieval and validation of the MIPAS-STR observa-
tions during the considered flight on 2 March 2010 are dis-
cussed by Woiwode et al. (2012). Characteristics of MIPAS-
STR, the data processing and uncertainties of the retrieval re-
sults are briefly summarized in the following. Further infor-
mation on MIPAS-STR is found in Keim et al. (2008), Woi-
wode et al. (2015) and references therein. MIPAS-STR em-
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ploys four liquid He-cooled detectors/channels in the spec-
tral range between 725 and 2100 cm−1 (13.8 and 4.8µm).
The spectral sampling is 0.036 cm−1. An effective spectral
resolution of 0.069 cm−1 (full width at half maximum) is
obtained after applying the Norton–Beer strong apodization
(Norton and Beer, 1976). Depending on the sampling pro-
gram, the dense MIPAS-STR limb observations cover the
vertical range between ∼ 5 km and flight altitude (in Arctic
winter typically at 17 to 19 km geometrical altitude) and are
complemented by upward-viewing observations. A complete
limb scan including calibration measurements is recorded
typically within 2.4 to 3.8 min. This corresponds to an along-
track sampling of about 25–45 km.

Similar to the MIPAS data processing, the forward model
KOPRA (Karlsruhe Optimized and Precise Radiative Trans-
fer Algorithm; Stiller, 2000) and the inversion module
KOPRAFIT (Höpfner et al., 2001), involving a first-order
Tikhonov-type regularization, were used. The retrieval was
performed sequentially, i.e., species with low spectral inter-
ference with other gases were retrieved first. Then, their mix-
ing ratios were kept constant in the subsequent retrievals of
the following species. Additional retrieval parameters were
spectral shift and wavenumber-independent background con-
tinuum for each microwindow. Typical vertical resolutions
of 1–2 km were obtained between the lowest tangent altitude
and flight altitude.

2.2.5 Aura/HIRDLS data

The High Resolution Dynamics Limb Sounder (HIRDLS)
was an instrument that performed observations aboard
NASA’s (National Aeronautics and Space Administration)
Aura satellite (Gille et al., 2008). The satellite was launched
into a sun-synchronous orbit at an altitude of 705 km. Dur-
ing launch, large parts (∼ 85 %) of the instrument’s aperture
got blocked by a plastic film that was dislocated. This im-
pacted both the performance of the radiometer as well as
the geographical coverage of the observations. Useful ver-
tical scans could only be performed at a single azimuth angle
of 47◦ backward to the orbital plane on the far side of the
sun. Hence, the latitudinal coverage was limited to 65◦ S to
82◦ N and in the longitudinal domain, the coverage degraded
to the orbital separation. On 17 March 2008 the instrument’s
chopper failed, ending the measurement period that started
in January 2005.

Like MIPAS, HIRDLS measured the thermal emission at
the atmospheric limb in the altitude range between 8 and
80 km. The instrument had 21 channels in the wavelength
range between 566.9 and 1632.9 cm−1 (17.64 and 6.12 µm).
Profile data are retrieved with a maximum a posteriori re-
trieval based on the optimal estimation theory (Rodgers,
2000). In the present comparison, data from the retrieval ver-
sion 7 are used (Gille et al., 2014). The single profile preci-
sion for both species minimizes between 200 and 100 hPa,
with values in the range between 10 and 20 %. Below, the

precision is within the order of 50 %, while above it degrades
with increasing altitude to values of more than 100 %. The
mean HIRDLS errors shown in the comparisons are derived
from the variability of the retrieved species (Gille et al., 2014,
Sects. 5 and 5.4.), using the average of 10 sets of 12 con-
secutive profiles of regions with little variability. In total the
HIRDLS data set comprises more than 6.3 million individ-
ual profiles that can be used for comparison with the MIPAS
reduced resolution observations. A one-time normalization
of the HIRDLS radiances relative to the Whole Atmosphere
Community Climate Model (WACCM) was completed, and
applied to all the HIRDLS CFC radiances. This affects the
absolute CFC values but the morphologies and relative val-
ues are unchanged.

2.2.6 SCISAT/ACE-FTS data

The Atmospheric Chemistry Experiment Fourier Transform
Spectrometer (ACE-FTS) is an instrument aboard the Cana-
dian SCISAT satellite (Bernath et al., 2005). SCISAT was
launched into a high inclination (74◦) orbit at 650 km alti-
tude on 12 August 2003. The ACE-FTS instrument utilizes
the solar occultation technique measuring the attenuation of
sunlight by the atmosphere during 15 sunsets and 15 sun-
rises a day in two latitude bands. The viewing geometry and
the satellite orbit allow a latitudinal coverage between 85◦ S
and 85◦ N over a year with a clear focus on midlatitudes
and high latitudes. The instrument scans the atmosphere be-
tween the middle troposphere and 150 km, obtaining spectra
in the wavelength range between 750 and 4400 cm−1 (13.3
and 2.3 µm) with a spectral resolution of 0.02 cm−1. The ver-
tical sampling varies as function of altitude and is also de-
pendent on the beta angle, which is the angle between the
orbit track and the direction the instrument has to look to see
the sun. In the middle troposphere the sampling is around
1 km, between 10 and 20 km altitude it is typically between 2
and 3.5 km and in the upper stratosphere and mesosphere the
sampling declines to 5 to 6 km. The instrument has a field of
view of 1.25 mrad which corresponds to 3–4 km depending
on the exact observation geometry.

In the comparisons, ACE-FTS data from the retrieval ver-
sion 3.5 are employed, which currently cover the time period
from early 2004 into 2013. The ACE-FTS retrieval uses a
weighted nonlinear least-squares fit method in which pres-
sure and temperature profiles are derived in a first step, fol-
lowed by the volume mixing ratios of a vast number of
species (Boone et al., 2005). The retrieval of CFC-11 data
utilizes spectral information from four microwindows. The
main window is located between 830 and 858 cm−1 (12.05
and 11.65 µm), similar to the MIPAS IMK/IAA retrieval.
The other microwindows are much smaller and are cen-
tered at 2976.5 cm−1 (3.35 µm), 1977.6 cm−1 (5.06 µm) and
1970.1 cm−1 (5.08 µm). However, the latter microwindows
do not contain information on CFC-11 but are included to
improve the retrieval for interfering species (Boone et al.,
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2013). Individual profiles exhibit precisions within 5 % up to
almost 20 km, increasing to 40–50 % at the highest altitudes
covered. The ACE-FTS CFC-12 profiles are usually cut off
at higher altitudes than the CFC-11 profiles, but exhibit sim-
ilar precision estimates. The cut-off criteria for CFC-11 and
CFC-12 are empirical functions as follows:

– for CFC-11:

ztop,CFC-11 = 28− 5 · sin2(ϕ); (1)

– for CFC-12:

ztop,CFC-12 = 36− 8 ·
√

sin(ϕ), (2)

where ztop,CFC-11 and ztop,CFC-12 are the altitudes (in kilome-
ters) at which the profile is cut off for CFC-11 and CFC-12,
respectively, and ϕ is the latitude. Overall, there are about
27 000 CFC-11 and CFC-12 profiles available for compari-
son, of which 375 cover the MIPAS FR period.

2.2.7 ADEOS-II/ILAS-II

The second version of the Improved Limb Atmospheric
Spectrometer (ILAS-II) was a Japanese solar occultation in-
strument aboard the Advanced Earth Observing Satellite-
II (ADEOS-II), also known as Midori-II Nakajima et al.
(2006). After more than 10 months, on 24 October 2003,
the satellite failed due to a malfunction of the solar pan-
els. ADEOS-II used a sun-synchronous orbit at 800 km
altitude and an inclination of 98.7◦, performing typi-
cally 14 orbits per day. The corresponding 28 occulta-
tions covered exclusively higher latitudes, i.e., polewards
of 64◦ in the Southern Hemisphere and between 54 and
71◦ in the northern counterpart. The instrument consisted
of four grating spectrometers, obtaining spectral informa-
tion in the infrared (spectrometer 1: 6.21–11.76 µm/850–
1610 cm−1; spectrometer 2: 3.00–5.70 µm/1754–3333 cm−1;
spectrometer 3: 12.78–12.85 µm/778–782 cm−1) and very
close to the visible wavelength range (spectrometer 4: 753–
784 nm/12 755–13 280 cm−1).

The instantaneous field of view was 1 km in the vertical
domain and between 2 and 21.7 km in the horizontal domain,
depending on the spectrometer.

In the comparisons we employ results from the latest re-
trieval version 3. The retrieval is based on an onion peeling
method Yokota et al. (2002). Multiple parameters for gases
and aerosols are derived simultaneously on a 1 km altitude
grid using a least-squares fit (Oshchepkov et al., 2006).The
CFC results are based on the spectrum obtained by spectrom-
eter 1 that is fitted in its entirety. For the comparisons with
MIPAS more than 5600 individual profiles are available, cov-
ering the time period from April to October 2003 Nakajima

et al. (2006), and thus provide comparison measurements for
the MIPAS FR period. For sunrise measurements, only mea-
surements below 34 km were considered as suggested by the
data provider.

2.2.8 HATS data

HATS denotes the Halocarbons and other Atmospheric Trace
Species group at NOAA’s (National Oceanic and Atmo-
spheric Administration) Earth System Research Laboratory
in Boulder (USA). Since 1977 this group has conducted
observations of surface levels of N2O and several CFCs,
providing a long-term reference (e.g., Elkins et al., 1993;
Montzka et al., 1996). These measurements are analyzed by
gas chromatography, either with electron capture detection
or with detection by mass spectrometry. The observations
started at six locations; currently 15 locations are covered
on all continents except Asia. Data from different measure-
ment techniques and instruments are combined to provide
the longest possible monthly mean time series for the indi-
vidual locations. In the comparison we check whether the
tropospheric MIPAS observations exceed the upper volume
mixing ratio limit that is given by the HATS observations
and whether their temporal development is consistent. HATS
data are available for more than a dozen stations during
the MIPAS measurement period. Their measurements were
weighted with the cosine of latitude, and an average was cal-
culated for each month.

3 Validation methods

In order to reduce the influence of natural variability and
sampling artifacts, the majority of the comparisons were per-
formed using collocated pairs of measurements. During this
study, the coincidence criteria applied in most of the cases
were a maximum distance of 1000 km and maximum time
difference of 24 h. In the case of HIRDLS the criteria were
cut down to a distance of 250 km and a time difference of
6 h, due to the large number of measurements of the instru-
ment. No measurement is taken into account twice, mean-
ing that only the best coincidence is taken in cases where
two measurements of one instrument collocate with the same
measurement of the other instrument. For MIPAS-B compar-
isons, diabatic 2-day forward and backward trajectories were
calculated by the Free University of Berlin (J. Abalichin, pri-
vate communication, 2014). The trajectories are based on
ECMWF 1.25◦× 1.25◦ analyses and start at different alti-
tudes at the geolocation of the balloon observation to search
for a coincidence with the satellite measurement along the
trajectory path within a matching radius of 1 h and 500 km.
Data of the satellite match have been interpolated onto the
trajectory match altitude, such that these values can be di-
rectly compared to the MIPAS-B data at the trajectory start
point. The MIPAS averaging kernels were not applied in any
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of the comparisons, due to two reasons. First of all, most of
the instruments used for comparison have a vertical resolu-
tion similar to that of MIPAS. In addition, the vertical profiles
of CFC-11 and CFC-12 are very smooth. They do not con-
tain any obvious extrema – as, for example, ozone does – and
thus smoothing with the MIPAS averaging kernel was shown
to have only minor effects on the profiles.

