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Abstract. Polar regions are characterized by their remote-
ness, making measurements challenging, but an improved
knowledge of clouds and radiation is necessary to under-
stand polar climate change. Infrared radiance spectrometers
can operate continuously from the surface and have low
power requirements relative to active sensors. Here we ex-
plore the feasibility of retrieving cloud height with an in-
frared spectrometer that would be designed for use in remote
polar locations. Using a wide variety of simulated spectra of
mixed-phase polar clouds at varying instrument resolutions,
retrieval accuracy is explored using the CO2 slicing/sorting
and the minimum local emissivity variance (MLEV) meth-
ods. In the absence of imposed errors and for clouds with op-
tical depths greater than ∼ 0.3, cloud-height retrievals from
simulated spectra using CO2 slicing/sorting and MLEV are
found to have roughly equivalent high accuracies: at an in-
strument resolution of 0.5 cm−1, mean biases are found to
be ∼ 0.2 km for clouds with bases below 2 and −0.2 km for
higher clouds. Accuracy is found to decrease with coarsen-
ing resolution and become worse overall for MLEV than for
CO2 slicing/sorting; however, the two methods have differ-
ing sensitivity to different sources of error, suggesting an ap-
proach that combines them. For expected errors in the at-
mospheric state as well as both instrument noise and bias of
0.2 mW/(m2 sr cm−1), at a resolution of 4 cm−1, average re-
trieval errors are found to be less than ∼ 0.5 km for cloud
bases within 1 km of the surface, increasing to ∼ 1.5 km at
4 km. This sensitivity indicates that a portable, surface-based
infrared radiance spectrometer could provide an important

complement in remote locations to satellite-based measure-
ments, for which retrievals of low-level cloud are challeng-
ing.

1 Introduction

Measurements of cloud properties are needed to improve cli-
mate and forecast models of the Arctic and Antarctic atmo-
spheres (Hines et al., 2004; Town et al., 2007; Wesslen et al.,
2014). Clouds have a strong impact on the polar regions, and
recent work indicates that sensitivity to clouds may increase
as polar regions warm (Cox et al., 2015b). At the same time,
large errors have been found in atmospheric radiative fluxes
and cloud radiative forcing in reanalysis products and cli-
mate models, which have been partially attributed to errors
in cloud-base heights (Walsh et al., 2009); for ERA-Interim,
Wesslen et al. (2014) find that cloud-base height is often too
high.

Measurements of cloud properties at high latitudes come
primarily from satellite platforms (e.g., Wang and Key, 2005;
Lubin et al., 2015). Active instruments, such as lidar, can
vertically profile clouds (see, e.g., Verlinden et al., 2011;
Cesana et al., 2012) but have a small footprint, so that
monthly or seasonal averaging is needed for global cov-
erage. Passive instruments that measure upwelling infrared
radiances have large footprints, enabling global coverage
on daily timescales. These instruments have the advantage
that the cloud property retrievals are derived from, and are
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thus directly tied to, their radiative effect. However, passive
satellite-based instruments are best suited for viewing the
tops of clouds and have less sensitivity to the important re-
gion of the atmosphere that affects the surface energy bud-
get, that is, between the surface and the base of the cloud.
Thus, satellite-based measurements should be complemented
by surface-based measurements.

Atmospheric observatories that are capable of surface-
based remote sensing of cloud properties exist in the Arc-
tic at a small number of coastal and interior land stations;
in addition, a number of field campaigns have been con-
ducted over the Arctic Ocean (see Uttal et al., 2015, and ref-
erences therein). In the Antarctic, field stations are sparsely
located, principally on the coast, and have fewer instruments
for measuring cloud properties than in the Arctic. In ad-
dition to cloud measurements from existing field stations
and past campaigns (Bromwich et al., 2012, and references
therein), the Atmospheric Radiation Measurement (ARM)
West Antarctic Radiation Experiment (AWARE) is making a
broad suite of measurements from November 2015 to 2017.
Nevertheless, there remains a dearth of surface-based remote
sensors in the Antarctic. The lack of instrumentation at both
poles is due largely to the expense and logistical challenge
of deploying instruments in these remote regions. A lack
of autonomous sensors prevents collection of data at loca-
tions other than established stations. New instruments are
needed that address these challenges, in particular designs
intended for the purposes of both climate monitoring and
process studies representing a more comprehensive range of
regional high-latitude climates.

Surface-based infrared spectrometers, such as the At-
mospheric Emitted Radiance Interferometer (AERI) of the
ARM program, are proven instruments that have been used to
retrieve cloud temperature or height in the Antarctic (Mahesh
et al., 2001) and Arctic (Rathke et al., 2002). There have been
a limited number of cloud-height retrievals from surface-
based infrared spectrometers because cloud height is more
typically measured by co-located active instruments. How-
ever, a legacy of cloud-height retrievals from stand-alone
passive infrared remote sensors on satellites has demon-
strated the usefulness of this approach and led to refined re-
trieval methodologies (e.g., Smith and Platt, 1978; Minnis
et al., 2001; Kahn et al., 2007). Infrared spectrometer tech-
nology can be relatively low-cost, with energy requirements
that are considerably lower than active instrumentation such
as lidar (e.g., Christensen et al., 2004). Thus, portable, au-
tonomous infrared spectrometers are a viable solution for ac-
quiring long-term, high temporal resolution, surface-based
measurements of clouds and the atmospheric state from a
more spatially diverse and comprehensive sample of the high
latitudes, including over sea ice. Evaluating the requirements
for accurate cloud-height retrievals is a first step towards de-
velopment of such a system.

Here we evaluate the potential for using an autonomous
infrared spectrometer capable of being deployed in remote

regions for retrieving cloud-base height. In particular, noise
characteristics depend on instrument resolution (which lim-
its the instrument throughput), and hence noise decreases
as resolution becomes coarser. Thus we also test the effects
of instrument resolution on the accuracy of cloud-height re-
trievals. Since such an instrument is currently hypothetical,
our analysis makes use of a simulated dataset from Cox et al.
(2016). Using simulated data also affords a number of use-
ful advantages for evaluating design aspects of an infrared
spectrometer by permitting control over the sources of er-
ror and maintaining a fixed and known standard for com-
parison. This allows uncertainties associated with retrieval
methodology and instrument characteristics to be isolated.
Two established methods for retrieving cloud height using
spectrally resolved infrared instruments, the minimum local
emissivity variance (MLEV) technique (Huang et al., 2004)
and the CO2 slicing (e.g., Menzel et al., 1983; Mahesh et al.,
2001) and sorting (Holz et al., 2006) technique, are further
developed and intercompared here. Although these have been
compared for satellite-based retrievals from upwelling radi-
ances (Holz et al., 2006), they have not been compared for
retrievals from downwelling radiances or with consideration
of variability in noise characteristics and spectral sampling
between different types of spectrometers, which are key engi-
neering barriers to developing an autonomous surface-based
system. Here we evaluate and compare these techniques to
determine relative accuracies for surface-based retrievals of
downwelling radiance in the Arctic and to constrain the in-
strument requirements for providing cloud-height informa-
tion from an infrared spectrometer that is designed for au-
tonomous deployment.

