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Abstract. People are becoming increasingly interested in

mobile air quality sensor network applications. By eliminat-

ing the inaccuracies caused by spatial and temporal hetero-

geneity of pollutant distributions, this method shows great

potential for atmospheric research. However, systems based

on low-cost air quality sensors often suffer from sensor noise

and drift. For the sensing systems to operate stably and reli-

ably in real-world applications, those problems must be ad-

dressed. In this work, we exploit the correlation of different

types of sensors caused by cross sensitivity to help identify

and correct the outlier readings. By employing a Bayesian

network based system, we are able to recover the erroneous

readings and recalibrate the drifted sensors simultaneously.

Our method improves upon the state-of-art Bayesian belief

network techniques by incorporating the virtual evidence and

adjusting the sensor calibration functions recursively.

Specifically, we have (1) designed a system based on the

Bayesian belief network to detect and recover the abnormal

readings, (2) developed methods to update the sensor calibra-

tion functions infield without requirement of ground truth,

and (3) extended the Bayesian network with virtual evidence

for infield sensor recalibration. To validate our technique, we

have tested our technique with metal oxide sensors measur-

ing NO2, CO, and O3 in a real-world deployment. Compared

with the existing Bayesian belief network techniques, results

based on our experiment setup demonstrate that our system

can reduce error by 34.1 % and recover 4 times more data on

average.

1 Introduction

Traditional atmospheric research usually relies upon station-

ary monitoring instruments to monitor the environmental

pollutants. The distributions of air pollutants are non-uniform

and highly dynamic both spatially and temporally. Unfortu-

nately, official monitoring networks are usually very sparse

due to their high costs. Therefore, mobile and distributed at-

mospheric air quality sensor networks are becoming increas-

ingly popular and mainstream (Jiang et al., 2011; Willett

et al., 2010; Piedrahita et al., 2014; Xiang, 2014). Those sen-

sor networks are carried by users and are capable of measur-

ing the immediate surrounding atmosphere. The metal oxide

sensors used in the sensing devices are typically miniature,

low power, and inexpensive in exchange for accuracy, sensi-

tivity, and reliability. For those mobile sensors, the measured

data usually contain significant noise from several sources.

Subsequently, those noisy readings can trigger false alarms,

lead to incorrect scientific conclusions, and generate sub-

optimal solutions (Zhang et al., 2010; Chandola et al., 2009).

Sensor noises are mainly caused by random factors and

sensor drift. The metal oxide sensors are very sensitive to

environmental parameters, e.g., temperature and humidity,

which cannot be perfectly measured near the sensor sur-

face. Moreover, there can be many unexpected problems in

the real-world deployment, such as electrical components

breakdown, power supplies surge, and signal noise in the

circuits (Elnahrawy and Nath, 2003). Another significant

source, observed and reported both in existing literature (Ro-

main and Nicolas, 2010) and our own deployment, is sen-

sor drift. Drift is a phenomenon caused by many factors that

change the property of the sensing surface temporarily or per-

manently, including material degradation, exposure to sulfur
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compounds or acids, aging, or condensate on the sensor sur-

face (Haugen et al., 2000; Arshak et al., 2004). Sensor drift

changes the sensor function, which can cause significant de-

viation from the ground truth without proper error compen-

sation. For example, in our own deployment, we find that the

sensor drift can increase the average sensor error by orders

of magnitude within several months. Drifted sensors must be

recalibrated before they can be trusted and used again.

The metal oxide sensors, utilizing either the oxidation or

reduction reactions with pollutant gases, can respond to and

quantify the air pollutants with reasonable sensitivity and ac-

curacy (Tans and Thoning, 2008). However, many pollutants

share the same reaction property. For example, both CO and

NO2 can cause oxidation reactions with the surface material.

Thus, the sensors usually respond to a wide range of pollu-

tants other than the targeting gas. This property is called cross

sensitivity (Zampolli et al., 2004). Because of cross sensi-

tivity, the readings of different types of sensors are usually

correlated. This property can be used to identify the compo-

sitions of pollutants in the environment (Di Lecce and Cal-

abrese, 2011).