The data of remote sensing instruments used for the com-
parison were interpolated onto the MIPAS retrieval grid,
which is a fixed altitude grid with 1 km spacing in the alti-
tude range relevant for comparison of CFC-11 and CFC-12.
When provided on an altitude grid, the instruments’ measure-
ments were interpolated linearly onto the MIPAS grid, while
in the case of a pressure grid, the MIPAS pressure–altitude
relation was used after logarithmic interpolation.

For the comparison of MIPAS-STR, HIRDLS, ACE-FTS
and ILAS-II, we use the following statistics: the mean differ-
ence:

MD=
1
n

n∑
i=1

(
xi,MIPAS− xi,comp

)
; (3)

the standard deviation (SD) of the differences:

σ1x =

√√√√ 1
n− 1

n∑
i=1

((
xi,MIPAS− xi,comp

)
−MD

)2
; (4)

the standard error of the mean differences:

σ1x =
σ1x
√
n
; (5)

and the combined error of the measurements:

σcombined =

√
σmean,MIPAS2+ σmean,comp2, (6)

where σmean are the averaged random errors of the respective
instruments. σ1x is the adequate quantity for the assessment
of the mean difference.

Correspondingly, if the combined error is smaller than the
standard deviation of the differences, this hints at error es-
timates being too small, e.g., if not all sources of errors are
considered or the retrieval error is underestimated. Since the
measurements are not taken exactly at the same location and
time, natural variability also contributes to differences be-
tween the combined error and the standard deviation (von
Clarmann, 2006).

For comparisons to the HATS network, MIPAS measure-
ments at 3 km below the tropopause are used. The altitude
where the tropopause is located was calculated from each
MIPAS temperature profile as follows.

– Between 25◦ S and 25◦ N the altitude at 380 K potential
temperature was used.

– At higher latitudes the WMO criterion was used, e.g.,
the altitude where the vertical temperature gradient
drops below 2 K km−1 and remains that small within a
layer of 2 km.

The MIPAS CFC mixing ratio at 3 km below the tropopause
altitude is chosen for each MIPAS profile. Cases for which
the estimation of the tropopause height went obviously
wrong were rejected. All available MIPAS measurements are
used. To increase comparability of the data sets, monthly
zonal means were calculated from MIPAS measurements in
10◦ bins. In addition, these zonal means (and their standard
deviation) were weighted with the cosine of the latitude to
simulate the approach performed for the HATS data. Since
some of the MIPAS detectors were shown to have time-
dependent nonlinearity correction functions due to detector
aging (Eckert et al., 2014), we estimated drifts caused by
this feature from a small subset of data. The comparison
with HATS exhibits differences in the trends of MIPAS and
the HATS time series. We compared the differences in these
trends with the drift estimated due to detector aging. For the
latter we calculated the mean drift by interpolating the drifts
to 3 km below the tropopause and weighting them with the
cosine of the latitude.

4 Validation results

The comparisons between MIPAS and the independent
measurements were performed by applying the validation
schemes described in Sect. 3. The results of these compar-
isons are discussed in the following, first for CFC-11 and,
subsequently, for CFC-12. The mean distance and time for
comparisons based on collocated measurements (e.g., with
MIPAS-STR, HIRDLS, ACE-FTS and ILAS-II) are shown
in Table 2.

4.1 CFC-11: reduced spectral resolution period (RR)

4.1.1 Results CFC-11: cryosampler

Multiple MIPAS profiles are compared to those of the
cryosampler (Fig. 2). For each cryosampler profile (black
dots), several MIPAS profiles meet the coincidence criteria
(blue-grayish lines). The latter cover a considerable range
of variability. The closest MIPAS profile (blue solid line)
matches the cryosampler profile remarkably well in all five
cases, with maximum differences of 30 pptv (∼ 13 %), except
for the 10–15 km region on 3 October 2009 (right column,
bottom panel). In addition, the mean of all coincident MIPAS
profiles (red line) agrees reasonably well with the cryosam-
pler profile, suggesting that the air within the entire region
meeting the coincidence criteria is well represented by the
cryosampler. Contrary to that, the respective seasonal zonal
mean of MIPAS measurements (light orange line) occasion-
ally deviates considerably from the actual measurements,
particularly on 1 April 2011. On the other hand, the same sea-
sonal mean (March/April/May 2005–2011) can agree well
with the collocated mean and the closest MIPAS profile as
well as the cryosampler measurement as for the comparison
on 10 March 2009 (lower right panel). This confirms that
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Table 2. Mean matching distance and time for comparisons based on collocated measurements.

Envisat/MIPAS data set MIPAS-STR Aura/HIRDLS SCISAT/ACE-FTS ILAS-II

CFC-11 FR-period – – 356 km–6.24 h 365 km–3.25 h
CFC-12 FR-period – – 328 km–5.59 h 365 km–3.25 h
CFC-11 RR-period 172 km–1.76 h 199 km–2.89 h 376 km–5.84 h –
CFC-12 RR-period 172 km–1.76 h 199 km–89 h 379 km–5.99 h –

Figure 2. Comparison of a climatological mean of MIPAS CFC-11 measurements (light orange line), collocated measurements (blue-grayish
lines) and their mean profile (red line) and the closest MIPAS profile (blue line) with different flights of the cryosampler (black dots).

both the cryosampler and MIPAS can reliably detect atmo-
spheric conditions deviating largely from the climatological
state. Similar patterns were found for the 1 April 2011 com-
parison of MIPAS and cryosampler for other trace gases for
this specific cryosampler flight (Chirkov et al., 2016). In this
particular case, strong stratospheric subsidence has led to ex-
traordinarily low mixing ratios of CFCs. This uncommon at-
mospheric situation went along with substantial ozone de-
struction (Manney et al., 2011; Sinnhuber et al., 2011).

4.1.2 Results CFC-11: Mark IV

Only one measurement of the balloon-borne MkIV instru-
ment (black line in Fig. 3) coincides with MIPAS measure-
ments during the RR period. Three collocated profiles of

MIPAS (blue-grayish lines) were found, of which also the
mean profile (red line) and the closest profile (blue line) are
shown. Up to approximately 25 km, the MkIV profile reports
higher mixing ratios than all of the MIPAS profiles, espe-
cially compared with the closest MIPAS profile. However,
the gradient of the MkIV profile and all MIPAS profiles is
very much alike between ∼ 17 and 24 km. Contradictory to
the comparison with the cryosampler, the closest coincident
MIPAS profile deviates most from the MkIV profile through-
out the whole altitude range. While the three collocated mea-
surements lie within the MkIV error bars from the lower
end of the profiles up to ∼ 17 km, this is generally not the
case from that altitude upwards, but only around the cross-
ing point of the MkIV profile with the MIPAS profiles at
about 25–26 km. Up to that altitude, the MkIV profile ex-
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Figure 3. Comparison of one MkIV CFC-11 profile (black line)
with three coincident profiles of MIPAS (blue-grayish lines). The
closest (blue line) and the mean (red line) of these profiles are shown
in addition. The MkIV error estimates are inferred from the fit resid-
uals.

hibits higher mixing ratios of CFC-11 than MIPAS, while
above, MkIV shows lower, mostly negative values. However,
the differences with the MIPAS mean profile rarely exceed
20 pptv, except for around 20 km where we find deviations of
up to 30 pptv. This corresponds to less than 10 % at the lower
end of the profile and up to 15 % around 20 km. Velazco
et al. (2011) found similar differences in their comparisons
of ACE-FTS and MkIV, which are based on noncoincident
validation using a potential vorticity/potential temperature
(PV/Theta) coordinate system (Manney et al., 2007). They
also find largest deviations of the profiles around or slightly
below 20 km, with maximum differences of up to∼ 18 % and
minimum differences of the order of ∼ 5 % around 17 km.
Above 20 km, the mean profile of MIPAS and the MkIV pro-
file agree well. Differences mainly stay within 10 %, except
for above 26 km where MkIV mixing ratios become negative.
Considering the small number of coincident MIPAS profiles
(3), the instruments agree reasonably well below 20 km and
well between 20 and 26 km.

4.1.3 Results CFC-11: MIPAS-B

For the comparison with two independent measurements
of MIPAS-B, trajectory-corrected profiles of the instrument
were used (Fig. 4, Sect. 3). In the comparison for the
MIPAS-B flight of 24 January 2010, the agreement with
MIPAS is remarkably good above ∼ 18 km as it stays well
within 10 pptv. Below this altitude the mean profile of all
collocated MIPAS measurements (Fig. 4: upper left panel;
solid red line) shows higher values than the MIPAS-B pro-
file (solid black line). However, the values of all collocated
MIPAS profiles (red squares) cover a wider range, such that
the MIPAS-B profile lies within their spread at all altitudes.
The profiles deviate by approximately 30 pptv (∼ 30 %) at

Figure 4. Comparison of a mean profile of MIPAS CFC-11 col-
located measurements (left panels: red line) with a profile of
MIPAS-B (black line) obtained on 24 January 2010 (upper panels)
and 31 March 2011 (lower panels) at Kiruna. The error bars (1σ ;
left panel) show the total error without the spectroscopy error for
MIPAS and MIPAS-B. The difference is shown in absolute (middle
panels) and relative (right panels) terms. The dotted red line is the
standard deviation and the dashed blue line is the combined error
which consists of the root of the squared error of MIPAS-B and the
MIPAS mean.

the largest around 16–17 km (middle and right panel) and
stay within 20 pptv (corresponding to ∼ 10 % at the lower
end of the profile) for the rest of the covered altitude range.
Throughout the whole vertical extent, MIPAS shows higher
mixing ratios of CFC-11. However, the bias does rarely ex-
ceed the standard deviation of the differences. Large percent-
age errors above 19 km occur due to division by very small
absolute amounts of CFC-11 at these altitudes. The com-
bined error shows the total error estimate for both instru-
ments. However, the error component of the spectroscopy
was left out, since both instruments use the same spectro-
scopic data, meaning this effect should cancel out and thus
cannot explain possible differences between the combined
error and the standard deviation. Below 15 km, the combined
error of the two instruments and the standard deviation of
the differences are similar, except for the lowermost point of
the profile. Above this altitude the combined error is consid-
erably smaller than the standard deviation, hinting at either
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an underestimation of the error by one or both of the instru-
ments. Natural variability cannot be excluded as a source of
the deviation either. The MIPAS profile is smoother, presum-
ably due to several measurements being averaged to a mean
profile. The flight on 31 March 2011 (Fig. 4, lower panels)
supports the conclusions drawn from the first comparison.
Maximum differences are slightly larger (close to 35 pptv at
the largest). The largest deviations between the MIPAS mean
profile and the measurements of MIPAS-B appear at altitudes
around 13 km, and, here, exceed the standard deviation of the
differences. Around 17 km a second peak occurs in the dif-
ferences, which is at similar altitudes as for the first compar-
ison. Similar as for the first comparison, the combined error
and the standard deviation of the differences are very close,
while the standard deviation of the differences is significantly
larger than the combined error above this altitude. This rather
hints at an underestimation of the error by one or both in-
struments above ∼ 15 km than the feature being attributed
to natural variability. In general, both comparisons support
the impression of MIPAS showing slightly higher values of
CFC-11 below ∼ 18 km, even though the MIPAS-B profile
is still included within the spread of all MIPAS collocated
profiles (left panel: red squares). The shape of the profiles,
in terms of slope and reversal points, agrees well for both
comparisons. Differences might be due to horizontal view-
ing direction and/or horizontal smoothing by the MIPAS-B
measurement, since the observations are combined using tra-
jectories which are associated with the localized coordinates.
This is most important in the presence of pronounced atmo-
spheric structures and strong gradients, e.g., the mixing bar-
rier associated with the polar vortex.