2 Simulated radiances

To serve as surrogates for measured downwelling radiances
for the cloud-height retrievals, simulated cloudy-sky radi-
ances are used. A wide variety of simulations were created,
described in detail by Cox et al. (2016), and summarized
here. Perfect resolution spectra were created using the Line-
by-Line Radiative Transfer Model (LBLRTM) (Clough et al.,
2005) and the DIScrete Ordinates Radiative Transfer (DIS-
ORT) model (Stamnes et al., 1988), for a spectral range of
50 to 3000 cm−1 (spectra in the range 500 to 950 cm−1 are
used in this work). This dataset is designed to be of use for
feasibility studies of retrievals such as the present study. The
simulated dataset allows tests of retrieval accuracy to focus
on a few variables, while constraining others. To this end, the
cloud and atmosphere modeling included only single-layer
clouds, and a plane-parallel atmosphere was assumed. First,
a base set of cases was created with ice modeled as spheres
and vertically homogenous clouds. This allowed testing the
accuracy of cloud retrievals for idealized cases. Second, a
subset of more complex cloud simulations was created (these
include spectra developed by Cox et al. (2016) as well as ad-
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Figure 1. Reproduced from Cox et al. (2016). Distributions of
macrophysical properties for 222 simulated clouds. (a) Cloud-base
height (black) and cloud-top height (green); (b) physical thickness;
(c) cloud mean temperature. The vertical lines in (c) represent the
physical limits imposed on the cloud phase; liquid is present above
the lower limit, while ice is present below the upper limit.

ditional spectra created in a similar manner). These are de-
scribed below.

2.1 Base dataset

For the base dataset, a variety of typical Arctic atmospheres
are represented, including conditions for all four seasons and
a variety of cloud types. Because of the high incidence of
mixed-phase clouds in polar regions, both single-phase and
mixed-phase clouds are included. Temperature-dependent
single-scattering parameters are used for liquid (see Rowe
et al., 2013, and references therein), while single scatter-
ing parameters for ice spheres are from Warren and Brandt
(2008). In the base dataset, mixed-phase clouds are mod-
eled as externally mixed in a single layer. Cloud-base heights
range from 0 to 7 km with temperatures ranging from 225 to
283 K. Figure 1, reproduced from Cox et al. (2016), shows
the distributions of cloud height, thickness, and temperature
for the base dataset. Overall, the atmospheric temperature
and humidity profiles as well as the cloud optical depths,
phases, effective radii, and cloud heights used in the model
are intended to be realistic for the Arctic. Temperature inver-
sions are included and cloud heights are typically low with
fewer high clouds. Total cloud optical depth referenced to

the visible region (hereafter termed cloud optical depth for
brevity) varies from 0 to 12. Cloud optical depth divided by
cloud physical thickness (a proxy for visible extinction co-
efficient) varies from 0 to 0.01 m−1 near the surface and 0
to 0.001 m−1 above 4 km. To test the limits of cloud prop-
erty retrievals, a few extreme and/or less likely cases were
included. For example, the dataset includes a few cases of
clouds with optical depths that are extremely low (< 0.2) and
includes high clouds that are optically thick as well as thin.
Precipitable water vapor (PWV) amounts span the range typ-
ical of the polar regions, but some cases are included that
are quite high for the polar regions (mean= 1 cm, standard
deviation= 0.72 cm, maximum= 3 cm, minimum= 0.2 cm).
The base set is comprised of 222 clouds. Of these, 157 have
bases below 2 km (hereafter referred to as “low clouds”) and
65 have bases above 2 km (hereafter referred to as “high
clouds”). While all simulations are for single-layer clouds,
the cloud layer spans multiple model layers for 69 % of the
low clouds (108 out of 157). This base set allows determi-
nation of the accuracy of the retrievals for varying atmo-
spheric temperature and humidity profiles, precipitable water
vapor amounts, cloud heights, temperatures, optical depths,
ice fractions, and effective radii for clouds that are otherwise
simplistic. In this work, the base dataset is used for analyses
unless otherwise noted.

Unlike clouds in the base dataset, real clouds are verti-
cally and horizontally inhomogeneous, vary temporally, and
consist of a variety of ice habits. Simulations that account
for these variations were created with other atmospheric and
cloud properties held constant. For this purpose, subsets of
the base set of clouds were selected.

2.2 Subset: cloud inhomogeneity

Cloud inhomogeneity includes vertical variation through the
cloud, horizontal variation over the instrument field of view,
and variation with time during the timespan of a measure-
ment. For testing the effects of cloud inhomogeneity, cases
were selected in which clouds span multiple model layers
(to simulate vertically varying cloud properties), have opti-
cal depths greater than 0.5 (retrievals using the base dataset
indicate that for optical depths less than about 0.5 the cloud
signal is often too low for accurate retrievals), and are mixed
phase (ice fractions between 0.2 and 0.8). This subset con-
sists of 23 cases. From this subset, simulations were rerun
with various attributes modified. To allow isolation of errors
due to various assumptions, each new simulation was mod-
ified in only one respect; in all 92 additional spectra were
created. Modifications include the following.

To simulate vertically inhomogeneous clouds, the cloud
optical-depth profile was set to increase linearly with height
from 0 at the cloud base to a maximum at the cloud center,
then decrease to 0 at the cloud top. Based on this optical-
depth profile, and accounting for the physical thicknesses of
the model layers, cloud optical depths were calculated for
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each model layer. Thus, for a three-model-layer cloud with
layers of equal physical thickness, the top-layer optical depth
would be 25 % of the total, the middle layer 50 %, and the
bottom layer 25 %. The total optical depth through the cloud
is the same as in the corresponding base dataset case, and ice
fraction (with respect to optical depth) is kept the same.

For horizontally and temporally varying cloud simula-
tions, the cloud measurement is expected to be a linear com-
bination of spectra of different clouds. Such spectra were cre-
ated by averaging spectra. First, an additional set of simula-
tions for physically thin clouds was created by placing all
cloud optical depth in the middle model layer. Simulations
of these physically thin clouds, the set of vertically inhomo-
geneous clouds described above, and the base dataset were
then averaged to simulate time averages of clouds that vary
from physically thin and dense to thicker and more diffuse.

Because measurements indicate that Arctic clouds are of-
ten composed of an ice layer topped by a liquid layer, liquid-
topped clouds were created by placing all cloud liquid in the
top model layer and placing all ice in the model layers below.
Total optical depths of liquid and ice were kept the same as
in the corresponding cases from the base dataset.

2.3 Subset: ice habit

To create a subset of cases suitable for testing the effect of
ice habit on retrievals, cases were selected for which ice op-
tical depth was greater than 0.5 and ice fraction was greater
than 0.5 %. While 79 such cases exist, 15 representative cases
were selected. These include seven low clouds and eight high
clouds. For both low and high clouds, winter, summer, and
transition (spring/fall) seasons are represented, and optical
depth varies from 0.8 to 5. The 15 cases, for five ice habits,
represent 75 additional simulations. Spectra were simulated
for this subset for the following ice habits: hollow bullet
rosettes, smooth plates, rough plates, smooth solid columns,
and rough solid columns, using the single scattering param-
eters of Yang et al. (2005, 2013). Further details about these
simulations are provided in Cox et al. (2016).

2.4 Spectral resolution

The perfect resolution spectra were convolved with sinc
functions to create sets of simulated cloudy-sky radiances
at resolutions of 0.1, 0.5, 1, 2, 4, and 8 cm−1. These simu-
lated cloudy-sky radiances serve as the “observations”, Robs,
used to test the cloud-height retrievals. Some examples are
shown in Fig. 2 at resolutions of 0.5 and 4 cm−1. Absorp-
tion lines are clearly evident at the finer spectral resolution
but are smoothed out at the coarser resolution. At around
667 cm−1 the radiance depends on the surface tempera-
ture and clouds have negligible effect. Moving from 667 to
710 cm−1, the effects of temperature inversions are evident:
a decreasing radiance indicates temperatures decreasing with
height, whereas an increasing radiance indicates tempera-

W

Figure 2. (a) Downwelling radiance spectra at a resolution of
0.5 cm−1, for visible optical depths, cloud-base heights, and tem-
peratures shown in legend. (b) Same but at a resolution of 4 cm−1

for a cloud-base height of 1.4 km and temperature of 249 K.

tures increasing with height. In panel (a), the uppermost three
spectra have similar optical depths (≈ 2) but different cloud-
base temperatures; the radiance decreases in the window re-
gion (750 to 1300 cm−1) with decreasing cloud temperature.
(Note that the lower two spectra have lower optical depths,
with an optical depth of 0 indicating clear skies.) In panel (b),
atmospheric profiles are identical and the cloud-base height
is 1.4 km for all clouds, but the optical depth varies. The radi-
ance decreases with decreasing optical depth in the window
region. Note also that the shapes of the spectra differ for op-
tical depths of 3.8 and 3.1; spectral shape also depends on
thermodynamic phase, effective radius, and ice habit.