We leverage the correlations of different metal oxide sen-

sors to help identify and recover the abnormal readings. In

many recent mobile sensing network designs, researchers

have built sensing devices equipped with multiple types of

sensors to detect various pollutants co-existing in the envi-

ronment (Jiang et al., 2011; Willett et al., 2010). For such

applications, it is possible to exploit the correlation of read-

ings and recover noisy readings using Bayesian belief net-

works (Janakiram et al., 2006). The basic Bayesian net-

work approach works well for the outliers caused by random

noises but fails when sensors drift, which is common in real-

world applications.

In this work, we aim to design a system that can efficiently

detect and recover the noisy readings, recalibrate drifted sen-

sors, and identify the gas compositions in the air simultane-

ously. This work makes the following contributions:

1. we have designed and implemented a Bayesian belief

network based system to detect and recover outliers; and

2. we incorporate and address the sensor function calibra-

tion problem within the Bayesian network framework.

By analyzing the collected data, we have observed signif-

icant drift within a short period of time, e.g., a couple of

months for most of the sensors. To validate our hypothesis

and techniques, we have performed a field deployment. The

deployment lasts about 3 months. During the deployment, we

have mainly monitored and analyzed the following air qual-

ity related gases: NO2, CO, and O3. The deployment results

have confirmed our models about the sensor drift and the ef-

fectiveness of our techniques.

The rest of this paper is organized as follows. Sec-

tion 3 discusses existing related work. Section 4 provides

an overview of the system. Section 5 describes the Bayesian

belief network approach and how to use it to detect and re-

cover outliers. Section 6 discusses the limitations of exist-

ing Bayesian network approaches and presents our solution.

Section 7 describes our real-world deployment and the eval-

uation results of different techniques.

2 Motivation example

This work is motivated by an atmosphere research project.

Researchers have built several mobile atmosphere monitor-

ing devices and deployed them in the field to monitor the

atmosphere around the users. The devices can measure mul-

tiple pollutant gases using metal oxide sensors. Those sen-

sors are precalibrated in the lab and are hence accurate before

deployment. However, after a couple of months, it is discov-

ered that the sensitivities of the sensors have shifted signif-

icantly, which can lead to erroneous scientific conclusions,

false alarms, incorrect decisions, etc. Therefore, it is benefi-

cial and important to develop a technique that can utilize the

relationship between different types of sensors to reduce the

sensor noise and recalibrate the sensors during deployment.

3 Related work

The related work can be placed in three categories: co-

located sensor calibration, sensor abnormality detection, and

Bayesian network based approaches.

3.1 Co-located sensor calibration

Xiang et al. (2012, 2013) developed a model to estimate sen-

sor drift and designed a compensation technique to minimize

the sensor drift assuming no access to ground truth readings.

Bychkovskiy et al. (2003) have proposed a two-phase post-

deployment sensor drift compensation technique in which

co-located sensors are calibrated in pairs using linear func-

tions. Miluzzo et al. (2008) have proposed CaliBree, an auto-

calibration algorithm for mobile sensor networks, in which

mobile sensor nodes opportunistically interact with accurate

stationary sensors and hence enable calibration to reduce sen-

sor drift. Those techniques require that the co-located sen-

sors are of the same type and thus should have the same

response from the physical environment. In contrast to the

previous work, our technique can work on mobile sensing

devices containing various types of metal oxide sensors.

3.2 Sensor abnormality detection

Bettencourt et al. (2007) have presented an outlier detection

technique to identify errors during event detection in eco-

logical wireless sensor networks. Their technique uses the

spatiotemporal correlations of sensor data to detect outliers.

Rajasegarar et al. (2007) have proposed a technique based

on a support vector machine (SVM) to detect sensor out-

liers. Their approach uses a one-class quarter-sphere SVM to
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classify and identify the local outliers. Unlike our technique,

their method cannot estimate the actual ground truth readings

and recover outliers. Papadimitriou et al. (2003) have devel-

oped a technique that uses multi-granularity deviation factor

to dynamically detect the outlier readings based on the cor-

relations of local nodes. Their technique cannot address the

sensor drift problem, however, when one or more sensors’

readings are shifted persistently. Kumar et al. (2013) pro-

posed a technique that performs a two-stage drift correction.

First, they use a Kriging based approach to provide estimated

ground truth readings. Then a Kalman filter based technique

is used to compensate for sensor drift. However, Kriging re-

quires certain spatial density in sensor nodes deployment.

Moreover, a Kalman filter based approach relies on the as-

sumption of a state-space underlying model and knowledge

of the model parameters, which is unrealistic in real-world

applications when the environment of the deployment field

is often unknown and very dynamic.