4.1.4 Results CFC-11: MIPAS-STR

Seven profile pairs of collocated measurements were found
for comparisons of MIPAS with MIPAS-STR (Fig. 5). The
comparison is performed using mean profiles, rather than
comparing each set of collocated pairs. Since MIPAS-STR
profiles were originally retrieved on a finer altitude grid (left
panel; blue line) than MIPAS profiles (red line), these pro-
files were interpolated onto the MIPAS grid (black line). The
agreement of the profiles is good and the vertical structure
is similar, showing minimum differences around 16–17 km
for both instruments. Differences are largest at the bottom
end of the profiles at 8 km (middle panel). However, they
do not exceed 30 pptv (corresponding to up to ∼ 15 % be-
low 12 km and up to ∼ 20 % around 14 km at the largest)
throughout the rest of the profile and are not significant for
the majority of the altitude levels. Above 14 km, the differ-
ences mainly stay within 10 pptv corresponding to ∼ 3 to
15 %. The mean difference oscillates around zero, which is
most pronounced at altitudes below∼ 15 km. As for the com-
parison with MIPAS-B, the total error is shown for both in-
struments but the spectroscopy error is left out because MI-
PAS and MIPAS-STR use the same spectroscopic data. The

Figure 5. Comparison of mean profiles of MIPAS CFC-11 (left
panel, continuous red line) and MIPAS-STR (left panel, continuous
black line) for seven collocated measurements taken during a flight
on 2 March 2010. The error bars consist of the total error with-
out the spectroscopy error for both MIPAS and MIPAS-STR. The
dashed lines show the median of each data set. The middle panel
shows the mean difference (blue) of these profiles and the standard
error of the mean. The right panel shows the combined error (pur-
ple) of the instruments and the standard deviation of the differences
(brown).

standard deviation of the differences (right panel; brown line)
exceeds the estimated combined error (purple line) for most
of the covered altitude range. It is rather likely that this differ-
ence is due to natural variability than an underestimation of
the error budget of either instrument, since there is also a re-
gion (around 12 km) where this is the opposite, even though
the mean distance and time difference are only about 170 km
and 1 h 45 min, respectively (see Table 2).

4.1.5 Results CFC-11: HIRDLS

The results of the comparison of MIPAS CFC-11 with that of
HIRDLS are displayed in Figs. 6–8. Figure 6 shows that the
HIRDLS profiles scatter the most at the ends of the profiles,
e.g., at rather high altitudes (around ∼ 30 km; blue-greenish
points) and the lowermost altitudes (around ∼ 10 km; red-
yellowish points). It is also apparent that the measurements
of HIRDLS CFC-11 cover a large range of values at all al-
titudes, which is evident in the large scatter throughout the
whole vertical extent, with the largest spread at the lower
end of the profiles, i.e., at high CFC-11 mixing ratios. Neg-
ative CFC-11 values do not exist in the HIRDLS results be-
cause the retrieval for the volume mixing ratio is logarithmic.
The histograms shown in Fig. 7 give a more detailed picture
of the frequency distributions of the CFC-11 mixing ratios
of MIPAS (top panels) and HIRDLS (bottom panels) mea-
surements at 16 km (left panels) and 23 km (right panels).
The mean and the median are close in all four cases. Both
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Figure 6. Correlation of collocated MIPAS CFC-11 measurements
with HIRDLS measurements during the time period of 2005 to
2008.

Figure 7. Histogram of collocated MIPAS CFC-11 measurements
(top panels) and HIRDLS measurements (bottom panels) for the
years of 2005–2008 at 16 km (left panels) and 23 km (right panels).
The black line indicates the location of the mean of the sample,
while the red dashed line marks the median.

at 16 and at 23 km, MIPAS seems to see a bimodal distri-
bution (which is much more pronounced at 23 km), while
HIRDLS only exhibits one obvious peak at 16 km and a
slight shoulder, which seems to be a smeared-out second
mode, at 23 km. In both cases HIRDLS does not see the dis-
tinct second mode at higher values visible in MIPAS mea-
surements around 250 pptv at 16 km and around 150 pptv at
23 km. The peak at lower mixing ratios appears around sim-
ilar values for both instruments, slightly below 200 pptv at
16 km and between 0 and 50 pptv at 23 km. The maximum
is shifted slightly towards lower mixing ratios in the case of
HIRDLS.

Figure 8. Comparison of mean profiles of MIPAS CFC-11 (left
panel, continuous red line) and HIRDLS (left panel, continuous
black line) for the years of 2005–2008. The error bars include the
total error in the case of MIPAS and the estimated error – which
is derived from the average of 10 sets of 12 consecutive profiles
of regions with little variability (Gille et al., 2014) – in the case of
HIRDLS. The dashed lines show the median of each data set. The
middle panel shows the mean difference (blue) of these profiles and
the standard error of the mean. The right panel shows the combined
error (purple) of the instruments and the standard deviation of the
differences (brown).

The comparison of the mean profiles (Fig. 8, left panel),
which are calculated from more than 90 000 collocated pro-
files of HIRDLS (black) and MIPAS (red) over all lati-
tudes, shows good agreement of the two instruments down
to ∼ 16 km. Deviations stay within 10–15 pptv above this
altitude. Below, MIPAS continuously shows higher mixing
ratios of CFC-11 than HIRDLS (middle panel), with dif-
ferences reaching as high as 60 pptv at the bottom end of
the profile. This presumably reflects the more pronounced
second mode in the MIPAS frequency distribution (Fig. 7).
However, MIPAS CFC-11 mixing ratios are no more than
40 pptv (∼ 20 %) larger than those of HIRDLS at altitude
ranges between 9 and 16 km. At the bottom end of the pro-
files, the largest deviations of the mean profiles of MIPAS
and HIRDLS can be found. The error bars (left panel) shown
for MIPAS depict the total error, while HIRDLS error bars
represent an estimated error, derived from 10 sets of 12 con-
secutive profiles at regions of little variability (Gille et al.,
2014). In the right panel, the combined error is compared to
the standard deviation of the differences. The covered ver-
tical range of the combined error is smaller, since HIRDLS
error estimates were only given for these altitude levels. Pre-
sumably, a combination of an underestimation of either or
both error budgets and natural variability result in the differ-
ences between the combined error and the standard deviation
of the differences. Due to the fact that the coincidence crite-
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Figure 9. Correlation of collocated MIPAS CFC-11 measurements
with ACE-FTS measurements during the time period of 2005 to
2012.

Figure 10. Histogram of MIPAS CFC-11 measurements (top pan-
els) and ACE-FTS measurements (bottom panels) for the years
2005–2012 at 16 km (left panels) and 23 km (right panels). The
black line indicates the location of the mean of the sample, while
the red dashed line marks the median.

ria allow for certain differences in time and geolocation, the
mean distance between the collocated measurements is ap-
proximately 200 km and the time difference is nearly 3 h (Ta-
ble 2). However, this effect is presumably less important than
for the comparison with, e.g., ACE-FTS for which the mean
distance and time difference are about twice as large as for
the comparison with HIRDLS. Overall, the agreement of MI-
PAS and HIRDLS CFC-11 measurements is excellent down
to approximately 15 km as differences rarely exceed 10 pptv.
Below that altitude, MIPAS exhibits a slight high bias. How-
ever, it is important to remember that HIRDLS CFC radi-
ances have been normalized using WACCM, so slight biases
might also occur because of this.

4.1.6 Results CFC-11: ACE-FTS

The correlation between MIPAS and ACE-FTS CFC-11
measurements (Fig. 9) is very close to linear, even though
MIPAS measures slightly higher CFC-11 values in general.
This is most obvious at higher CFC-11 mixing ratios, e.g.,
at lower altitudes (red-yellowish points) where the correla-
tion is slightly off the 1:1 relation. The values do not scat-
ter as much as for HIRDLS, presumably due to the fact that
in the case of ACE-FTS the signal to noise ratio is better,
since it measures in occultation. The distribution of the mix-
ing ratios at 16 km (Fig. 10: left panels) and 23 km (right
panels) agree reasonably well for the two instruments. The
skewness is very similar for both instruments, but the multi-
modal scheme is more pronounced for ACE-FTS at 16 km.
A frequency maximum of mixing ratios appears slightly be-
low 200 pptv in the case of MIPAS and between 150 and
200 pptv in the case of ACE-FTS. There is a second peak
around 250 pptv in the ACE-FTS measurements which is less
pronounced in the MIPAS values. At 23 km, both instruments
show a bimodal distribution of the mixing ratios, with values
peaking between 0 and 50 pptv and close to 150 pptv. The
ACE-FTS frequency distribution exhibits an additional peak
at negative values, which are unphysical. The upper limit of
the ACE-FTS CFC-11 retrieval for the polar region is 23 km.
For these occultations, the spectrum presumably contains lit-
tle CFC-11 signal near 23 km and the retrieval is possibly
compensating for some effect (e.g., bad residual from one of
the interferers, mild channeling in the interferometer, a con-
tribution to the spectral region from the aerosol layer) by giv-
ing negative CFC-11 mixing ratios. Similar to HIRDLS, the
main mode at 23 km is shifted to slightly lower values in the
case of ACE-FTS compared to MIPAS.

The figure of the mean profile comparison (Fig. 11) sup-
ports the conclusion from Fig. 9 that MIPAS sees higher vol-
ume mixing ratios of CFC-11. This is most pronounced at
lower altitudes, approximately below ∼ 17–18 km (left and
middle panel), where MIPAS CFC-11 mixing ratios (red
line) are about 20 pptv (less than 10 %) higher than those
of ACE-FTS, both compared to ACE-FTS on its original
grid (blue line) and interpolated onto the MIPAS grid (black
line). Again, MIPAS error bars represent the total error. The
ACE-FTS errors are the random errors from the least-squares
fitting process, the square root of the diagonal elements of
the covariance matrix. Additionally, the error budget of the
version 3.5 ACE-FTS data contains an additional term in the
reported error. This term is derived from the difference be-
tween a retrieved CO2 volume mixing ratio (VMR) profile
and the assumed CO2 VMR profile employed in the pres-
sure/temperature retrieval and is a measure of the ability of
the retrieval system to reproduce the fixed input profile for
the given occultation (Boone et al., 2013). The right-hand
panel shows that the combined error (purple line) is often
larger than the standard deviation of the differences (brown
line) for almost the complete altitude range. This suggests
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Figure 11. Comparison of mean profiles of MIPAS CFC-11 (left
panel, continuous red line) and ACE-FTS (left panel: blue line
denotes ACE-FTS on native grid; continuous black line denotes
ACE-FTS interpolated onto the MIPAS grid) for the years of 2005–
2012. The error bars include the total error for MIPAS and the ran-
dom errors from the least-squares fitting process for ACE-FTS. The
dashed lines show the median of each data set. The middle panel
shows the mean difference (blue) of these profiles and the standard
error of the mean. The right panel shows the combined error (pur-
ple) of the instruments and the standard deviation of the differences
(brown).

that for one or both of the instruments, the error budget is
overestimated, but rather large natural variability compen-
sates the effect where the standard deviation of the differ-
ences exceeds the combined error. The latter plays a more
important role than for e.g., HIRDLS, since the coincidence
criteria for ACE-FTS with MIPAS are considerably less strict
compared to those of the HIRDLS comparison and the mean
distance and mean time difference are about 350 km and
more than 6 h, respectively (Table 2) and thus are about twice
as large as those of the HIRDLS comparison.