3 Cloud-height retrieval methods

In this section, we first derive the equations central to the
CO2 slicing/sorting and MLEV methods. The derivation is
similar to but differs slightly in symbols and development
from those of Mahesh et al. (2001), Holz et al. (2006), and
Huang et al. (2004) to illustrate some key points. Next, we
describe MLEV, followed by the CO2 slicing method as ap-
plied by Mahesh et al. (2001) and the CO2 slicing/sorting
method of Holz et al. (2006). MLEV and CO2 slicing/sorting
typically use radiances from within 710 to 950 cm−1 (refer
back to Fig. 2) and ignore scattering. Holz et al. (2006) im-
plement the CO2 slicing differently than Mahesh et al. and
also introduce “CO2 sorting”, whereby wavenumbers are se-
lected after sorting them roughly according to their atmo-
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spheric transmittance. Finally, we describe modifications to
the MLEV and CO2 slicing/sorting methods made in this
work. For MLEV, the method is modified for downwelling
radiances, while for CO2 slicing and sorting the best aspects
of the methods of Holz et al. (2006) and Mahesh et al. (2001)
are combined, based on experimentation with retrievals from
the dataset of simulated Arctic downwelling radiances. The
retrievals all assume a zenith view.

3.1 Cloud emissivity

Both MLEV and CO2 slicing depend on approximations in-
volving the cloud emissivity over the wavenumber range
of interest: MLEV assumes it is smoothly varying with
wavenumber, while CO2 slicing traditionally assumes it is
constant. Ignoring scattering, the observed downwelling ra-
diance for a zenith view, Robs, is

Robs ≈

TOA∫
0

B(T (z))
dt
dz

dz, (1)

where the parentheses represent functionality,B is the Planck
function, T is temperature, z is height, t is the transmittance
from the surface to z, and the integration is from the surface
(height of 0) to the top of atmosphere (TOA). The integral
can be broken up into contributions from the surface to the
cloud base (base), from cloud base to cloud top (top), and
from cloud top to the TOA. The radiance contribution from
the surface to the cloud base (Rc) is unaffected by the pres-
ence of the cloud.

Robs ≈ Rc+

top∫
base

B(T (z))
dt
dz

dz+

TOA∫
top

B(T (z))
dt
dz

dz (2)

If we assume that the cloud is in an infinitesimally thin
layer (zbase = ztop) devoid of gases (i.e., gaseous transmit-
tance within the cloud equals unity), a number of simplifi-
cations are possible. We let B(T (zbase))= B(T (ztop))= Bc,
the Planck function at the cloud temperature. The first in-
tegral on the right-hand side can then be solved to give
Bc[1− tcld]tc, where tc is the gaseous transmittance from the
surface to the cloud base and tcld is the cloud transmittance.
We have

Robs ≈ Rc+Bctc[1− tcld] + tcld

TOA∫
top

B(T (z))
dt ′

dz
dz, (3)

where t ′ is the cloud-free transmittance from the surface to
height z. The final integral is the radiance contribution from
above the cloud that makes it through the gaseous atmo-
sphere below the cloud; it is independent of the cloud pres-
ence and is equal to Rclr−Rc. Assuming local thermody-
namic equilibrium (and again ignoring scattering), the cloud

absorptivity equals the emissivity, so that (1− tcld)= ε. We
can ignore the cloud fraction when the instrument field of
view is small, but the emissivity can also be thought of as an
effective emissivity that takes into account any patchiness in
the cloud within the field of view.

Robs ≈ Rc+ εBctc+ [Rclr−Rc]tcld (4)

Substituting in (1− ε) for tcld and simplifying gives

Robs ≈ Rclr+ ε[Bctc+Rc−Rclr]. (5)

The equation can be rearranged to solve for the emissivity:

ε ≈
Robs−Rclr

Bctc+Rc−Rclr
. (6)

Eq. (6) is comparable to Eq. (4) of Huang et al. (2004) and
Eq. (2) of Holz et al. (2006), where Rcld = Bctc+Rc. The
equation in the form shown here demonstrates that cloud
height and effective emissivity are very closely connected,
making cloud-height retrievals challenging. Bc depends on
cloud temperature, which in turn depends on cloud height,
and tc and Rc both depend on cloud height. Thus errors in
cloud height can be largely accounted for by errors in emis-
sivity.

The right-hand side of Eq. (6) depends on the observed ra-
diance, Robs, and quantities that can be calculated based on
knowledge of the cloud-free atmospheric state. In this work,
Rclr and Rc are calculated from atmospheric profiles of pres-
sure, temperature, and trace gas amounts, using similar ra-
diative transfer calculations as those performed by LBLRTM
(Clough et al., 1992). Rclr need only be calculated once,
whereas tc and Rc are calculated for each potential cloud
height. Rclr, tc, and Rc all include gaseous contributions and
therefore vary rapidly with frequency. By contrast, ε and Bc
should vary slowly with frequency.

To summarize the model assumptions, they include mod-
eling the atmosphere as a plane-parallel, layered atmosphere
in local thermodynamic equilibrium, ignoring scattering, as-
suming the cloud is in an infinitesimally thin layer devoid of
gases, and assuming that the emissivity is slowly varying or
constant with frequency over ∼ 710–950 cm−1.

3.2 MLEV

To find the MLEV, ε is calculated for each potential cloud
height, c, for wavenumbers between limits ν1 and ν2. The
“local” emissivity variance (LEV) is then calculated accord-
ing to Eq. (5) of Huang et al. (2004):

LEVc =

ν2∑
ν1

(εc,ν −〈εc,ν〉)
2, (7)

where this is defined as the local emissivity variance because
the mean of ε is not taken over the entire spectral range ν1 to
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ν2 but rather over a small wavenumber region (1ν) about ν:

〈ε(c,ν)〉 =
1
1ν

ν+1ν/2∑
ν−1ν/2

εc,ν . (8)

Huang et al. (2004) use ν1 = 750 and ν2 = 950 cm−1 in
Eq. (7) and use an interval of 1ν = 5 cm−1 in Eq. (8). When
Eq. (7) is calculated with an incorrect height, errors in the
calculated values of tc andRc result in errors in the calculated
effective emissivity that vary rapidly with frequency due to
the dependence of tc and Rc on trace gases, causing the LEV
to be large. Thus the correct cloud height is retrieved as that
corresponding to the minimum LEV, or MLEV.

In this work, the MLEV method is performed similarly to
that of Huang et al. (2004) but for downwelling radiances and
for a variety of different spectral resolutions. Furthermore, all
values are calculated for the desired instrument resolution.
This is done by convolving Rclr, tc, and Rc with a sinc func-
tion with the desired linewidth. As in Huang et al. (2004), we
use ν1 = 750 and ν2 = 950 cm−1. For resolutions of 0.5 and
1 cm−1, we use an interval of 1ν = 5 cm−1 in Eq. (8) (cor-
responding to averaging over 10 or 5 spectral points, respec-
tively), like Huang et al. (2004). However, for a resolution of
2 cm−1, we use 1ν = 10 cm−1 (average over 5 points), and
for resolutions of 4 and 8 cm−1 we use1ν = 24 cm−1 (aver-
age over 6 or 3 points, respectively). Small variations about
these values were found to give similar results.