3.3 Bayesian network based approaches

Elnahrawy and Nath (2003) have used a naive Bayesian net-

work to identify local outliers and detect faulty sensors. This

technique uses a trained Bayesian classifier for probabilistic

inference. Each node locally computes the probabilities of

each of its incoming readings and determines the readings as

outliers when their probabilities are not the highest among

all the possible outcomes. Their approach can only work for

the homogeneous sensors. Janakiram et al. (2006) have pro-

posed a technique to detect sensor outliers based on Bayesian

belief network. They leverage the conditional correlation of

the readings from different types of sensors. However, their

approach does not take into consideration sensor drift and

sensor function recalibration, which are considered and ad-

dressed by our method.

4 System flow

Figure 1 shows the overview of our system. It describes the

composition of the system. In the real-world applications, the

gathered atmosphere data, e.g., O3, are processed by the sys-

tem. The system can reduce the sensing error caused by drift

as well as other atmospheric parameters and recalibrate the

sensor function. The output of the system is the O3 data with

significantly improved accuracy and a more sensitive sensor

function.

The input sensor readings are first processed using a

Bayesian belief network, which is trained using normal data

from the infield deployment. The Bayesian network can gen-

erate the estimated ground truth values based on the condi-

tional probability tables and readings from all the correlated

sensors. The estimated ground truth readings are then used to

recalibrate the sensors, i.e., generate the new sensor functions

which can translate the input sensor analog readings into ac-

tual pollutant concentrations. The new sensor functions are
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Figure 1. System flow.

used to generate the sensor readings, which are used to de-

rive the estimated error. The newly updated estimated error

is compared with the previous estimations. If the variation

is within a certain threshold, we consider the system stabi-

lized and the current results to be the best estimation and

final output. If the system is not stabilized yet, the virtual ev-

idence, which describes the error distributions of the input

data, is updated using the new estimated concentration and

subsequently used by the Bayesian network to generate the

estimated ground truth readings for the next round of opti-

mization. The loop continues after a certain number of runs

or until the system converges.

5 Basic Bayesian belief network

In this section, we first introduce the basic Bayesian belief

network. Then we discuss how to implement it in real-world

applications.

5.1 Bayesian network introduction

Bayesian networks are widely used to detect and recover ab-

normal data points for sensor networks. The Bayesian net-

work is built based on Bayes’ theorem and capable of ex-

ploiting the interdependent or causal relationships of corre-

lated sensors readings. The types of the sensors involved can

be different, which makes it appropriate for our application.

A Bayesian network is a directed graph consisting of nodes

and arcs (Kay, 1998).

Figure 2 shows an example Bayesian belief network for

a simple sensor network. In this application, there are three

different types of sensors, which can measure temperature

(T ), carbon monoxide (CO), and nitrogen dioxide (NO2).

www.atmos-meas-tech.net/9/347/2016/ Atmos. Meas. Tech., 9, 347–357, 2016
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Figure 2. An example of a Bayesian belief network.

Each sensor’s readings can be discretized intoN values, with

each discrete value denoted as Tn, Cn, and NOn, respectively.

Without loss of generality, we assume two distinct discrete

values for each sensor type. All the metal oxide sensors are

correlated because of cross sensitivity. The readings of metal

oxide sensors are strongly affected by the temperature. We

found no significant impact from relative humidity.

As shown in the figure, the Bayesian network describing

this sensor network contains three nodes, with each repre-

senting one type of sensor. There are two arcs connecting

the temperature sensor with the metal oxide sensors and one

arc connecting the two metal oxide sensors. To calculate the

probability inference of each variable given the input of other

variables as evidence, each node is associated with a table,

which is called conditional probability table (CPT). CPT de-

scribes the conditional dependence between any node with

its parents. For the root node with no parents, CPT describes

the distribution of the variable itself. CPT can be derived by

training the network using historic data.

5.2 Bayesian network for real-world applications

Without loss of generality, we assume that there are four

types of equipped sensors: temperature, NO2, CO, and ozone

(O3). Their readings are all correlated. The Bayesian network

graph for this application is shown in Fig. 3. In the graph,

there are two types of nodes. The first type, which contains

T , CO(s), NO2(s), and O3(s), represents the readings of the

sensors. The second type, which contains CO(t), NO2(t), and

T.T.