Around 25 km (left panel) one can see a feature not known
from any previous CFC-11 profiles, represented as a bump of
suddenly increasing values. This increase in CFC-11 around
25 km does not originate from an actual atmospheric state,
but is simply a sampling issue. ACE-FTS profiles are cut off
at the upper end, when the mixing ratios become too small to
be retrieved satisfactorily. Since CFC-11 values are largest in
the tropics, the profiles are cut off at higher altitudes than in
polar regions; i.e., above 23 km only tropical – higher – val-
ues are shown. However, Fig. 11 shows the global mean of
all collocated ACE-FTS and MIPAS profiles. Hence, around
25 km the mean is suddenly strongly dominated by tropi-
cal profiles, dragging it to higher values. Furthermore, it is
admittedly not intuitive that regridding systematically adds
a bias to the ACE-FTS profiles (interpolation from blue to
black line). This shift towards mixing ratios valid at approxi-
mately 0.5 km below does not appear in the interpolated sin-

gle profiles but only in the mean of the interpolated profiles.
This is a pure sampling effect caused by the same mechanism
as the artificial bump explained above: due to the resampling
on the MIPAS grid, the ACE-FTS cut-off altitude – and thus
the bump – are shifted 500 m downwards.

Overall the MIPAS and ACE-FTS CFC-11 measurements
agree reasonably well as the differences stay within 20 pptv
over almost the entire altitude range. This comparison contra-
dicts the conclusion from other comparisons that MIPAS has
a slight high bias at the lower end of the profile, even though
the effect is far less pronounced. If the comparison is bro-
ken down into latitude bands (Fig. A2) the bump disappears.
In addition, this breakdown into several latitude bands indi-
cates that the tendency of MIPAS to detect higher amounts of
CFC-11 at the lower end of the profile is more pronounced
at higher latitudes. Similar results have been found by Tegt-
meier et al. (2016), who also find a slight high bias in their
comparison of MIPAS and a multi-instrument mean (MIM)
CFC-11 that seems to be more pronounced at higher lati-
tudes. This feature is also visible in the latitudinal breakdown
of the comparison with HIRDLS (Fig. A1).

The behavior of the tropical profiles in these figures is
also interesting. Compared to ACE-FTS, the MIPAS pro-
file shows slightly increasing CFC-11 mixing ratios up to
∼ 15 km. An increase, from the bottom of the profile up-
wards, is also visible in ACE-FTS, but it is far less pro-
nounced. The latitudinal breakdown for HIRDLS and MI-
PAS shows that this increase is most pronounced in HIRDLS.
This behavior of the mean profile is suspicious, since CFC-
11 mixing ratios are expected to be constant throughout the
troposphere, since CFC-11 is well mixed, which might hint at
problems concerning the retrieval and/or spectroscopic data
in this region.

4.1.7 Results CFC-11: HATS

The high bias of MIPAS CFC-11 below approximately 15–
17 km detected so far is further quantified by comparison to
ground-based measurements of the HATS network (Fig. 12).
Similar mixing ratios of stable source gases are to be ex-
pected at the surface and in the upper troposphere. Instead,
the mean of the MIPAS measurements (continuous red line
with large red circles) is about 10 to 15 pptv (∼ 5 %) higher
than the mean of the data collected by the HATS network
(continuous black line). Since the troposphere is well mixed,
these values should agree well, which indicates a slight high
bias of the MIPAS measurements. Both MIPAS and the
HATS data exhibit a descending slope during the RR period
(2005–2012 in Fig. 12) in their time series, but the decrease
in MIPAS measurements seems to be slightly steeper. This
effect is slightly more pronounced than the estimated drift
at this altitude (Sect.7, Fig. 34, left panel). Absolute drifts
due to detector aging at 3 km below the tropopause were es-
timated to be −3.58 pptv decade−1. The drift estimated from
the difference in the trend in Fig. 12 is −6.66 pptv decade−1
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Figure 12. Comparison of MIPAS CFC-11 values at 3 km below
the tropopause (red) and ground-based measurements of the HATS
network (black). Dashed lines denote the standard deviation.

(see Sect. 3 for details on the method). Therefore, only part
of the difference in the trends can be explained by the drift
resulting from detector aging. However, the drift estimate
due to detector aging is only based on drifts between 35◦ S
and 35◦ N. Trends in the comparison with HATS result from
measurements with almost pole to pole coverage. Thus, the
comparison between the drift due to detector aging and the
difference in the trends can only serve as an approximation.
The amplitude of periodic variations is slightly more pro-
nounced in MIPAS measurements, but qualitatively, both in-
struments agree well. The standard deviation of the MIPAS
data (dashed red line with small red circles) shows that the
spread is rather large which is not surprising, considering
that the mean includes all MIPAS measurements within this
time period, which have a wider spread than the locally con-
fined HATS measurements. Even though some HATS data lie
within the standard deviation of the MIPAS measurements,
the difference is obviously systematic, supporting the find-
ing that MIPAS CFC-11 is too high in the upper tropopause.

4.2 CFC-11: high spectral resolution time period (FR)

Due to data availability we only compare MIPAS CFC
measurements during the FR period with those of MkIV,
ACE-FTS, ILAS-ll and HATS.

4.2.1 Results CFC-11 V5H: MkIV

During the high spectral resolution (FR) period, two MkIV
measurements are coincident with several MIPAS measure-
ments (Fig. 13). While 16 MIPAS profiles were found to co-
incide with the MkIV profile taken on 16 December 2002,
we find even 25 matches for the MkIV measurement taken on
1 April 2003. The color coding is the same as in Fig. 3, show-
ing collocated MIPAS measurements (blue-grayish lines),
the mean of these profiles (red line) and the closest MI-

Figure 13. Two MkIV CFC-11 profiles are compared with collo-
cated MIPAS profiles of the FR period. For the measurement on 16
December 2002, 16 collocated MIPAS measurements were found,
while 25 MIPAS profiles coincided with the 1 April 2003 MkIV
measurement. The setup is similar to Fig. 3.

PAS profile (blue line) compared to the corresponding MkIV
measurement (black line). The agreement is excellent up to
15–16 km with differences of less than 20 pptv (up to 10 %),
while above that altitude MIPAS shows considerably higher
values than MkIV for the 16 December 2002 measurement
of MkIV. Above 21 km, MkIV even shows negative values
at some altitude levels. The second comparison shows larger
differences approximately around 15 km, but the agreement
with the mean profile of the coincident MIPAS measure-
ments is excellent below that altitude and up to about 20 km.
Deviations of MkIV with the MIPAS mean profile range up
to ∼ 30 pptv in both cases, while larger differences show
up for comparisons to the closest MIPAS profile on 1 April
2003. These differences exceed 50 pptv around 15 km. How-
ever, the agreement between MIPAS and MkIV measure-
ments of CFC-11 is similarly good for the FR and the RR
period.

4.2.2 Results CFC-11 V5H: ACE-FTS

For the comparison of MIPAS CFC-11 with ACE-FTS, 171
profile pairs matching the coincidence criteria were found
during the FR period (Fig. 14). As in the case of the MI-
PAS RR period, the ACE-FTS data were interpolated from
their original grid (left panel: blue line) onto the MIPAS grid
(black line) and were, after averaging, compared to MIPAS
data (red line). Between 10 and 20 km the agreement be-
tween the two mean profiles is excellent, while below and
above, MIPAS shows higher mixing ratios of CFC-11. From
10 up to 20 km, deviations of the mean profiles mostly stay
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Figure 14. Comparison of mean profiles of MIPAS CFC-11 (left
panel, continuous red line) and ACE-FTS (left panel: blue line
denotes ACE-FTS on native grid; continuous black line denotes
ACE-FTS interpolated onto the MIPAS grid) for February and
March 2004, corresponding to the FR period and the MIPAS
V5H_CFC-11_20 data set. The dashed lines show the median of
each data set. The error bars include the total error for MIPAS and
the random errors from the least-squares fitting process for ACE-
FTS. The middle panel shows the mean difference (blue) of these
profiles and the standard error of the mean. The right panel shows
the combined error (purple) of the instruments and the standard de-
viation of the differences (brown).

within 10–20 pptv (middle panel), corresponding to ∼5 %
around 10 km and ∼ 30 % around 20 km. Above and be-
low, the differences are larger and sometimes exceed 30 pptv.
Even though the standard error of the mean differences is
considerably larger than for the RR period (due to far fewer
pairs of collocated profiles), it does not include zero for most
of the covered altitude range, indicating that the deviation
of the profiles is still significant. The error budget of one of
the instruments or both is overestimated below 15 km. This
is more pronounced than for the comparison of MIPAS with
ACE-FTS during the RR period.

Even though certain similarities with the MIPAS RR pe-
riod, like the known high bias at the lower end of the pro-
file, occur in the comparison of the MIPAS FR data set with
ACE-FTS, the agreement between the two instruments is bet-
ter than for the RR version in the region between 10 and
20 km. This might be ascribed to the better spectral resolu-
tion of MIPAS during the FR period. However, the collocated
measurements for the FR period only consist of profiles taken
at higher northern latitudes. Thus the result may generally ex-
pose differences compared to the RR period, independently
from differences due to the altered MIPAS retrieval setup be-
cause the mean for the RR period consists of measurements
over all latitudes and several years compared to only high lat-
itude profiles taken during February and March 2004 for the
FR period.

Figure 15. Comparison of mean profiles of MIPAS CFC-11 (left
panel, continuous red line) and ILAS-II (left panel: blue line denotes
ILAS-II on native grid; continuous black line denotes ILAS-II) for
the FR period, corresponding to the MIPAS V5H_CFC-11_20 data
set. The dashed lines show the median of each data set. The error
bars include the total error for both instruments. The middle panel
shows the mean difference (blue) of these profiles and the standard
error of the mean. The right panel shows the combined error (pur-
ple) of the instruments and the standard deviation of the differences
(brown).

4.2.3 Results CFC-11 V5H: ILAS-II

About 5000 matches were found for the comparison of MI-
PAS CFC-11 measurements with ILAS-II (Fig. 15) during
the FR period. However, apart from the approximate alti-
tudes where the vertical gradient changes most rapidly, the
MIPAS (red line) and the ILAS-II mean profile (blue line:
on its original grid; black line: on the MIPAS altitude grid)
do not agree very well. Below 20 km, MIPAS shows higher
mixing ratios of CFC-11 than ILAS-II and lower mixing ra-
tios above that altitude. This is the first comparison with the
newest version of the ILAS-II CFC-11 and CFC-12 data (ver-
sion 3). However, a similar feature has already been seen in
comparisons of ILAS-II CFC-11 version 1.4 and version 2
measurements with MIPAS-B (Wetzel et al., 2008). The dif-
ferences of MIPAS and ILAS-II exceed those of other com-
parisons by far. At the lower end of the profile, deviations go
beyond 100 pptv (middle panel), which corresponds to rela-
tive differences of ∼ 50 %. Another conspicuous feature of
this comparison is the very large error bars estimated from
the ILAS-II retrieval (left panel: horizontal black and blue
lines). However, Wetzel et al. (2008) show similarly large er-
ror bars in their comparison of the former version of ILAS-II
with MIPAS-B data. Since the right panel of Fig. 15 demon-
strates that the combined error of the two instruments (pur-
ple line) is far larger than the standard deviation of the dif-
ferences (brown line), we suspect that the ILAS-II errors are
largely overestimated. Above 20 km, Wetzel et al. (2008) also
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Figure 16. Comparison of an ensemble of MIPAS CFC-12 measurements (light orange lines), collocated measurements (blue-grayish lines)
and their mean profile (red line) and the closest MIPAS profile (blue line) with different flights of the cryosampler (black dots).

found higher mixing ratios. All in all, the agreement of MI-
PAS CFC-11 measurements taken during the FR period with
those of ILAS-II is not good as it shows far larger differ-
ences at the bottom end of the profile than comparisons with,
e.g., ACE-FTS or HATS, that are as big as 50 % and also
large deviations at the upper end of the profiles that exceed
100 % above 25 km. Thus, the results for the comparison with
ILAS-II should be treated with care, since large differences
with MIPAS-B and the former versions of ILAS-II have been
found previously.