The steps for MLEV are as follows.

1. Choose model heights (layer boundaries) for the model
atmosphere. Calculate Rclr. Calculate Rc, Bc, and tc for
each model height for the clear-sky atmosphere based
on best estimates of temperature, water vapor, and trace
gas amounts.

2. Calculate the LEV (Eqs. 6–8) for each trial cloud height.

3. Find the height that corresponds to the MLEV.

3.3 CO2 slicing and sorting

In Mahesh et al. (2001), CO2 slicing makes use of the varia-
tion in the absorption coefficient of the CO2 band from∼ 700
to 755 cm−1, where CO2 emission dominates. (Unlike H2O,
CO2 is a well-mixed gas and thus can be estimated fairly ac-
curately from surface measurements.) Rearranging Eq. (5),
including the wavenumber dependence explicitly, and divid-
ing both sides by the same quantities at a reference wavenum-
ber, ν0, gives

Robs(ν)−Rclr(ν)

Robs(ν0)−Rclr(ν0)
= (9)

ε(ν)[Bc(ν)tc(ν)+Rc(ν)−Rclr(ν)]

ε(ν0)[Bc(ν0)tc(ν0)+Rc(ν0)−Rclr(ν0)]
.

The value of ν is varied from ∼ 700 to 755 cm−1, while ν0
is chosen to be a wavenumber close to this spectral region

but where the absorption coefficient of CO2 is small enough
(i.e., the transmittance is large enough) that the downwelling
radiance is sensitive to the entire atmospheric column (Ma-
hesh et al., 2001, chose ∼ 812 cm−1). It is next assumed that
the emissivity is constant from 700 to 812 cm−1, so that the
emissivity terms cancel.

Robs(ν)−Rclr(ν)

Robs(ν0)−Rclr(ν0)
= (10)

Bc(ν)tc(ν)+Rc(ν)−Rclr(ν)

Bc(ν0)tc(ν0)+Rc(ν0)−Rclr(ν0)

The left-hand side (LHS) of Eq. (10) is constant, while the
right-hand side (RHS) varies with assumed cloud height. So-
lutions are found at each wavenumber where the RHS equals
the LHS, giving a retrieved cloud height for each ν. When
the RHS is not equal to the LHS at any height, the solution is
found where the magnitude of the difference (RHS−LHS)
is smallest. Due to model and measurement errors, retrieved
cloud heights vary for different values of ν. (Note that Ma-
hesh et al., 2001, retrieve cloud-base pressure rather than
height; in this work, cloud-base height is retrieved.) Mahesh
et al. take a weighted average of the results obtained, where
the weights are the change in the RHS with a change in the
pressure at the cloud base, determined in a 10 hPa interval
centered about the retrieved cloud-base pressure. This typi-
cally provides more weight to wavenumbers with “e-folding”
distances close to the cloud base.

Multiple solutions may exist at a given ν due to errors or
due to the presence of near-surface temperature inversions,
which are common in the polar regions. Due to a tempera-
ture inversion, the cloud temperature may exist at more than
one height. Because the retrieval methodology relies to a
large extent on sensitivity to cloud temperature (rather than
height), choosing between heights having the same temper-
ature can be challenging. To do this, the best result is de-
termined for each set of solutions (e.g., the set below the
inversion and the set above the inversion). Then, to choose
between sets of cloud bases above and below a temperature
inversion, Mahesh et al. (2001) perform a second step us-
ing “short-sighted” wavenumbers. Short-sighted wavenum-
bers are those with low transmittances, and are sensitive to
low clouds but not high clouds. Mahesh et al. find the per-
centage of short-sighted wavenumbers at which a cloud is
detected. When this is large, the cloud base is assumed to
be within the inversion; when it is small, the cloud base is
assumed to be above the inversion.

The CO2 slicing/sorting method of Holz et al. (2006) re-
fines the CO2 slicing technique by selecting a subset of
wavenumbers within 650 to 800 cm−1 to use for the re-
trieval. Wavenumbers are sorted roughly according to the
gaseous transmittance. For downwelling radiances, the trans-
mittance is defined from the surface up to some level in
the atmosphere. As the transmittance increases with (sorted)
wavenumber, the effective emitting height becomes higher.
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Holz et al. (2006) use clear-sky brightness temperature as
a proxy for clear-sky transmittance. (As will be discussed,
this is a reasonable proxy when temperatures decrease with
height in the troposphere, which is not always the case
for this work.) First, clear-sky brightness temperatures are
sorted. The sorted index is then applied to cloudy-sky bright-
ness temperatures. Sorted clear-sky and cloudy-sky bright-
ness temperatures are then compared to determine at which
wavenumbers they differ. Sorted wavenumbers are only used
in the retrieval when the clear-sky and cloudy-sky brightness
temperatures differ. This sets the lower limit in the gaseous
transmittance such that wavenumbers that have little sensi-
tivity to the cloud are excluded from the cloud-height de-
termination. An upper limit in gaseous transmittance is also
selected, based on where the slope of the brightness temper-
ature decreases. Finally, Holz et al. found results were im-
proved when only wavenumbers between strong CO2 absorp-
tion lines were used.

Once the subset of wavenumbers to be used has been
determined, a unique cloud height is determined for each
wavenumber in a similar manner as for CO2 slicing, but us-
ing a different formulation, which is designed for upwelling
radiances (see Eq. 1 of Holz et al., 2006).

After a unique cloud height has been found for each
wavenumber, the method for determining the best overall
cloud height also differs from that of Mahesh et al. (2001).
Instead of weighting the cloud heights, an error function is
computed for each retrieved cloud height, c.

Err=
∑
ν′

Robs(ν)−Rclr(ν) (11)

− εc(ν0) [Bc(ν)tc(ν)+Rc(ν)−Rclr(ν)]

The sum is over the selected wavenumbers, ν′. The optimal
cloud height is chosen as that which minimizes this equation.

This work uses aspects of the CO2 slicing method of Ma-
hesh et al. (2001) as well as the CO2 slicing/sorting method
of Holz et al. (2006) and additional adaptations for compu-
tational efficiency and for cloud retrievals specifically from
downwelling radiance measurements made in the polar re-
gions. Based on detailed sensitivity studies and trial and er-
ror, the following modifications were made.

CO2 sorting is applied slightly differently in this work.
The use of brightness temperature as a proxy for transmit-
tance, as in Holz et al. (2006), is not a good approximation in
the polar regions. While gaseous transmittance, which is de-
fined relative to the surface, always decreases with height,
clear-sky brightness temperatures do not always decrease
with height in the polar regions; they can increase with height
within near-surface temperature inversions, which are com-
mon in the polar regions. Thus in our method, wavenumbers
are sorted by gaseous transmittance from the surface to the
TOA, tTOA. The gaseous transmittances are calculated for
each measured radiance spectrum (at the desired resolution)
based on the clear-sky atmospheric state and then sorted.

Another difference in our application of sorting involves
setting the threshold for choosing the wavenumbers to use.
Within the spectral range of 700 to 750 cm−1, at some
wavenumbers CO2 transmits so little radiance that there is
little sensitivity to cloud. At these wavenumbers, Robs−Rclr
is expected to be on the order of the uncertainty. Thus a
threshold is needed for which there is adequate cloud sig-
nal for the retrieval. A threshold of 0.5 RU is used here
(1 RU, or radiance unit, is defined to be 1 mW/(m2 sr cm−1)).
The gaseous transmittance tthresh determined as the trans-
mittance for which the magnitude of Robs−Rclr is equal to
0.5 RU, and wavenumbers (ν) are selected that correspond to
tTOA ≥ tthresh. A final difference is that an upper wavenum-
ber cutoff of 755 cm−1 is used, rather than estimating a cut-
off based on the slope of the brightness temperature; the re-
trieval is not sensitive to small variations in the choice of
upper wavenumber.