NONO2 CO
(s)
COOO3

(s)

NONO2 OO3 COCO

(s)

(t) (t) (t)

Figure 3. The basic Bayesian network structure for our application.

(Symbols with (s) are referred to the sensor readings; symbols with

(t) are referred to the ground truth concentrations.)

O3(t), represents the actual concentration (ground truth) of

the corresponding pollutants in the environment.

In the figure, there are arrows connecting the temperature

sensor to all the three types of metal oxide sensors since

the temperature influences the measurement results of all the

three metal oxide sensors. The metal oxide sensors are as-

sumed to be independent from each other, and the same is

true for the ground truth concentration nodes. However, be-

cause of cross sensitivity, each ground truth reading can have

significant impact on the readings of three metal oxide sen-

sors simultaneously. Thus, there are three arcs connecting the

ground truth concentrations to all the three sensors. When the

ground truth is not available, the probability inference of the

three ground truth nodes can be calculated using the input of

the four actual sensors. The value with the highest probabil-

ity is considered as the estimated ground truth, as shown in

the following equation.

G(i)= max
n∈N(i)

(Pn(i)), (1)

where G is the ground truth reading for sensor i, N is the

number of possible values after discretization, and P is the

probability.

6 Bayesian network with sensor recalibration

In this section, we first talk about the problems of the basic

Bayesian network for real-world applications in which sen-

sors may drift. Then we introduce virtual evidence to address
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the drift problem and the sensor recalibration technique to

improve the performance of the Bayesian network. Finally,

we present the combined recursive system and describe the

details and algorithm to implement it.

6.1 Problems for basic Bayesian network

Bayesian network can clean the corrupted data and detect ab-

normal readings by leveraging the interdependency of corre-

lated sensors. For the random noises, it is quite efficient and

sufficient. However, in our applications, sensors frequently

drift. It has been shown, both in existing literature (Xiang

et al., 2012; Romain and Nicolas, 2010) and by our own

measurement data presented in Sect. 7.1.3, that sensor drift

is a very common and severe problem in real-world applica-

tions for those metal oxide sensors. Sensor readings become

useless with the bias observed in our deployment. Thus, the

problem of sensor drift and the error caused by drift must be

addressed.

The basic Bayesian network is based on the assumption of

unbiased measurements. Thus, it is unable to generate rea-

sonable results when multiple sensors drift simultaneously.

Note that it is quite common to have more than one drifted

sensors in the system simultaneously, as shown by our de-

ployment results in Sect. 7.1. Thus, the system described in

Fig. 3 is inadequate to address the real-world problems. To

apply the Bayesian network in such circumstances, we need

to (1) incorporate a ranking mechanism that can quantify the

sensor uncertainties into the Bayesian network and (2) design

a drift compensation scheme to recalibrate the sensor func-

tion and recover the corrupted data simultaneously within the

Bayesian network framework.

6.2 Error distribution and uncertain evidence

As the sensor drifts, its sensing sensitivity deteriorates and

the uncertainty of its readings increases. A Bayesian net-

work treats all its input equally, which is problematic consid-

ering sensor drifts. For example, if a CO sensor is recently

calibrated while an O3 sensor has not been calibrated for a

long time, we should clearly give the CO sensor more confi-

dences. In other words, within a Bayesian network frame-

work, we must have an evaluation mechanism which can

rank and quantify the trustworthiness of each particular sen-

sor.

To address this problem, we use error distributions to rep-

resent the sensitivity and trustworthiness of the sensors. An

example of error distributions is shown in Table 1. In the

example, we assume that the sensor has reported an envi-

ronment concentration of 1.5 ppm. The actual ground truth

ranges from 0 to 3 ppm and is divided into three discrete cat-

egories. We assume that in the environment the probability

for the ground truth to be in any of these three categories is

equal. As shown in Table 1, if the sensor is accurate, then the

probability that the actual ground truth is within the range of

Table 1. An example error distribution with reported reading of

1.5 ppm.

Ground truth prob. (%)

0∼ 1 ppm 1∼ 2 ppm 2∼ 3 ppm

Accurate 0 100 0

Drifted 30 70 0

Breakdown 33 33 33
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Figure 4. An example of virtual node. (Symbol with (u) is referred

to the virtual node.)