4.2.4 Results CFC-11 V5H: HATS

The comparison of MIPAS CFC-11 with HATS during the
FR period covers less than 2 years (Fig. 12, July 2002–April
2004). This short time period, along with annual variations,
is an obstacle to the interpretation of the results. While the
MIPAS time series for this period (continuous red line with
large red circles) oscillates around a relatively constant value,
the HATS time series (black line) shows declining mixing ra-
tios. Even though some values of the HATS measurements lie
within the standard deviation of the MIPAS measurements,
a systematic deviation is evident. The mixing ratios differ
from values of less than 10 pptv (less than 4 %) at the begin-

ning of the compared time series and to slightly higher val-
ues of about 12 pptv (∼ 4.5 %) at the end. While we consider
the differences to be real, since the deviations are system-
atic and are consistent with the RR time period, we suggest
being careful not to overinterpret possible short-term linear
variations.

4.3 CFC-12

This section is dedicated to the results of the comparisons of
MIPAS CFC-12 measurements with those of the cryosam-
pler, MkIV, MIPAS-B, MIPAS-STR, HIRDLS, ACE-FTS
and the HATS network (Figs. 16–26).

4.3.1 Results CFC-12: cryosampler

For CFC-12, as well as for CFC-11, cryosampler measure-
ments (Fig. 16: black dots) were compared to MIPAS mea-
surements. MIPAS measurements fulfilling the coincidence
criteria (blue-grayish lines) exhibit a widely spread set of
profiles enclosing the cryosampler measurements. In most of
the cases, deviations of the cryosampler and the mean col-
located MIPAS profile stay within 50 pptv (corresponding to
∼ 10 % at the lower end of the profile and increasing above
due to smaller volume mixing ratios of CFC-12). The clos-
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Figure 17. Comparison of one MkIV CFC-12 profile (black line)
with three coincident profiles of MIPAS (blue-grayish lines). The
closest (blue line) and the mean (red line) of these profiles are shown
in addition. The MkIV error estimates are inferred from the fit resid-
uals.

est of these collocated MIPAS profiles (blue line) agrees very
well with the cryosampler measurements. Only the cryosam-
pler measurement taken on 3 October 2009 exhibits some
outliers, deviating considerably (by ∼ 150 pptv) from all co-
incident MIPAS profiles at about 20–25 km, while the rest of
this profile still agrees well (within ∼ 50 pptv) with all collo-
cated MIPAS measurements. It is possible that cryosampler
captured variations due to laminae of small vertical extent
here, which cannot be detected by MIPAS as the spatial reso-
lution is too coarse. While the mean of the collocated MIPAS
profiles (red line) comes very close to the cryosampler mea-
surements as well as the closest MIPAS profile, except for
the outliers just mentioned, the seasonal latitudinal mean of
MIPAS (light orange line) can differ considerably from the
cryosampler and the closest MIPAS profile (particularly on
1 April 2011). This provides proof of large natural variability
in this case. As already stated for CFC-11, this is presumably
due to subsidence in the remarkably cold and stable Arctic
polar vortex being present during that winter. Similar as for
CFC-11, in the 10 March 2009 comparison cryosampler, the
closest MIPAS profile as well as the mean MIPAS profile
agree well with the seasonal mean. Therefore, for CFC-12 as
well, we can conclude that both instruments are capable of
capturing deviations from the mean state of the atmosphere.
Even though there are a few cryosampler outliers not match-
ing the MIPAS data, the CFC-12 cryosampler measurements
agree very well with those of the mean and the closest MI-
PAS profile as deviations usually stay within 50 pptv in gen-
eral.

4.3.2 Results CFC-12: Mark IV

Comparison of MIPAS CFC-12 with MkIV measurements
exhibits a similar behavior as for CFC-11 (Fig. 17) up to
slightly below 30 km. MkIV (black line) shows higher mix-
ing ratios of CFC-12 than both the mean MIPAS profile (red
line) and, even more pronounced, the closest MIPAS profile
(blue line). The gradient of the profiles between ∼ 20 and
27 km is similar for all profiles. Above approximately 27 km,
however, the MIPAS profiles oscillate considerably, which is
most apparent in the closest profile. The MkIV profile ex-
hibits small wiggles above that altitude as well, but not as
pronounced as any of the MIPAS profiles. Differences of the
profiles stay within∼ 50 pptv throughout most of the altitude
range between the lower end of the profile up to approxi-
mately 27 km, except for levels around 20 km where differ-
ences sometimes come close to 100 pptv. These values cor-
respond to 10–15 % for most of the profile below 27 km and
slightly over 20 % around 20 km. Velazco et al. (2011) also
find higher values of MkIV compared to ACE-FTS through-
out their whole altitude comparison range, with an indication
of the largest differences occurring around 20 km. However,
they only find differences of up to 15 %. Above 35 km, de-
viations between the MkIV profiles and the MIPAS profiles
are noticeably larger. Up to that altitude, however, the com-
parison of MIPAS with MkIV CFC-12 measurements shows
reasonably good agreement, considering only three coinci-
dent MIPAS profiles were found.

4.3.3 Results CFC-12: MIPAS-B

Multiple MIPAS profiles coinciding with backward and for-
ward trajectories of two MIPAS-B measurements taken over
Kiruna (Sweden) in January 2010 and March 2011 (Fig. 18,
upper and lower panels, respectively), were taken into ac-
count for the CFC-12 validation with MIPAS-B. For the Jan-
uary 2010 MIPAS-B profile (Fig. 18 upper panels: black
line), the agreement with the mean MIPAS profile (red line)
is very good. The MIPAS-B profile is embedded in the spread
of MIPAS collocated profiles (red squares) throughout the
whole vertical range. At altitudes above 17 km, the agree-
ment between MIPAS-B and MIPAS is remarkably good,
showing differences smaller than 25 pptv and closing in to
zero above 21 km (middle panel). Below 18 km, MIPAS
shows slightly larger values of CFC-12, with differences of
up to ∼ 40 pptv (corresponding to ∼ 10 %) at the largest. Be-
low∼ 17 km, these differences are similar to the standard de-
viation of the instruments (middle and right panel) and con-
siderably smaller above.

Large percentage errors above∼ 22 km occur due to small
absolute values of CFC-12 from this altitude upwards. Ex-
cept for the region below 14 km, the standard deviation of
the differences exceeds the total mean combined error of the
instruments, suggesting that the error budget for one or both
instruments is underestimated. In the comparison with the
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Figure 18. Comparison of a mean profile of MIPAS CFC-12
collocated measurements (left panels: red line) with a profile of
MIPAS-B (black line) obtained on 24 January 2010 (upper panels)
and 31 March 2011 (lower panels) at Kiruna. The error bars (1σ ;
left panel) show the total error without the spectroscopy error for
MIPAS and MIPAS-B. The difference is shown in absolute (middle
panels) and relative (right panels) terms. The dotted red line is the
standard deviation and the dashed blue line is the combined error
which consists of the root of the squared error of MIPAS-B and the
MIPAS mean.

MIPAS-B measurement taken in March 2011, MIPAS shows
considerably higher mixing ratios of CFC-12 below 15 km
and around 18 km (Fig. 18, lower panels). From 15 km up-
wards, the MIPAS-B profile and the MIPAS mean profile
show good agreement in gradient and turning points of the
profiles and above 19 km they also agree very well quan-
titatively as the differences are smaller than 7 pptv, closing
in to zero at some points. Deviations between MIPAS and
MIPAS-B range up to ∼ 75 pptv around 12–13 and 18 km
(middle panel) in absolute values, corresponding to relative
differences of approximately 15 and 30 %, respectively (right
panel). However, except for these regions, the two instru-
ments show differences smaller than the standard deviation
of the differences. While the shape of the two profiles is far
more similar in the first comparison (MIPAS-B flight in Jan-
uary 2010), correction of the less than perfect coincidence,
by using trajectories to collect collocated MIPAS measure-
ments, might not have worked that well in this particular

Figure 19. Comparison of mean profiles of MIPAS CFC-12 (left
panel, continuous red line) and MIPAS-STR (left panel, continuous
black line) for seven collocated measurements taken during a flight
on 2 March 2010. The error bars consist of the total error without the
spectroscopy error for both MIPAS and MIPAS-STR. The dashed
lines show the median of each data set. The middle panel shows the
mean difference (blue) of these profiles and the standard error of
the mean. The right panel shows the combined error (purple) of the
instruments and the standard deviation of the differences (brown).

case. This particular atmospheric situation (winter and spring
of 2011) was characterized by extraordinarily low tempera-
tures and a very stable vortex. Due to possibly sharp hori-
zontal gradients, MIPAS-B might have captured an air parcel
having different characteristics than the mean of all collo-
cated MIPAS profiles, even though trajectory-corrected col-
located profiles were used. Thus deviations due to natural
variability might still occur.

4.3.4 Results CFC-12: MIPAS-STR

The comparison of MIPAS-STR and MIPAS mean profiles
consists of seven pairs of collocated measurements (Fig. 19).
The mean profiles of MIPAS-STR (blue line: on original
grid; black: interpolated onto the MIPAS grid) and MIPAS
(red line) agree very well. The minimum occurs around the
same altitudes (approximately 17 km) and both profiles show
a similar behavior of decreasing CFC-12 volume mixing ra-
tios from the bottom of the profile up to the minimum, even
though the MIPAS profile oscillates slightly at altitudes be-
low ∼ 15 km. The difference oscillates around zero and is
very similar in shape with the difference profile of CFC-11
(Fig. 5: middle panel). This is because the same observa-
tions were used as in the case of CFC-11. The overall ver-
tical distribution of CFC-11 and CFC-12 indicated by the
MIPAS-STR observations fits well with the distribution of
these species derived from the MIPAS measurements. This
is plausible, since the distribution of the CFCs in the lower
stratosphere is predominantly altered by dynamic processes
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Figure 20. Correlation of collocated MIPAS CFC-12 measurements
with HIRDLS measurements during the time period of 2005 to
2008.

and the considered observations of both instruments cover
horizontally extended regions (i.e., several degrees in lati-
tude). Differences are largest around 11 km and exhibit devi-
ations of more than 40 pptv, corresponding to approximately
10 % (middle panel). Except for this altitude, the differences
are mostly insignificant and stay within 30–40 pptv at the
largest and are often considerably smaller. This corresponds
to less than 10 % at the lower end of the profile and less than
5 % at the upper end. Again, the total error of both instru-
ments without the spectroscopy error is shown for both in-
struments. The combined error of the instruments exceeds
the standard deviation of the differences from 10 to 12 km.
As previously mentioned, this suggests that either one or both
of the instruments overestimate their error budget there. As
mentioned in Sect. 4.1.4, natural variability might also play a
role, even though the mean distance and time difference are
rather small as for CFC-11 (Table 2). This probably results in
the standard deviation of the differences being larger than the
combined error of the instruments outside the region from 10
to 12 km. Overall, the agreement of MIPAS-STR and MIPAS
is excellent, since differences rarely exceed 30 pptv and are
mostly insignificant.

4.3.5 Results CFC-12: HIRDLS

Comparisons of MIPAS and HIRDLS measurements of
CFC-12 are summarized in Figs. 20–22. Figure 20 shows
the correlation between MIPAS and HIRDLS measurements.
HIRDLS measurements have several outliers in CFC-12,
which tend to occur more frequently at smaller mixing ra-
tios/higher altitudes. However, it is still visible that the mea-
sured mixing ratios of MIPAS and HIRDLS are correlated
linearly in general. Obvious differences appear in Fig. 21,
where the frequency of the measured amounts of CFC-12
at 16 (left panels) and 23 km (right panels) is shown. While

Figure 21. Histogram of collocated MIPAS CFC-12 measurements
(top panels) and HIRDLS measurements (bottom panels) for the
years of 2005–2008 at 16 km (left panels) and 23 km (right panels).
The black line indicates the location of the mean of the sample,
while the red dashed line marks the median.