Like Mahesh et al. (2001), we use short-sighted wavenum-
bers to distinguish between multiple solutions. However,
whereas Mahesh et al. found that wavenumbers between 670
and 700 cm−1 are sensitive to clouds within the inversion,
this wavenumber range was found to have negligible sensi-
tivity to clouds at any height for the atmospheric profiles used
here. Instead, the best wavenumber range for the atmospheric
profiles used here is found to be 705 to 715 cm−1. In addition,
sensitivity studies indicate that a method that gives more ac-
curate results than the method employed by Mahesh et al.
is to once more find the solution that minimizes the error
function given in Eq. (11), this time summing over the short-
sighted wavenumbers (step 10 below). These short-sighted
wavenumbers are where the transmittance is low and thus
generally represent wavenumbers that were excluded in cal-
culating the error function previously. The steps of the CO2
slicing/sorting method used in this work are summarized as
follows.

1. Choose model heights (layer boundaries) for the model
atmosphere. Calculate Rclr. Calculate Rc, Bc, and tc for
each model height for the clear-sky atmosphere based
on best estimates of temperature, water vapor, and trace
gas amounts.

2. Calculate the LHS of Eq. (10).

3. Calculate the RHS of Eq (10) for each model height and
for each wavenumber.

4. Use CO2 sorting to choose the best set of wavenumbers
for the retrieval; these are typically between 720 and
755 cm−1.

5. Find the height(s) at which the LHS and RHS agree best
(interpolate to find where they cross or, if they never
cross, determine where the difference is a minimum) for
each wavenumber selected by CO2 sorting.

6. Calculate the emissivity at the reference wavenumber,
εc(ν0), using Eq. (6), for each cloud height (c) retrieved.
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This yields sets of cloud heights retrieved, comprised of
one height for each selected wavenumber within each
set, with corresponding reference emissivities. For ex-
ample, there might be a set of cloud heights retrieved
(clower set(ν)) corresponding to heights below the inver-
sion and a set (chigher set(ν)) above the inversion.

7. Calculate the error function as in Eq. (11) for the height
retrieved at the first wavenumber, c = clower set(ν = ν1),
using the corresponding εc(ν0) and Bc(ν), tc(ν), and
Rc(ν).

8. Repeat step 7 for each of the remaining selected
wavenumbers (ν = ν2, etc). Find zc,lower set that corre-
sponds to the minimum error. This yields a single cloud-
height retrieval (cret, lower set).

9. Repeat 7 and 8 for the higher set of retrieved heights,
yielding a single cloud-height retrieval (cret, higher set).

10. To choose between cret, lower set and cret, higher set, calcu-
late the error function again for each of them. However,
this time use the short-sighted wavenumbers; these are
typically between 705 and 715 cm−1.

4 Results

In this section we demonstrate cloud-height retrieval accu-
racy for the simulated spectra, including comparison of the
results of the MLEV and CO2 slicing/sorting methods as
adapted for this work against the true cloud-base heights,
and characterize the effects of ice habit, cloud inhomogene-
ity, temporal averaging of measured spectra, and sources of
error. To understand how different hypothetical instrument
specifications and varying amounts of ancillary information
affect the results, the comparisons are made with and with-
out imposed errors (e.g., instrument noise and bias and un-
certainty in the water vapor and temperature profiles) and as
functions of instrument resolution.

4.1 Cloud mask and retrieval capability

An important aspect of a cloud-height retrieval algorithm is
that it must be able to determine whether there is a cloud
present. Figure 3a shows a scatter plot of cloud height re-
trieved using CO2 slicing/sorting vs. true cloud-base height,
for the base dataset. For these retrievals, no errors were im-
posed, so the only error present is model error. The spectral
resolution is 0.5 cm−1. The points are color-coded according
to the cloud optical depth (in a real experiment, the optical
depth will not be known). Cases with high PWV(> 2.9 cm)
are indicated in red boxes; these points will be discussed
later. The true cloud bases are offset by a small random factor
so that the points are spread out slightly for better visibility;
the discrete cloud-base heights are evident for bases between
2 and 7 km.

Figure 3. Retrieved cloud height vs. true cloud base for cases with
no error and a simulated instrument resolution of 0.5 cm−1. The
CO2 slicing/sorting method (“Slice/Sort” in the figure) and MLEV
methods are described in the text. In the figure, a small positive
random number (mean of 0.2 km) was added to heights above 2 km
to separate points for clarity.

Retrieved cloud-base heights for clouds with very low op-
tical depths (less than 0.5; red and orange points) stand out as
having larger retrieval errors. These points constitute clouds
that are below the radiance detection threshold and therefore
need to be removed from the analysis. The cloud mask is set
according to a threshold for a difference between measured
and simulated radiance; for the wavenumbers selected using
CO2 sorting, a requirement that the root mean square (RMS)
difference between observed and clear-sky radiances differ
by at least 2.2 RU is found to remove most low-accuracy
points, as shown in Fig. 3b. All cases with cloud optical
depths below 0.25 were removed and many of the clouds
with optical depths below 0.5 were removed.

Examining Fig. 3b, we see that retrieved cloud base is
biased low for clouds above about 2 km (the mean bias is
−0.93 km). The bias gets worse, roughly, as clouds get thin-
ner. This bias occurs in large part because the emissivity
is assumed to be constant with wavenumber, but actually
varies slightly. For thinner clouds, the emissivity is typically
larger at wavenumbers in the numerator of Eq. (9) than at
the reference wavenumber (chosen here to be ∼ 811 cm−1),
in the denominator. Thus rather than canceling out, the fac-
tor ε(ν)/ε(ν0) is typically about 1.05 for high, thin clouds,
causing a bias of about −0.9 km on average. To remove this
bias, Eq. (10), used in step 3, is replaced with

Atmos. Meas. Tech., 9, 3641–3659, 2016 www.atmos-meas-tech.net/9/3641/2016/



P. M. Rowe et al.: Surface-based cloud-height retrievals 3649

Robs(ν)−Rclr(ν)

Robs(ν0)−Rclr(ν0)
= (12)

εc,rat(ν)
Bc(ν)tc(ν)+Rc(ν)−Rclr(ν)

Bc(ν0)tc(ν0)+Rc(ν0)−Rclr(ν0)
,

where εc,rat(ν) is determined at each trial cloud height (c) as
an estimate of the ratio of the emissivity at ν to the emissiv-
ity at ν0. For each trial height εc,rat(ν) is determined by first
calculating the emissivity, εc(ν), according to Eq. (6). While
εc(ν) should be smooth, the observed value is highly variable
due to errors. Errors are expected to be lowest where the sig-
nal is strongest. Thus the next step is to select the wavenum-
bers where the signal is the strongest; for this a subset of the
wavenumbers selected by CO2 sorting is used. When fewer
than 16 wavenumbers are selected by CO2 sorting, then no
emissivity smoothing is attempted; εc,rat(ν) is set to one; that
is, Eq. (12) is abandoned in favor of Eq. (10). When at least
16 wavenumbers are selected by CO2 sorting, then the 16
to 30 points with the highest signal are used. A straight line
is fitted to the emissivity at the selected wavenumbers, and
its value is divided by εc(ν0) to get an equation for εc,rat
for the selected wavenumbers. This equation is used for all
wavenumbers within the range of the first and last of the se-
lected wavenumbers. However, outside this range, εc,rat is set
to 1 because the weakness of the signal prohibits obtaining
an estimate of the emissivity that is better than the assump-
tion εc(ν)= εc(ν0), and examination of the true emissivity
indicates that it may not continue to fall on the straight line
determined by the fit at the selected wavenumbers.

Using a smooth, rather than constant, emissivity removes
much of the low bias observed in Fig. 3b for clouds with
bases above 2 km, as shown in Fig. 3c.