1 to 2 ppm given a reported reading of 1.5 ppm is 100 %. If

the sensor is drifted, the sensor becomes less accurate and the

possible value of the ground truth spreads wider. If the sen-

sor has a breakdown, it loses most of its sensitivity and the

ground truth is no longer correlated to the sensor readings.

In that way, we have transformed the determined sen-

sor readings into distributions which inherently represent the

trustworthiness of the sensors. Such input to the Bayesian

network is called virtual evidence. Note that virtual evi-

dence cannot be applied to the Bayesian network directly.

The Bayesian network must be modified to incorporate such

uncertain evidence.
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Table 2. The statistics of the original and drifted sensor readings.

Errors

Undrifted Drifted

CO NO2 O3 CO NO2 O3

(ppm) (ppb) (ppm) (ppm) (ppb) (ppm)

Average 0.31 16.13 0.04 10.72 112.45 0.20

Maximum 8.92 76.11 0.32 21.94 171.4 1.85

Standard deviation 0.52 11.19 0.07 0.93 12.50 0.28

Correlation 93 %

6.3 Bayesian network with virtual evidence

For the basic Bayesian network, the inputs can only be deter-

mined values. To incorporate the virtual evidence, some con-

straints must be honored, which is called Jeffrey’s rule (Jef-

frey, 1990). The concept of Jeffrey’s rule is described as fol-

lows.

Suppose the universe of all the events is denoted as U . We

have a set of mutually exclusive events γ1, . . .,γn, which is

a subset of U , and P is the probability distribution of those

events. After applying the virtual evidence, the beliefs for

events γ1, . . .,γn change and the updated distribution is de-

noted as P ′. P ′ should satisfy the following equation.

P(α|γi)= P
′(α|γi),∀i = 1, . . .,n, (2)

where α is any event in the universe. In other words, after

the virtual evidence is accepted, the posterior probability of

α can be changed, but the conditional probability for α ∈ U

regarding to the events γ1, . . .,γn must remain the same.

To treat the virtual evidence as determined value while

honoring the Jeffrey’s rule, the Bayesian network should

be modified by adding a virtual node to the drifted sensor

nodes (Chan and Darwiche, 2005). Figure 4 shows an ex-

ample Bayesian network with virtual nodes. In the figure,

the pollutant followed by V represent a virtual node in the

Bayesian network. The number in Table 2 is the conditional

probability. λ represents the probability distribution of the

input evidence. There are two sensor nodes: temperature and

CO. The temperature sensor is assumed to be accurate and

with little drift, while the CO sensor can drift. The CO sen-

sor node is associated with a virtual node, denoted as CO(u).

The virtual node also has its own conditional probability ta-

ble. The CPT of the virtual node should be calculated us-

ing the error distribution of the actual sensor node so that

the beliefs of the whole Bayesian network comply with Jef-

frey’s rule. The detailed methods and equations to calculate

its probability table can be found in existing literature (Peng

et al., 2010; Chan and Darwiche, 2005). Note that the virtual

node is only dependent on the corresponding sensor node and

independent of all the other nodes in the network.

Figure 5 shows the Bayesian network structure of our ap-

plication after incorporating the virtual evidence. Since the

temperature sensor and the hypothetical ground truth con-

Figure 5. The Bayesian network with virtual nodes. (Symbol defi-

nition in Sect. 5.2.)

centration sensors are assumed to be accurate, they are not

associated with any virtual nodes. Each metal oxide sensor,

which is prone to drift, is associated with a virtual node. The

contents in the CPT of the virtual nodes can be calculated us-

ing the error distributions of the actual nodes, which can be

derived with the information of the (estimated) ground truth

readings and the sensor readings.

6.4 Sensor function recalibration

The transformation function to translate the analog input sig-

nal into pollutant concentration is called a sensor calibration

function, or sensor function. The abnormal readings caused

by environmental noises do not reflect a change of the sen-

sor function. However, when sensors are drifted, the sensor

functions change, which can cause a systematic increase of

abnormal readings.

In this work, we apply a piece-wise linear function as the

sensor function, which is shown in the following equation.

C = p1+p2×V +p3× T , (3)
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where C is the pollutant concentration, pi are the fitting pa-

rameters, V is the voltage, and T is the temperature. The

temperature information is reported by the on-board sensors.