Figure 22. Comparison of mean profiles of MIPAS CFC-12 (left
panel, continuous red line) and HIRDLS (left panel, continuous
black line) for the years of 2005–2008. The error bars include the
total error in the case of MIPAS and the estimated error – which
is derived from the average of 10 sets of 12 consecutive profiles
of regions with little variability (Gille et al., 2014) – in the case of
HIRDLS. The dashed lines show the median of each data set. The
middle panel shows the mean difference (blue) of these profiles and
the standard error of the mean. The right panel shows the combined
error (purple) of the instruments and the standard deviation of the
differences (brown).

the distributions look very similar at 16 km, clear differences
are visible at 23 km. At 16 km, both measurements’ frequen-
cies only show one peak, which is approximately centered
between 450 and 500 pptv in the case of HIRDLS and is
slightly shifted to higher values in the case of MIPAS, where
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the peak is rather centered around 500 pptv and exhibits a
steeper histogram at higher mixing ratios. At 23 km one can
clearly make out three peaks in the MIPAS distribution, while
for HIRDLS this feature is barely visible as it is smeared
out quite severely, and thus the rightmost peak is hardly dis-
cernible in the HIRDLS distribution. This also leads to a
flatter frequency distribution for HIRDLS. The middle max-
imum peaks at similar amounts of CFC-12 for both instru-
ments and lies between 200 and 250 pptv.

The comparison of the mean profiles of MIPAS (Fig. 22:
red line) and HIRDLS collocated measurements (black line)
shows very good agreement between the two instruments.
The shape of the mean profiles, as well as their maxima and
turning points are very similar, even though the MIPAS pro-
file branches off at slightly lower altitudes and exhibits a
sharper turn around 16 km. The higher volume mixing ratios
of CFC-12, which MIPAS shows below 17 km, stay mostly
within ∼ 20 pptv (∼ 4 %) difference, except from the low-
est value (middle panel) which is slightly larger than 40 pptv
(close to 10 %). Between 18 and 25 km, MIPAS measures
smaller amounts of CFC-12 than HIRDLS, with differences
of up to nearly 40 pptv (corresponding to ∼ 10 %). From 25
to 30 km, MIPAS CFC-12 volume mixing ratios agree ex-
cellently with those of HIRDLS and differences are gener-
ally smaller than 20 pptv, corresponding to ∼ 2.5 % around
25 km, about 10 % at 28 km and increasing above 30 km.

The combined error of the instruments is similar to the
standard deviation of the differences up to ∼ 15 km. Above
that, the standard deviation of the difference is always larger
than the combined error and the difference increases with al-
titude. This suggests that the error estimate of the two in-
struments is appropriate in cases where natural variability is
negligible. Since the mean spatial and temporal distance be-
tween the measurements are almost 200 km and close to 3 h,
and thus natural variability might be responsible for the dif-
ferences between the combined error and the standard devi-
ation of the differences above ∼ 15 km, the error estimate of
either or both of the instruments might be slightly too con-
servative.

The latitudinally broken down comparisons (Fig. A3) ex-
hibit similar features as for CFC-11. At higher latitudes, de-
viations of the profiles at the bottom end seem larger than
in tropical or subtropical regions. Overall the agreement be-
tween the mean MIPAS and HIRDLS CFC-12 profiles is
excellent, since the differences mainly stay within 20 pptv,
while the scatter plot shows that this mean is derived from
a sample with a rather wide spread. Since HIRDLS CFC ra-
diances have been normalized using WACCM, slight biases
might occur due to that normalization.

4.3.6 Results CFC-12: ACE-FTS

The comparison of ACE-FTS and MIPAS CFC-12 profiles is
shown in Figs. 23–25. Figure 23 exhibits a correlation of the
measurements that is very close to being linear. The agree-

Figure 23. Correlation of collocated MIPAS CFC-12 measurements
with ACE-FTS measurements during the time period of 2005 to
2012.

Figure 24. Histogram of MIPAS CFC-12 measurements (top pan-
els) and ACE-FTS measurements (bottom panels) for the years of
2005–2012 at 16 km (left panels) and 23 km (right panels). The
black line indicates the location of the mean of the sample, while
the red dashed line marks the median.

ment of the two instruments appears to be good, with very
few outliers even though MIPAS measures slightly higher
volume mixing ratios at large values, e.g., at the lower end
of the profile. This impression is supported by Fig. 24, which
shows the frequency of MIPAS (top panels) and ACE-FTS
(bottom panels) at 16 (left panels) and 23 km (right panels).
It exhibits considerable numbers of MIPAS CFC-12 mea-
surements reporting volume mixing ratios of 500–600 pptv at
16 km, while ACE-FTS does not report appreciable numbers
of CFC-12 values above 550 pptv. This leads to a far steeper
histogram at higher mixing ratios in the ACE-FTS frequency
distribution at 16 km, while the histogram at lower mixing
ratios is more similar to that of MIPAS, even though it is still
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Figure 25. Comparison of mean profiles of MIPAS CFC-12 (left
panel, continuous red line) and ACE-FTS (left panel: blue line
denotes ACE-FTS on native grid; continuous black line denotes
ACE-FTS interpolated onto the MIPAS grid) for the years of 2005–
2012. The error bars include the total error for MIPAS and the ran-
dom errors from the least-squares fitting process for ACE-FTS. The
dashed lines show the median of each data set. The middle panel
shows the mean difference (blue) of these profiles and the standard
error of the mean. The right panel shows the combined error (pur-
ple) of the instruments and the standard deviation of the differences
(brown).

a bit steeper. The only obvious peak at this altitude occurs at
similar volume mixing ratios for both instruments (around
450 pptv in the case of ACE-FTS and between 450 and
500 pptv in the case of MIPAS). At 23 km both instruments
clearly show a trimodal distribution, peaking close to zero,
around ∼ 250 pptv and around ∼ 450 pptv. While the left-
most peak appears to be more pronounced in the ACE-FTS
distribution, the middle and right peaks are very similar. The
impression of MIPAS seeing higher values of CFC-12 at
the lower end of the profile is confirmed in Fig. 25 as well.
While the MIPAS (red line) and the ACE-FTS profiles (blue
line: on original grid; black line: interpolated onto the MI-
PAS grid) are very close together at the bottom end (around
∼ 6 km), the MIPAS profile exhibits a steeper ascent than the
ACE-FTS profiles, leading to deviating profiles of the instru-
ments up to 18 km. Here, the MIPAS mean profile exhibits
volume mixing ratios of CFC-12 that are up to 25–30 pptv
(6–7 %) higher than those of ACE-FTS (middle panel). From
18 km up to ∼ 27–28 km, MIPAS and ACE-FTS agree re-
markably well with deviations of approximately 10 pptv, cor-
responding to∼ 3 % around 18 km and less than 10 % around
27 km. Above these altitudes, ACE-FTS reports higher vol-
ume mixing ratios of CFC-12 than MIPAS. Around 30 km,
the comparison exhibits the largest deviations, appearing in
differences of up to 50 pptv and more (which corresponds to
∼ 25 % and more at these altitudes).

The comparison of the estimated precision and the stan-
dard deviation of the differences (right panel of Fig. 25)
shows that they come close above 13 km, while below this
altitude the combined error even exceeds the standard devia-
tion of the differences. This suggests that one or both of the
instruments error budgets are overestimated, while this effect
if canceled out or even reversed above 13 km by natural vari-
ability. Natural variability might play a more important role
than for the comparison with HIRDLS, since the HIRDLS
coincidence criteria were chosen far more strictly than for
the comparison of MIPAS with ACE-FTS. This results in a
mean distance and time difference that are similar to CFC-11
with about 375 km and 6 h, respectively (Table 2) and thus
almost twice as large as for the comparison with HIRDLS.
Both profiles show a bump, which is even more pronounced
than for CFC-11. The explanation for this feature is the same
as for CFC-11 and illustrates the sampling issue created by
the combination of the cut-off of the ACE-FTS profiles at low
CFC-12 values and the distribution of the gas, e.g., higher
volume mixing ratios at lower latitudes. Different to CFC-
11, the bump is not removed completely in the latitudinal
breakdown (Fig. A4). An indication of the bump at the upper
end of the mean profiles is still visible at midlatitudes, which
is presumably attributed to high variability of CFC-12 within
these bins. This originates from a similar sampling effect as
for the whole set of measurements, just in smaller magnitude.
At higher altitudes, the mean profile is again dominated by
low-latitude profile contributions, since profiles from higher
latitudes are cut off at a lower altitude. As for the comparison
with HIRDLS, we observe that differences at the lower end
of the profile are largest at higher latitudes for CFC-12.

Again, Tegtmeier et al. (2016) found a similar behavior
with a slight high bias in MIPAS CFC-12 that seems to be
more pronounced at higher latitudes, even though the rela-
tive differences between MIPAS and the MIM are smaller
than for CFC-11. Their findings agree well with the results
of this study. Despite some differences, the mean MIPAS
and ACE-FTS CFC-12 profiles are in good agreement as they
stay within 15 pptv between 17 and 28 km and within 30 pptv
below, which is slightly larger than in the comparison with
HIRDLS for most of the covered altitude range. The scatter
plot shows a narrower point cloud than the one for HIRDLS.

4.3.7 Results CFC-12: HATS

Similarly as for CFC-11, a comparison of HATS data with
MIPAS measurements at an altitude of 3 km below the
estimated tropopause was performed for CFC-12 as well
(Fig. 26). This comparison suggests that MIPAS (continu-
ous red line with large circles) detects slightly higher val-
ues than the HATS stations (continuous black line) at tropo-
spheric levels. However, this effect is less pronounced than
for CFC-11. Deviations mainly stay within 10 pptv, which
corresponds to ∼ 2 %, since CFC-12 amounts are larger than
for CFC-11. MIPAS’s CFC-12 volume mixing ratios cover a
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Figure 26. Comparison of MIPAS CFC-12 value estimates at 3 km
below the tropopause (red) and ground-based measurements col-
lected by the HATS network (black).

wide range of values, which is reflected in the large stan-
dard deviation (dashed red line with small circles) of ap-
proximately ±30 pptv. The values of HATS time series are
very close to the MIPAS measurements throughout the whole
comparison period. Even though periodic variations in the
MIPAS time series have larger amplitudes, the oscillations
in both measurements agree with respect to their period and
phase. Similar to CFC-11, there is an indication that the MI-
PAS CFC-12 time series for the RR period (2005–2012)
declines faster than that of HATS. The difference in the
trends between MIPAS and HATS is −6.85 pptv decade−1

(Sect. 3 for details on the method). A similarly large drift
(−6.89 pptv decade−1) is found for results due to detector
aging at 3 km below the tropopause. Hence, for CFC-12 the
drift due to detector aging can explain the differences in the
trends between MIPAS and HATS to a large extent, even
though only drifts between 35◦ S and 35◦ N have been an-
alyzed. All in all, differences between the data sets are very
small.