Returning to cases with high PWV (red boxes in panel a),
note that these occur for cloud-base heights near 2 and 4 km.
We see in panels (c) and (d) that these clouds are retrieved
quite accurately. It is generally true that these higher-PWV
cases can be retrieved accurately even when errors are im-
posed, except for when large errors exist in PWV itself.

Figure 3d shows the scatter plot for cloud heights retrieved
using MLEV. Comparing Fig. 3c and d, we see that both CO2
slicing/sorting and MLEV are quite accurate for single-layer
clouds in the absence of imposed errors.

fig:resultsScatterErrspt5fig:resultsScatterErrs4
In a real experiment, there are errors in the observed ra-

diance (noise or bias) and in knowledge of the atmospheric
state, most notably temperature and humidity. To probe the
effects of these sources of error, cloud heights are retrieved
with errors imposed on the temperature or water vapor pro-
files used in the retrieval or on the simulation of “observed”
radiance (noise or radiation bias). Detailed studies of a va-
riety of errors are summarized in Fig. 4 for a resolution of
0.5 cm−1 and Fig. 5 for a resolution of 4.0 cm−1. The pan-
els of these figures are scatter plots similar to Fig. 3c and d,
but both CO2 slicing/sorting (blue pluses) and MLEV (red

c         b c         bc         b

Figure 4. Retrieved vs. true cloud base for cases with the errors
shown in the titles for the CO2 slicing/sorting (Slice/Sort) and
MLEV methods (at a resolution of 0.5 cm−1; see text for descrip-
tion of errors). The dashed lines indicate the upper left region where
points rarely lie.

bbb ccc

Figure 5. Retrieved vs. true cloud base for cases with the errors
shown in the titles for the CO2 slicing/sorting (Slice/Sort) and
MLEV methods (at a resolution of 4 cm−1; see text for description
of errors). The dashed lines indicate the upper left region where
points rarely lie.
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Table 1. Errors in retrieved cloud height for clouds with bases below
2 km using the CO2 slicing/sorting and MLEV retrieval methods at
a resolution of 0.5 cm−1. Errors were determined by imposing a
source of error (source) on either the cloudy-sky radiance – noise
or radiation bias (bias) – or on the simulated radiances used in the
retrieval. For profiles, biases were imposed at all heights, except for
variable temperature errors (var.; see text) and errors in the tem-
perature inversion (inv.; see text). The mean error (mean) and the
standard deviation (SD) of the errors in retrieved cloud height are
given. There were 157 cases, of which some were omitted based on
screening (omit). The final two rows show estimates of the com-
bined error for realistic sources of errors, calculated as described in
the text.

CO2 slicing/sorting MLEV

Source Value Mean SD Mean SD Omit
(km) (km) (km) (km) (no.)

None – 0.16 0.34 0.14 0.48 30
Noise 0.2 0.13 0.38 0.07 0.40 30
Bias (RU) 0.2 −0.02 0.34 0.03 0.48 29
Bias (RU) −0.2 0.27 0.37 0.27 0.38 33
Temp. (K) 0.2 0.30 0.35 0.21 0.48 33
Temp. (K) −0.2 −0.01 0.34 0.02 0.49 29
Temp. (K) var. 0.28 0.34 0.22 0.45 30
Temp. (K) inv. 0.39 1.00 0.14 0.62 30
PWV (%) 3 0.16 0.34 0.19 0.49 31
PWV (%) −3 0.14 0.35 0.05 0.61 29
PWV (%) 10 0.16 0.34 0.21 0.60 34
PWV (%) −10 0.13 0.36 −0.12 0.67 26
Combined – 0.23 0.38 0.18 0.49 34
Combined – 0.01 0.33 −0.05 0.45 27

dots) are plotted in each panel. Error sources and amounts
are given in the titles (the black dashed line is discussed in
Sect. 5.2), and mean errors and the standard deviations of
errors are given in Tables 1 and 2. Errors are calculated as re-
trieved cloud height minus true cloud base. Panels a–f show
the results of biases in temperature, measured radiance, and
PWV. Positive temperature biases cause biases in simulated
radiances that are fairly smooth spectrally and thus have a
very similar effect as negative radiation biases, and likewise
for negative temperature biases and positive radiation biases.
However, for water vapor, the effect is complicated by spec-
trally varying line strengths, and PWV biases affect retrievals
differently, particularly positive PWV biases. Random errors
in temperature (see Tables 1 and 2) and PWV (not shown)
were also tested but were found to have a smaller effect than
bias errors due to partial cancellation. The effect of noise in
measured radiation is shown in panel (h). Larger PWV bi-
ases were also tested (10%; see Tables 1 and 2, not shown in
figure). In addition, errors due to failing to capture the tem-
perature inversion were calculated, as well as the effects of
estimated temperature and PWV errors based on errors found
in reanalysis data. Failing to capture temperature inversions
can have a large effect on low clouds (Fig. 4g). Expected er-
rors in reanalysis data cause retrieval errors of similar mag-
nitude as for biases in temperature (Fig. 5g) and PWV (not

Table 2. Errors in retrieved cloud height for clouds with bases
≥ 2 km using the CO2 slicing/sorting and MLEV retrieval methods
at a resolution of 0.5 cm−1. Errors were determined by imposing a
source of error (source) on either the cloudy-sky radiance – noise
or radiation bias (bias) – or on the simulated radiances used in the
retrieval. For profiles, biases were imposed at all heights, except for
variable temperature errors (var.) and errors in the temperature in-
version (inv.; see text). The mean error (mean) and the standard de-
viation (SD) of the errors in retrieved cloud height are given. There
were 65 cases, of which some were omitted based on screening
(omit). The final two rows show estimates of the combined error
for realistic sources of errors, calculated as described in the text.

CO2 slicing/sorting MLEV

Source Value Mean SD Mean SD Omit
(km) (km) (km) (km) (no.)

None – −0.10 0.33 0.01 0.19 32
Noise 0.2 −0.16 0.95 −1.28 1.27 32
Bias (RU) 0.2 −1.10 0.58 −0.69 0.35 29
Bias (RU) −0.2 0.60 1.63 0.38 0.20 32
Temp. (K) 0.2 0.87 1.80 0.44 0.24 32
Temp. (K) −0.2 −1.36 1.10 −0.86 0.46 29
Temp. (K) var. 1.02 1.74 −0.16 0.41 32
Temp. (K) inv. −0.58 1.23 −0.55 0.91 32
PWV (%) 3 0.11 0.47 0.01 0.70 33
PWV (%) −3 −0.30 0.50 −1.02 0.76 27
PWV (%) 10 0.54 0.87 −2.24 1.92 35
PWV (%) −10 −0.84 0.74 −2.74 1.66 22
Combined – 0.67 1.73 −1.28 1.60 33
Combined – −1.04 0.67 −1.99 1.28 27

shown). To determine combined errors, two sets of retrievals
were performed with multiple errors imposed. First, noise of
0.2 RU (random error in measured radiance with a standard
deviation of 0.2 RU), radiation bias of 0.15 K, and negative
PWV bias of−3 % were imposed. This was then repeated for
the same noise but for negative temperature biases and posi-
tive PWV biases. Both sets of points are shown in panel (i) of
each figure, so that these panels have twice as many points as
other panels. As the figure and tables show, errors (except for
failing to capture the temperature inversion) typically affect
high clouds much more than low clouds, for which retrievals
remain quite accurate. This is not surprising given that high
clouds generally have a weaker signal due to the larger at-
mospheric column below, and the greater sensitivity to the
atmospheric column means they are more strongly affected
by errors in knowledge of the atmospheric state. These er-
rors are discussed in detail in the discussion section.