Note that for our experimented sensors, the impact of humid-

ity is much less significant than temperature. Thus, we do not

include humidity in our setup. If parameters in other applica-

tions, such as humidity and pressure, do have significant im-

pact, they can be easily incorporated to our Bayesian frame-

work. The parameters in the equation are derived using lin-

ear regression with the training data. Since accurate sensors

providing ground truth readings are usually not available, we

use the estimated ground truth concentration returned by the

Bayesian network instead. Note that as the sensitivity of the

sensors reduces, the performance of this recalibration scheme

deteriorates. When a sensor breaks down and loses most of

its sensitivity, the sensor can no longer be recalibrated.

7 Experimental results

In this section, we first describe a real-world co-location de-

ployment of nine mobile sensor nodes and the analysis re-

sults for the deployment data. We then evaluate our system

using the real-world data.

7.1 Mobile sensor network deployment and analysis

7.1.1 The mobile sensing device

To investigate the effect of sensor drift in real-world applica-

tions and collect data to evaluate our data cleaning technique,

we deployed a sensor network in Denver, Colorado. Dur-

ing the experiment, we deployed nine M-Pods (Jiang et al.,

2011), which are shown in Fig. 6. The M-Pod is a custom-

built mobile sensing device supporting embedded sensing,

computation, and wireless communication. It supports detec-

tion of various air pollutants, including NO2, CO, CO2, O3,

and volatile organic compounds. It can also measure temper-

ature, humidity, and light. The latest revision of the M-Pod

is compact (5× 6.5 cm) and energy efficient, with a battery

life of greater than 16 h. The whole device, including a Li-ion

battery with a capacity of 6000 mA-h, is enclosed by a low-

cost off-the-shelf case that can be carried using an armband

or attached to a backpack. A [3.3] V DC fan is used to control

airflow. A rectangular filter is installed around sensor to in-

crease sensing accuracy and prolong sensor life. Most of the

power-hungry on-board sensors are power gated and can be

controlled by commands from smartphones. Data are tempo-

rally stored in a 1 megabyte non-volatile EEPROM. The to-

tal cost of the on-board components and sensors is less than

USD 150 and can be reduced further when produced in large

quantities.

To receive, store, and present the data gathered by our M-

Pod device, we have developed on-board firmware, smart-

phone applications, data servers, and Web interfaces. The

firmware defines protocols of sensing, storing, and sending

the environmental data. The smartphone application commu-

nicates with the M-Pod via its Bluetooth interface. It can is-

sue commands to and receive data from the M-pod. The data

are transmitted to the online data server and stored in the

databases. A Web based user interface allows users to access

and analyze air quality data.

7.1.2 The real-world deployment

The nine M-Pods were used continuously from March to

May 2013. The sensors were not changed throughout this pe-

riod. For the majority of the time, the M-Pods were worn by

users as part of an exposure assessment study. During three

multi-day calibration periods in March, April, and May, the

M-Pods were placed at a reference air quality monitoring

site. The M-Pods were powered continuously on the roof of

the monitoring building, in a ventilated enclosure near the air

inlets for the reference monitors. The reference site, as shown

in Fig. 6, monitors CO, NO2, and O3. It is located in down-

town Denver, Colorado, and operated by the Colorado De-

partment of Public Health and Environment (CDPHE). The

highly accurate and regularly maintained air pollutant moni-

toring equipment in the station is used to provide the ground

truth readings.

By co-locating the M-Pods with the reference monitors,

we are able to derive both the sensor analog readings and

ground truth, which can be used to determine the sensor cal-

ibration functions. The forms of the sensor calibration func-

tions vary depending on sensor type. In this work, we use

a piece-wise linear function. It is quite accurate according

to lab and field measurements and requires much fewer re-

sources to compute compared to other, more complicated,

forms of sensor functions. The calibrations are performed us-

ing the field data. Thus, it does not require specialized equip-

ment and can cover a wider range of environmental parame-

ter space than lab calibrations. Before the fitting of the sen-

sor function, data filtering was performed to remove noise

from the sensor readings. Minute medians were first calcu-

lated from the 6 s raw data. Then, we applied a filter based on

difference in consecutive differences in the medians. There

were two thresholds for the filter: an absolute threshold that

was deemed unrealistic based on lab experiments and 2 times

the standard deviation of the differences. By performing cal-

ibrations periodically with the same sets of sensors, we were

able to assess the change in baseline readings and sensitivity

over time. The calibration functions derived by fitting to the

data of the first calibration period, which is considered as the

undrifted baseline, are applied to the entire data set.