4.4 CFC-12: high spectral resolution time period (FR)

4.4.1 Results CFC-12 V5H: MkIV

For the comparison of CFC-12 during the FR period
(Fig. 27), 15 collocated MIPAS profiles were found for the
MkIV measurement taken on 16 December 2002, and 25
MIPAS profiles coincide with the MkIV measurement taken
on 1 April 2003. The mean MIPAS profile (red line) and
the MkIV profile (black line) are close in both cases, show-
ing deviations no larger than 50 pptv (corresponding to 10–
20 % for most of the vertical range) and even considerably
smaller at some altitude levels. Deviations with the closest
MIPAS profile (blue line) are larger than for the mean pro-
file, similar to the other comparisons for CFC-11, ranging
up to ∼ 100 pptv. There is a slight indication of the MkIV

Figure 27. Two MkIV CFC-12 profiles are compared with collo-
cated MIPAS of the FR period. For the measurement on 16 Decem-
ber 2002, 16 collocated MIPAS measurements were found, while
25 MIPAS profiles coincided with the 1 April 2003 MkIV measure-
ment. The setup is similar to Fig. 3.

profile showing larger mixing ratios below 25 km in the 1
April 2003 comparison, while this is not visible in the 16
December 2002 comparison. However, the compared profiles
show good agreement in general, with differences up to about
twice as large as for the comparison with HIRDLS.

4.4.2 Results CFC-12 V5H: ACE-FTS

The comparison of MIPAS FR CFC-12 and ACE-FTS
(Fig. 28) data is very similar to that of the reduced resolu-
tion period (RR: Fig. 25), but the agreement is even better
around ∼ 10 to 15 km. Since the comparison does not reach
up beyond 28 km, the bump seen in the mean profiles for
the RR period does not appear in either of the mean profiles
for the FR period (left panel). This is mainly because collo-
cated measurements only exist at high latitudes for the short
overlap of the ACE-FTS period and the MIPAS FR period
(February and March 2004). For most of the vertical range
the differences stay within ∼ 10 pptv (middle panel), corre-
sponding to ∼ 1 % at the lower end of the profile and ∼ 20 %
around 28 km. These values are only exceeded around ∼ 10
and 17–18 km, as well as at the lowest altitudes, where dif-
ferences can reach up to 20–30 pptv (∼ 6 % below 13 km
and less than 10 % around 17–18 km). MIPAS shows slightly
higher mixing ratios than ACE-FTS up to∼ 14 km and lower
ones above this altitude. The comparison of the combined er-
ror and the standard deviation of the differences (right panel)
looks similar to the one for the RR period, just slightly more
pronounced, where the combined error exceeds standard de-
viation of the differences up to ∼ 16 km. Above, the stan-
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Figure 28. Comparison of mean profiles of MIPAS CFC-12 (left
panel, continuous red line) and ACE-FTS (left panel: blue line
denotes ACE-FTS on native grid; continuous black line denotes
ACE-FTS interpolated onto the MIPAS grid) for February and
March 2004, corresponding to the FR period and the MIPAS
V5H_CFC-12_20 data set. The dashed lines show the median of
each data set. The error bars include the total error for MIPAS and
the random errors from the least-squares fitting process for ACE-
FTS. The middle panel shows the mean difference (blue) of these
profiles and the standard error of the mean. The right panel shows
the combined error (purple) of the instruments and the standard de-
viation of the differences (brown).

dard deviations are not explained by the combined errors.
Explanations as for the RR period (Sect. 4.3.6) apply here as
well. Overall, the agreement of MIPAS and ACE-FTS CFC-
12 measurements is remarkably good for the MIPAS FR pe-
riod as the differences stay within 15 pptv for most of the
covered altitude range and are thus smaller than in all com-
parisons for the RR period.

4.4.3 Results CFC-12 V5H: ILAS-II

The comparison of MIPAS CFC-12 measurements from the
FR period with ILAS-II measurements (Fig. 29) consists of
about 5000 collocated profiles. Throughout the whole alti-
tude range, with very few exceptions, ILAS-II (blue line:
on its original grid; black line: on the MIPAS altitude grid)
shows higher mixing ratios of CFC-12 than MIPAS (left
panel: red line). However, while the mean profiles of MIPAS
and ILAS-II agree rather well up to about 17 km, ILAS-II
shows considerably larger mixing ratios of CFC-12 above
that altitude, which is most pronounced around 25 km. Apart
from the lowermost two altitudes, the differences of the mean
profiles do not exceed 50 pptv up to ∼ 17 km (middle panel),
which corresponds to relative differences of approximately
10 % at the largest. From 17 km upwards however, deviations
can be as large as close to 150 pptv around 25 km, resulting
in relative differences of over 100 %. Wetzel et al. (2008)

Figure 29. Comparison of mean profiles of MIPAS CFC-12 (left
panel, continuous red line) and ILAS-II (left panel: blue line denotes
ILAS-II on native grid; continuous black line denotes ILAS-II) for
the FR period, corresponding to the MIPAS V5H_CFC-12_20 data
set. The dashed lines show the median of each data set. The error
bars include the total error for both instruments. The middle panel
shows the mean difference (blue) of these profiles and the standard
error of the mean. The right panel shows the combined error (pur-
ple) of the instruments and the standard deviation of the differences
(brown).

find a very similar behavior of ILAS-II version 2 measure-
ments compared to MIPAS-B. The large error bars shown in
the left panel presumably result from an overestimated error
budget for ILAS-II. Again, we suggest treating conclusions
drawn from the comparison with ILAS-II with care, since
ACE-FTS shows very good agreement with MIPAS CFC-12
measurements during the FR period, which is supported by
the comparison with HATS.

4.4.4 Results CFC-12 V5H: HATS

The short time series of the MIPAS FR period (Fig. 26: July
2002 to April 2004) is compared to the measurements col-
lected by the HATS network during the same time period
for CFC-12. Similar as for CFC-11, MIPAS (continuous red
line with large red circles) exhibits larger annual and in-
terannual variations than the HATS data (continuous black
line) from mid-2002 to early 2004. While MIPAS oscillates
around a constant mixing ratio of approximately 550 pptv at
3 km below the tropopause, the HATS ground-based mea-
surements show mixing ratios well within the range of 540
to 545 pptv. Thus, the difference between MIPAS and HATS
is very small, of an order of ∼ 10 pptv at the largest, which
corresponds to relative differences of less than 2 %. Other
than for CFC-11, the mixing ratios of both time series stay
rather constant during this period. According to the small
differences of only ∼ 10 pptv, we consider the agreement of
MIPAS with HATS CFC-12 measurements to be remarkably
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Figure 30. Relative differences between MIPAS CFC-11 for the
FR (left) and RR (right) period and each comparison instrument,
calculated as MIPAS−Other

MIPAS × 100%.

good during the FR period, which strongly supports the high
accuracy of the MIPAS CFC-12 measurements during the FR
period.

5 Overview of the relative differences

Figures 30 and 31 show an overview of the relative differ-
ences between MIPAS and the comparison instruments for
CFC-11 and CFC-12, respectively. The differences show MI-
PAS minus the comparison instrument and use MIPAS as a
reference.

5.1 Overview: CFC-11

A slight high bias in MIPAS CFC-11 is clearly visible in
the comparison with ACE-FTS for the FR period (left) be-
low ∼ 10 km and also indicated at the lower end of the dif-
ferences profile in the comparison with MkIV. For the RR
period (right panel), the comparison with HIRDLS shows a
high bias in MIPAS CFC-11 below ∼ 15 km, where the dif-
ference is larger than 20 % at the lowest altitude. This high
bias at the lower end of the profile does not appear in the RR
period comparison with ACE-FTS and MIPAS-B and is far
less pronounced in the comparison with MIPAS-STR, where
only the value at the lowest altitude level exceeds 20 % while
oscillating around zero above. While the relative differences
between MIPAS and ACE-FTS are around or below 5 % be-
tween 10 and 18 km for the FR period, they are around 10 %
between the lowest altitude level and almost 20 km for the
RR period. Both ACE-FTS and HIRDLS show relative dif-
ferences of about 20 % close to 25 km. However, one should
keep in mind that the volume mixing ratios of CFC-11 are
small at this altitude, so that this bias is not that obvious
in the absolute comparisons (Figs. 8 and 11). There, the
difference is only around 10–15 pptv in both comparisons.

Figure 31. Relative differences between MIPAS CFC-12 for the
FR (left) and RR (right) period and each comparison instrument,
calculated as MIPAS−Other

MIPAS × 100%.

Even though the relative differences between MIPAS and
MIPAS-STR and MIPAS and MIPAS-B oscillate strongly,
the overall impression is that MIPAS shows slightly too high
values for CFC-11 during the RR period. This impression is
also supported by the comparisons with the cryosampler and
HATS, even though HATS only shows a high bias of close
to 5 % at 3 km below the tropopause. MkIV is the only in-
strument showing higher volume mixing ratios than MIPAS
up to 25 km. The other instruments show a high bias mainly
around 10 %, that is only exceeded at the lowest altitude lev-
els and above 20 km. For the FR period this bias seems to
be slightly smaller in general, while the difference compared
to HATS is similar to the RR period. However, both mea-
surement periods are consistent and agree qualitatively and
quantitatively to a large extent.

5.2 Overview: CFC-12

Both for the FR period (left) and the RR period (right), rela-
tive differences between MIPAS and the comparison instru-
ments stay within 10 % below 20 km. While ACE-FTS shows
a similar profile for both MIPAS periods, with slightly higher
MIPAS values up to 15–17 km and slightly lower MIPAS
values above, MkIV measurements agree better with MIPAS
during the FR period and show lower MIPAS mixing ratios
from ∼ 18 to 30 km during the RR period. Relative differ-
ences with ILAS-ll show that the instrument measures values
that are about 20 % higher than those acquired by MIPAS
at the bottom end of the profile. Above 25 km, all compar-
isons for both periods indicate a low bias in MIPAS CFC-
12, except the one vs. HIRDLS. Overall, relative differences
between MIPAS and the comparison instruments are small
below 25 km, only occasionally exceeding 10 % for most of
the comparisons, while above that altitude, there seems to be
an indication of MIPAS CFC-12 values being slightly lower.
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Figure 32. Analysis of MIPAS CFC-11 measurement error in quiescent atmospheric conditions (polar summer). Left panel: FR period; right
panel: RR period.

Figure 33. Analysis of MIPAS CFC-12 measurement error in quiescent atmospheric conditions (polar summer). Left panel: FR period; right
panel: RR period.

Comparisons with HATS do not indicate a bias in MIPAS
CFC-12 measurements, as the difference is only 0.5 % for
both the FR and the RR period. The results of the compar-
isons for both MIPAS measurement periods indicate that the
CFC-12 products are very consistent, as they show similar
features and differences of similar magnitudes for both data
products.

6 MIPAS random error

The assessment of whether MIPAS random error estimates
are realistic suffers from possible natural variability and the
fact that even though most of the comparison instruments
provide the full random error budget, it is not clear whether
the random error estimates of the comparison instruments
are realistic. Thus, our random error assessment is comple-
mented by the following study; we know that the total ob-
served variability σtotal is composed of the natural variability
σnat and the random measurement error estimate σran:

σtotal =

√
σ 2

nat+ σ
2
ran. (7)

Thus the observed variability can be considered an upper
bound of the random measurement error. For calm atmo-
spheric conditions where low natural variability is expected
(polar summer), the observed variability should be domi-
nated by the measurement error. The difference between the

observed variability and the measurement error should be
small and explainable by the natural variability. If the random
measurement error estimate exceeds the observed variability,
then the error estimates are too conservative. The results of
this analysis for both species and measurement periods are
shown are shown in Figs. 32 and 33. For the CFC-12 FR
period, the observed variability is fully explained by the es-
timated random errors. For the other products (CFC-11 FR
and RR and CFC-12 RR) about two-thirds to three-quarters
of the observed variability are explained, except for CFC-11
RR below 20 km.