4.2 Comparison of CO2 slicing/sorting and MLEV

In the absence of imposed errors, cloud-height retrievals
are slightly more accurate for CO2 slicing/sorting than for
MLEV for low clouds, while MLEV is slightly more accurate
for high clouds (Tables 1 and 2). Imposed errors are found
to have differing effects on CO2 slicing/sorting and MLEV
(Figs. 4 and 5). Overall MLEV is found to be more accurate
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Table 3. Errors in retrieved cloud height for macroscopically vary-
ing clouds (see text), using the CO2 slicing/sorting and MLEV re-
trieval methods at a resolution of 0.5 cm−1. For the upper set of
cases (error= n), no errors were imposed on the retrieval, while for
the lower set of cases (error= y) noise of 0.1 mW/(m2 sr cm−1) and
temperature bias of 0.1 K were imposed. The mean error (mean) and
the standard deviation (SD) of the errors in retrieved cloud height
are given.

CO2 slicing/sorting MLEV

Cloud type Error Mean SD Mean SD
(km) (km) (km) (km)

Dense n 0.20 0.35 0.11 0.39
Diffuse n 0.25 0.33 0.35 0.55
Inhomogeneous n 0.36 0.42 0.43 0.57
Temporally varying n 0.24 0.27 0.23 0.41
Liquid topped n 0.25 0.34 0.35 0.56

Dense y 0.11 0.47 0.12 0.49
Diffuse y 0.15 0.37 0.21 0.50
Inhomogeneous y 0.21 0.36 0.31 0.44
Temporally varying y 0.19 0.45 0.19 0.49
Liquid topped y 0.23 0.57 0.24 0.49

in the presence of biases in the observed radiance and biases
in temperature, while CO2 slicing/sorting is more accurate in
the presence of noise in the observed radiance and biases in
water vapor.

Factors that complicate how errors affect retrievals using
CO2 slicing/sorting include errors in the fitting of the emis-
sivity to a smooth function and changes in the strength of the
apparent cloud signal, which can affect screening-out due to
low signal. For example, positive biases can make the cloud
signal look stronger (fewer cases screened out), while neg-
ative biases can make it look weaker (more cases screened
out). For MLEV, the consequences of errors are not as clear
as for CO2 slicing/sorting; indeed, both positive and negative
biases in the water vapor profile (expressed as PWV in the
figure) result in negative biases in retrieved cloud height.

4.3 Dependence of cloud-height retrievals on cloud
inhomogeneity and ice habit

Sensitivity studies of the effects of cloud vertical, horizontal,
and temporal inhomogeneity were performed for the subset
of cases described in Sect. 2.2, for 0.5 cm−1 in the absence
of imposed errors and for imposed noise (0.1 RU) and tem-
perature error (0.1 K). Error statistics are compared in Ta-
ble 3. “Dense” clouds (physically thin) are found to have the
smallest mean bias, “diffuse” clouds (equivalent to cases in
the base dataset) have slightly larger mean biases, and “inho-
mogeneous” clouds (with optically thinner upper and lower
boundaries) have the largest mean biases. However, the stan-
dard deviations of the errors do not follow this trend. Tem-
porally varying clouds (or equivalently, horizontally varying
clouds) are averages of the dense, diffuse, and vertically in-

Table 4. Errors in retrieved cloud height for clouds with a vari-
ety of ice habits, using the CO2 slicing/sorting and MLEV retrieval
methods at a resolution of 0.5 cm−1. For the upper set of cases (er-
ror= n), no errors were imposed on the retrieval, while for the lower
set of cases (error= y) noise of 0.1 mW/(m2 sr cm−1) and temper-
ature bias of 0.1 K were imposed. The mean error (mean) and the
standard deviation (SD) of the errors in retrieved cloud height are
given.

CO2 slicing/sorting MLEV

Habit Error Mean SD Mean SD
(km) (km) (km) (km)

Sphere n 0.013 0.23 −0.14 0.45
Hollow bullet rosette n 0.013 0.25 −0.14 0.54
Smooth solid column n −0.007 0.28 −0.14 0.45
Rough solid column n −0.055 0.44 −0.14 0.45
Smooth plate n −0.033 0.32 −0.13 0.46
Rough plate n −0.072 0.40 −0.12 0.45

Sphere y −0.35 0.55 −0.44 0.54
Hollow bullet rosette y −0.40 0.59 −0.49 0.59
Smooth solid column y −0.32 0.43 −0.45 0.54
Rough solid column y −0.38 0.64 −0.41 0.60
Smooth plate y −0.43 0.73 −0.43 0.56
Rough plate y −0.35 0.44 −0.45 0.57

homogeneous clouds in the first three rows. Error statistics
for temporally varying clouds are typically intermediate be-
tween those for the clouds that make them up. In the absence
of errors, liquid-topped clouds have nearly identical statistics
as the base dataset counterparts (i.e., diffuse clouds), while
errors are slightly larger for CO2 slicing/sorting when errors
are imposed.

Sensitivity studies were also performed for simulations of
various ice habits. Error statistics are compared in Table 4.
For CO2 slicing/sorting in the absence of errors, mean biases
vary in sign and errors are slightly larger for non-spherical
ice habits. However, statistics for MLEV are nearly identical.
Furthermore, in the presence of even small errors, trends in
error statistics with ice habit disappear.

4.4 Dependence of cloud-height retrievals on resolution

Figure 6 shows the magnitude of the mean biases (solid
lines) and the standard deviations (dashed lines) of errors in
the retrieved cloud heights for MLEV (blue) and CO2 slic-
ing/sorting (red) as functions of instrument resolution. Up-
per panels are for high clouds and lower panels are for low
clouds. The left panels show retrieval errors in the absence of
imposed error, and the right panels are for combined errors
(cases with imposed errors of 0.2 RU noise, radiation bias
of −0.15 K, and water vapor bias of 3 % and cases with im-
posed errors of 0.2 RU noise, a temperature bias of 0.15 K,
and a water vapor bias of −3 %). (A single outlier each for
low clouds at 0.5 cm and 1.0 cm−1 were omitted.) Note that
mean biases are positive for low clouds and negative for high
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(a)
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SD

SD

Figure 6. Absolute value of mean error in retrieved cloud heights
and standard deviation in retrieved cloud heights as a function
of instrument resolution for (a) low clouds (cloud bases below
2 km) with no imposed error, (b) high clouds (bases of 2 km and
above) with no imposed error, (c) low clouds with imposed error,
and (d) high clouds with imposed error. The errors imposed are
0.1 mW/(m2 sr cm−1) noise in the cloudy-sky radiance and a bias
of −0.1 K in the temperature profile used for the retrieval.

clouds (or close to 0); the figure shows the absolute values of
the biases.

In the absence of error (left panels), retrieval errors in-
crease gradually overall as resolution becomes coarser, from
0.1 to 8 cm−1. Furthermore, in the absence of error, overall
MLEV is more accurate for high clouds, while CO2 slic-
ing/sorting is more accurate for low clouds. In the pres-
ence of imposed errors, behavior with resolution changes.
For high clouds, magnitudes of mean biases increase rapidly
with resolution for both methods between 0.5 and 1 cm−1,
while standard deviations of errors remain constant. For
low clouds, by contrast, mean biases remain fairly constant
with resolution, while standard deviations of errors increase.
Both represent increasing errors with coarsening resolution:
for high clouds this is due to increasingly negative biases,
while for low clouds this is due to increasingly variable er-
rors. Overall, errors are larger for MLEV than for CO2 slic-
ing/sorting when errors are imposed.