7.1.3 Data analysis

We examine and compare the readings of the CO, NO2, and

O3 sensors. An example of the measured data and the cor-

responding ground truth readings is presented in Fig. 7. The

X axis in the figure shows the time line of the deployment
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(a) (b)

Figure 6. (a) The Denver air quality monitoring station; (b) the M-Pod sensing platform.

in the unit of days, while the Y axis shows the concentra-

tion of the pollutant in parts per million. Two sets of data are

presented: ground truth data and M-pod measured data. The

total duration of the deployment is about 2 months. In the fig-

ure, there are three separate time periods, with each lasting

for about 1 week. During that time period, the M-Pods are

located in the station and calibrating. For the rest of the time,

the M-Pods are carried by individual users and the ground

truth readings of their exposed environments are unknown.

Thus, the readings from those time periods are not included.

The resultant data show that the drift rates for different

types of sensors vary. For the example in the figure, the NO2

sensor experiences large drift. After 2 months, its drift er-

ror is increased more than 3 times. The CO sensor also suf-

fers significant drift, though less compared to the NO2 sensor

with about 50 % increase of error. However, for the O3 sen-

sor, no significant drift is observed. The example shows that

significant drift can occur within just a couple of months, ren-

dering the corresponding sensor almost useless if not care-

fully recalibrated. It demonstrated that drift is a real and se-

vere challenge for those cheap sensors to be useful in real-

world applications. Moreover, since the exposed environ-

ment and the properties of the sensors vary, different sensors

usually exhibit different drift rates, making it impossible to

recalibrate the sensors using a predetermined model.

Among the nine M-Pods deployed, we chose six of them

during our analysis and evaluations. For the rest three, one of

them did not return enough data due to transmission problem,

and two of them have sensors completely dead within the 2-

month deployment period. Table 2 shows the statistics of the

sensing errors from the remaining six M-Pods. The error in

the table are defined as the absolute variation between the

sensor reading and the ground truth. We compare the drifted

and undrifted data. The undrifted data are taken from the first

time period as shown in Fig. 7. The drifted data are taken

from the third time period. The first three rows show the av-

erage, maximum, and standard deviation of the error distri-

butions. Significant drift can be observed for all the types of

sensors. It should be noted that for some pollutants, such as

NO2 and CO, their mean values change more significantly

than the standard deviation, which implies a close to linear

shift. For each pair of sensors, e.g., NO2 and O3, their corre-

lation coefficient is calculated. Among all the possible pairs,

93 % of them show a strong correlation, indicating that the

Bayesian network might be an appropriate solution.

In conclusion, our deployment data show that sensor drift

and consequently the noise problem are very realistic and im-

portant for the metal oxide sensors. If not properly addressed,

most of those sensors will be useless within just a couple

of months. The drift rates are dependent on the environment

and sensor properties and, hence, vary for different sensors.

Thus, it is not feasible to use predetermined correction meth-

ods; sensor calibration problem must be addressed using the

field data. Moreover, different types of sensors show strong

correlations, permitting noise reduction and sensor calibra-

tion.

7.2 Data recovery and sensor calibration results

7.2.1 Experiment setup

The outlier cleaning and sensor recalibration functions are

written using Matlab, with the help of an external Bayesian

network toolbox called bnt (Bayes toolbox, 2007). We use

the data returned from six out of a total of nine sensors de-

ployed, excluding the failed sensors and sensors with insuffi-

cient data. The failed sensors are not used since their readings

are no longer correlated with each other and recalibration

cannot help improve the results. In other words, our tech-

nique does not have effect on them and they should be sim-

ply replaced. The failed sensor can be detected using both

our technique and the Bayesian network method. The thresh-

old to determine the outliers is taken equal to the standard

deviation of the ground truth readings.
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(a)

(b)

(c)
Figure 7. (a) Drift measurement of CO; (b) drift measurement of

O3; (c) drift measurement of NO2.