7 Long-term stability

7.1 CFC-11

In order to verify the temporal stability of MIPAS CFC-11
measurements, drifts resulting from changing assumptions
regarding the nonlinearity correction (Fig. 34) were calcu-
lated. As shown by Eckert et al. (2014) and Kiefer et al.
(2013), the assumption of the nonlinearity correction for the
MIPAS detectors being time-independent cannot be held any
more. Time-dependent coefficients for the nonlinearity cor-
rection were found be able to explain drifts between MIPAS
and other instruments, e.g., Aura MLS for ozone. Thus, the
same method was used to calculate drifts in MIPAS CFC-11
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Figure 34. Left panel: altitude–latitude cross section of the instrument drift in MIPAS CFC-11. This drift is calculated by comparing the
temporal evolution of CFC-11 from two different setups. One setup uses nonlinearity correction coefficients used for the bulk MIPAS retrieval
to date. The other uses newly suggested time-dependent nonlinearity correction coefficients (Eckert et al., 2014, Sect. 3.3). The drift is shown
in relative terms, referring to the mean CFC-11 mixing ratio in the middle of the time series. Blueish tiles indicate that the new coefficients
result in higher CFC-11 mixing ratios, while reddish tiles indicate the opposite. White areas indicate that there were too few or no data points
available to estimate a drift properly. Right panel: altitude–latitude cross section of relative MIPAS CFC-11 trends without drift correction,
calculated from data covering January 2005 to April 2012. The trend is weighted with the CFC-11 mixing ratio of the middle of the time
series for each tile. Blueish tiles indicate declining CFC-11 mixing ratios, while increasing mixing ratios are represented by reddish tiles.
Hatching indicates that the trends are either not significant at 2-sigma level or that χ2 is more than 10 % different from one. Note different
color bars.

measurements. MIPAS results produced using the retrieval
setup for bulk processing are compared to results derived
using newly suggested time-dependent nonlinearity coeffi-
cients (see Eckert et al., 2014, Sect. 3.3). The difference be-
tween these results is calculated for a subset of measure-
ments taken between June 2005 and October 2011. Subse-
quently, the temporal development of these differences is as-
sessed by fitting a linear variation to them. The left panel
in Fig. 34 shows an Altitude–latitude cross section of the
estimated drifts, where bluish tiles indicate that MIPAS is
seeing more negative/less positive trends using the old, not
time-dependent, nonlinearity coefficients. Red tiles indicate
that MIPAS is seeing more positive/less negative trends for
using the old setup. The drifts are very small compared to
absolute mixing ratios of CFC-11, and only occasionally ex-
ceed 2 % decade−1. Larger drifts appear exclusively at high
latitudes in the Northern Hemisphere, which is a region with
large natural variability, and thus larger differences between
the fit and the measurements lead to less reliable results. In
order to prove that former results by Kellmann et al. (2012)
are still valid, we compared the drift results with the trends
for the whole MIPAS time series (Fig. 34, left panel). Red-
dish tiles indicate positive trends (only in the Southern Hemi-
sphere between 25 and 30 km), while blueish tiles mean that
the CFC-11 mixing ratios have decreased during the MI-
PAS measurement period. Hatching indicates non-significant
trends at 2-sigma level. While the trends are very small be-
low∼ 20 km (even∼ 25 km in the tropics), negative trends of
down to about −50 % were found above this altitude in the
Northern Hemisphere. Positive trends range up to ∼ 20 %.
These trends are by far larger than the estimated drifts, and
thus the conclusions drawn from these trends by Kellmann

et al. (2012) still hold, i.e., that decadal change in strato-
spheric circulation is needed to explain the results.

7.2 CFC-12

The temporal stability over the whole MIPAS measurement
period was examined for CFC-12, as for CFC-11. The results
of the drift estimation (Fig. 35) (left panel) exhibit small,
even close to zero, negative drifts in CFC-12 below∼ 30 km.
Above that altitude, up to ∼ 35 km, larger negative drifts ap-
pear, which are largest at midlatitudes and high latitudes and
range down to about−50 %. From 35 km upwards, large pos-
itive drifts were found which exceed 50 % at some points,
with largest drifts shown at higher altitudes and latitudes.
Compared to the trends (Fig. 35, right panel), the drifts are
approximately of the same order of magnitude up to∼ 20 km
(∼ 25 km in the tropics). Between that altitude and ∼ 30 km
the trends are considerably larger and also show positive val-
ues in the Southern Hemisphere. From ∼ 30 to 35 km nega-
tive trends are almost entirely canceled out by the drifts. This
also applies to the positive trends above ∼ 35 km. Keeping
this in mind, the most pronounced trends are those between
∼ 20 and 30 km, which have already been found and inter-
preted by Kellmann et al. (2012). Since drifts in this altitude
range are very small, the conclusions drawn in their paper
still hold, and decadal changes in stratospheric circulation
are evident. Above ∼ 35 km, the apparent trend actually is a
drift due to the time-dependent nonlinearity of the detector
which has not been accounted for in the bulk processing of
the MIPAS data to date. After fixing this for the next data ver-
sion, by using the new nonlinearity correction coefficients,
we assume the MIPAS CFC-12 data will be temporally sta-
ble throughout the whole vertical range.
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Figure 35. Left panel: altitude–latitude cross section of the instrument drift in MIPAS CFC-12. Blueish tiles indicate that the new coefficients
result in higher CFC-12 mixing ratios, while reddish tiles indicate the opposite. White areas indicate that there were too few or no data points
available to estimate a drift properly. Right panel: altitude–latitude cross section of relative MIPAS CFC-12 trends, calculated from data
covering January 2005 to April 2012. Blueish tiles indicate declining CFC-11 mixing ratios, while increasing mixing ratios are represented
by reddish tiles. Hatching indicates that the trends are either not significant at 2-sigma level or that χ2 is more than 10 % different from one.

8 Conclusions

The MIPAS CFC-11 product shows good overall agreement
with the presented collocated observations. A slight high bias
is found at low altitudes, below ∼ 10 km for the full spectral
resolution (FR) period and ∼ 15 km for the reduced spectral
resolution (RR) period. These differences stay mainly within
50 pptv, corresponding to 25 % at the largest. Larger differ-
ences appear in the comparison with ILAS-II, but we sug-
gest treating these results with care since Wetzel et al. (2008)
found similarly large differences when comparing MIPAS-B
results to a former version of ILAS-II measurements. Dif-
ferences in CFC-11 tend to be smaller than 30 pptv above
15 km in most cases for the RR period, which corresponds
to approximately 20 % at the largest. For the FR period,
ACE-FTS and MkIV agree with MIPAS within 20 pptv up
to 20 km, but show increasing differences above which ex-
ceed 30 pptv at the uppermost level in the case of ACE-FTS
and even more in the case of MkIV. Even though the com-
parisons of the standard deviation in a quiescent atmosphere
and the MIPAS error budget suggest that the latter is slightly
underestimated, this conclusion cannot be drawn from the
comparisons with the other instruments. However, it cannot
be falsified either, since it is unclear how reliable the error
estimates of the other instruments are and how large the con-
tribution of natural variability is. Except for a few outliers in
the comparison with the cryosampler measurement taken on
3 October 2009 and MkIV above∼ 19 km, the CFC-12 prod-
uct exhibits excellent agreement with all compared instru-
ments. During the FR period both ACE-FTS and MkIV agree
very well with MIPAS up to 20 km, with differences staying
within 5 %. For the RR period, similarly good agreement is
found with all instruments. Maximum differences are of the
same order of magnitude as for CFC-11 in the absolute value
of about 50 pptv, but since CFC-12 volume mixing ratios are
larger than those of CFC-11 in general, the relative devia-
tions of MIPAS from comparison instruments are far smaller
and rarely larger than 10 %. This value of relative differences

is not even reached in most of the comparisons as typical
values stay within 5 % below 18 km. The comparisons of the
standard deviation in a quiescent atmosphere and the MIPAS
error budget show that both quantities are very similar for
the FR period. This suggests that the error budget was esti-
mated accurately. For the RR period, the results of the com-
parison of the standard deviation in a quiescent atmosphere
and the MIPAS random error are similar to those of CFC-11,
and thus suggest a slight underestimation of the error budget
for this time period. However, as for CFC-11, this is difficult
to deduce or falsify from the comparisons with other instru-
ments. MkIV is the only instrument rather suggesting a low
bias in MIPAS CFC-11 and CFC-12 RR measurements. Esti-
mated drifts are small for both species below ∼ 25 to 30 km.
Above that altitude, CFC-11 is difficult to detect and the test
data set for drift estimates from different nonlinearity cor-
rection coefficients was sparse, so that no results exist from
∼ 25 km upwards. CFC-12 drifts reach up to magnitudes of
about 50 % above ∼ 30 km, showing large negative values
up to ∼ 35 km and positive values above. This is reflected
in the trend, which is mostly artificial above this altitude. At
3 km below the tropopause, the drift can partly explain the
differences in the trends between MIPAS and ground-based
HATS CFC-11 data. For CFC-12, the drift is very similar to
the differences found in the trends of MIPAS at 3 km below
the tropopause and the HATS measurements, and is thus a
good candidate for explaining these differences. For future
data versions, these results will be taken into account to pro-
duce a temporally stable CFC-12 data set, which will then
also be suitable for trend analysis above 35 km.

Atmos. Meas. Tech., 9, 3355–3389, 2016 www.atmos-meas-tech.net/9/3355/2016/



E. Eckert et al.: MIPAS IMK/IAA CFC-11 and CFC-12: accuracy, precision and long-term stability 3383

9 Data availability

All data sets used in this paper can be accessed as follows:

– MIPAS data can be accessed at the following website:
https://www.imk-asf.kit.edu/english/308.php.

– The cryosampler data can be obtained by contacting An-
dreas Engel via email (an.engel@iau.unifrankfurt.de).

– The MkIV data can be found at http://mark4sun.jpl.
nasa.gov/m4data.html.

– For MIPAS-STR, data from the reconcile campaign
have been used, which can be accessed at the following
website: https://www.fp7-reconcile.eu/reconciledata.

– HIRDLS data can be obtained by using the “Online
Archive” at http://disc.sci.gsfc.nasa.gov/uui/datasets/
HIRDLS2_V007/summary#citation.

– For SCISAT/ACE-FTS, the most recent data version is
available from the ACE team, University of Waterloo,
Canada. Publicly available validated data sets can be
found at http://www.ace.uwaterloo.ca/data.html.

– For ADEOS-II/ILAS-II, as stated on their website
(http://db.cger.nies.go.jp/ilas2/en/), ILAS-II data in-
quiries should be made by sending an email to ilas-
data@nies.go.jp.

– HATS data can be accessed through the follow-
ing download links: ftp://ftp.cmdl.noaa.gov/hats/
cfcs/cfc11/combined/HATS_global_F11.txt and
ftp://ftp.cmdl.noaa.gov/hats/cfcs/cfc12/combined/
HATS_global_F12.txt.
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Appendix A

In order to have a closer look at the latitudinal dependence of
the differences, we broke the comparison vs. HIRDLS and
ACE-FTS down into five latitude bands. We did not do this
for the comparisons with other instruments because most of
them lack global coverage.

Figure A1. Comparison of mean profiles of MIPAS CFC-11 (red line) and HIRDLS (black line) for different latitude bins for the years of
2005–2008.

Figure A2. Comparison of mean profiles of MIPAS CFC-11 (red line) and ACE-FTS (black line) for different latitude bins for the years of
2005–2012.
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Figure A3. Comparison of mean profiles of MIPAS CFC-12 (red line) and HIRDLS (black line) for different latitude bins for the years of
2005–2008.

Figure A4. Comparison of mean profiles of MIPAS CFC-12 (red line) and ACE-FTS (black line) for different latitude bins for the years of
2005–2012.
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