The CPT of the Bayesian network is derived from train-

ing. The training set is generated using the co-location data

from the undrifted (the first) time period. This approach is

more appropriate since it requires much less effort to cover

a reasonable number of states than lab environment and can

provide us a more realistic prior distributions for tempera-

ture. The training data set is filtered so that it contains only

normal data. After the Bayesian network is trained, the con-

tents in the CPT remain unchanged until the sensor is close to

a reference station and have access to the ground truth read-

ings again. For the parameter states that are not encountered

during the training phase, we replace their contents with the

encountered state of the closest distance, calculated using the

Euclidean distance between those two states.

To evaluate our outlier recovery and sensor recalibration

technique, we compare the following three approaches.

1. Uncompensated: this approach interprets the reported

analog data using the predetermined sensor function

from lab measurement and without any compensation

scheme.

2. Bayesian network: this approach implements a

Bayesian belief network based technique proposed by

Janakiram et al. (2006). It is the most relevant and

closely related work to the best of our knowledge.

3. Bayesian network with virtual evidence: this is our pro-

posed technique. It improved upon the Bayesian net-

work approach by incorporating the virtual evidence

and sensor recalibration.

We evaluate all the three approaches using the same set of

testing data derived from our real-world deployment.

7.2.2 Drifted sensor recovery evaluation

Many existing outlier detection approaches, such as

distance-based techniques (Papadimitriou et al., 2003;

Subramaniam et al., 2006) or classification-based tech-

niques (Rajasegarar et al., 2007), cannot estimate the ground

truth data and provide recalibration opportunities for the

drifted sensors. Thus, we do not include them in the com-

parison. Figure 8 shows the performance of various relevant

data cleaning and recovery techniques. Since our technique

focuses on the sensor drift and recalibration problem, the ex-

periment is performed on the third time period of the data

set, which represents the drifted sensors. The Y axis of the

bar graph shows the average errors, which are normalized to

our recursive technique. The red numbers above the bar show

the actual average error value for the uncompensated method.

Compared with the uncompensated approach, in which the

sensor outliers are not compensated and sensor calibration

functions are not recalibrated, our technique can incur only
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Figure 8. The data recovery results of various techniques for the

drifted data.

Figure 9. The percentage of successfully cleaned data.

about 2.13 % error on average. Moreover, compared with

the Bayesian network approach, which is the closest exist-

ing technique, our technique is capable of reducing errors by

32.0, 34.7, and 35.5 % for CO, NO2, and O3, respectively. In

our setup, the experiment results show that our technique can

reduce error by 34 % on average.

After the estimated ground truth values are derived, we

consider it the ground truth concentration. However, since

the ground truth concentration estimation is imperfect, the

classification of sensor readings according to this estimate

ground truth concentrations can be wrong. Hereby we de-

fine data recovery rate as the percentage of corrected label

data points after the data recovery scheme. Figure 9 shows

the comparison results of various techniques in terms of data

recovery rate. The rate is obtained by comparing the esti-

mated readings against the ground truth. For our technique,

the data recovery rates are 34.7, 33.3, and 41.3 % for CO,

NO2, and O3, respectively. Compared with the Bayesian net-

work approach, our technique successfully recovers 4 times

more data.

8 Conclusions

In this work, we have presented a Bayesian belief network

based system to detect and recover outliers in the presence

of sensor drift. This work is to address the data noise and

sensor drift problems in atmospheric research by exploring

the correlation of different types of sensors. In our analysis

of real-world data, low-cost air quality sensors usually in-

cur significant drift within a few months. Thus, to ensure the

accuracy of the atmosphere researches utilizing those sen-

sors, we developed a data treatment technique that can sig-

nificantly reduce the sensor noise and recalibrate the drifted

sensor online.

Our technique can significantly improve sensor accuracy

given the cross-correlation of sensors for different gasses.

Thus, it is most suitable for applications involving sensor

clusters, such as mobile environmental sensing, health moni-

toring, and hazard gas alert. However, for the more traditional

monitoring methods, which rely upon accurate and singular

sensors, the applications of our technique are more limited.

Nonetheless, there are many areas for improvements in the

future research. This technique, along with other Bayesian

network based techniques, requires extensive training prior

deployment. However, with limited training data, offline

training can introduce inaccuracies with untrained events.

Thus, it is important to develop online Bayesian network

based training techniques alongside the calibration tech-

nique. Moreover, the response time of different sensors may

differ with each other. Thus, the technique should be adapted

to address sensors with variable response time. Bayesian

network based techniques can also be used for sensor

network malfunctioning analysis and diagnosis, which is

another important application area.

Edited by: P. Stammes
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