5 Discussion

5.1 Context with past studies

Mahesh et al. (2001) assume a variation of 3 % in the ratio
of emissivities ε(ν)/ε(ν0) (i.e., error due to the assumption
that emissivity is constant with wavenumber over the spec-
tral region used). In their analysis, this source of uncertainty
leads to uncertainty in retrieved cloud-base pressure of 5 to
13 mb (for a zenith angle of 45◦). Converting these to errors

in cloud-base height gives error estimates of 0.03 to 0.11 km
for low clouds (bases of 0.1 to 1 km) and 0.14 km for a sin-
gle high cloud at 2.1 km. In this work, we find that for high,
thin clouds the variation in ε(ν)/ε(ν0) is closer to 5 %, re-
sulting in biases of ∼−0.9 km for high clouds (above 2 km,
for a zenith view). Furthermore, we estimate that errors in
retrieved height due to other sources of model error are ap-
proximately 0.2± 0.3 km for low clouds and −0.2± 0.4 km
for high clouds. Thus this work expands on the error analysis
of Mahesh et al. (2001) and indicates that retrieval errors for
the CO2 slicing method applied to downwelling radiances
are larger than previously predicted. However, errors in ac-
tual cases will depend on the specific set of clouds sampled.

Holz et al. (2006) describe retrieval errors for CO2 slic-
ing/sorting, CO2 slicing (without sorting; not included here
as a separate category), and MLEV. Note, however, that
Holz et al. (2006) compare cloud-top height retrieved from
upwelling (aircraft-based) infrared radiances (nadir view,
0.5 cm−1 instrument resolution) to cloud heights from li-
dar measurements, whereas we compare cloud heights re-
trieved from simulated downwelling radiances at the surface
to known model cloud-base heights. Thus our results are not
suited for detailed comparisons. However, some general ob-
servations can be made. The results of Holz et al. (2006) sug-
gest that CO2 slicing/sorting is more accurate than MLEV for
retrievals of optically thin clouds (τ < 1.0) from measure-
ments of upwelling radiance. This study indicates that, for
downwelling radiances, the two are roughly equivalent and
highly accurate, in the absence of errors, while in the pres-
ence of errors accuracy is highly dependent on the source
of error. As an example, this work shows that humidity bi-
ases cause smaller errors for CO2 slicing/sorting than for
MLEV; thus one explanation for the higher accuracy Holz
et al. found for CO2 slicing/sorting could be errors in the
humidity profiles they used. In addition, this work suggests
that retrievals from upwelling radiance would benefit from
a combined CO2 slicing/sorting and MLEV method and can
suggest implementation strategies based on expected error
magnitudes. Finally, Holz et al. (2006) state that retrievals
are challenging for clouds below 3 km using upwelling ra-
diances. Since low clouds are retrieved most accurately us-
ing downwelling radiances, retrievals from surface-based in-
frared spectrometers provide an important complement to re-
trievals based on satellite measurements.

5.2 Dependence of cloud-height retrievals on cloud
inhomogeneity and ice habit

The cloud-height retrieval is based on the assumption that the
cloud is in an infinitesimally thin atmospheric layer, which is
characterized by a temperature and emissivity. Thus for real
clouds, which have a finite thickness, variations in tempera-
ture and emissivity through the cloud are important and the
retrieved cloud height corresponds to an effective emitting
height. Sensitivity studies here bear out this expectation, with
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physically thicker clouds having larger retrieval errors than
physically thinner counterparts. Furthermore, for optically
thinner clouds, the effective emitting height will be closer
to the cloud middle, while for optically thick clouds, it will
be closer to the cloud bottom. In keeping with this, clouds
with optically thinner boundaries were found here to have
larger retrieval errors compared to true cloud base. However,
standard deviations of errors do not follow these trends when
errors are imposed; this suggests that for real retrievals, the
effects of cloud vertical inhomogeneity will be less important
than other sources of error.

Varying the vertical distribution of cloud phase by plac-
ing liquid at the cloud top is also expected to move the cloud
effective emitting height upward, resulting in larger retrieval
errors. However, this is only borne out here for CO2 slic-
ing/sorting in the presence of imposed errors, for which er-
rors are slightly larger (mean biases are 0.1 km higher and
standard deviations of errors are 35 % larger). Converting
from a uniformly mixed cloud to a liquid-topped cloud is
expected to have a similar effect on retrieval errors as im-
posing an optical depth that increases moving up through the
cloud. Differences in statistics result because retrieved cloud
heights are typically higher than for homogeneous mixed-
phase clouds. (Note that these cases are all for clouds with
bases below 2 km; for higher clouds this positive bias will
work to counteract negative biases due to model errors.)

Error statistics for temporally varying clouds were found
to be generally intermediate between those for the clouds that
make them up, as expected. Thus we can expect that retrieved
cloud heights for temporally varying clouds, or for clouds
that vary horizontally within the instrument field of view,
will be similar to the average cloud height to within expected
retrieval error. Furthermore, an instrument such as the one
proposed here can be used to measure temporal cloud homo-
geneity and, using multi-angle measurements, cloud horizon-
tal inhomogeneity (Rathke et al., 2002; Neshyba and Rathke,
2003). Because of their considerably smaller fields of view,
knowledge of cloud inhomogeneity from surface-based mea-
surements would be a useful complement to satellite mea-
surements.

Sensitivity studies were also performed for simulations of
various ice habits. Differences are likely due to differences
in the shape of the emissivity spectra for different habits. Re-
call that the retrieval does not require any a priori knowl-
edge or assumptions about ice habit but rather relies on the
assumption that the emissivity is constant or varies slowly
with wavenumber; thus ice habit affects cloud property re-
trievals only inasmuch as it alters the frequency dependence
of the cloud emissivity. Ice habits that result in spectrally flat-
ter (i.e., closer to constant) emissivities should give more ac-
curate results, while ice habits that result in more spectrally
varying emissivities are expected to give less accurate results.
When a smoothly varying emissivity is fitted, details about
the variation of the emissivity, in combination with errors,
will determine relative accuracy of the retrievals in a man-

ner that is difficult to predict. Here, error statistics for MLEV
are found to be nearly identical for all ice habits. While er-
rors are found to be slightly larger for non-spherical habits
for CO2 slicing/sorting, in the presence of errors, trends in
error statistics with ice habit disappear. Thus differences in
statistics due to ice habit are likely to be negligible compared
to sources of error.

5.3 Effects of errors on cloud-height retrievals

Figure 4 and Tables 1 and 2, presented in the results section,
summarize errors for a resolution of 0.5 cm−1 for a variety of
sources of error. Table 1 summarizes error statistics for low
clouds and Table 2 for high clouds. After screening out cases
with cloud signal below 2.2 RU (see the columns indicated
by “omit”), errors in retrieved cloud height (retrieved–true
cloud-base height) are calculated for each remaining case.
The mean error, representing the mean bias in retrieved cloud
heights, and the standard deviation in the error are given in
the table. The effect of model error, which is present even
when no errors are imposed, is shown in the top row. Be-
cause model error is present for all retrievals, the value in the
table for each source of error is an overestimate. Cases were
omitted when the RMS radiance difference for cloudy/clear-
sky conditions (Robs−Rclr) was greater than a chosen thresh-
old (2.2 RU). The threshold was chosen that eliminated all
clouds with optical depths less than 0.25 and most with opti-
cal depths less than 0.5 in the absence of imposed error (re-
ferring back to Fig. 3a and b). In the presence of imposed
error, more clouds are screened out for errors that reduce
the cloudy-sky radiance or increase the clear-sky radiance,
and vice versa. This typically eliminated less than about 20
low-cloud cases. For high clouds, about half (24–36 out of
67) of the clouds were screened out. High clouds emit less
because they are colder and typically optically thinner than
low clouds; furthermore they have a longer transmission path
length through the atmosphere. Thus it seems likely that ap-
plying such a threshold to real measurements will also screen
out a greater proportion of high clouds (this was true in our
dataset despite the fact there is no statistical difference be-
tween the optical depths of high and low clouds). Tuning
the threshold to a higher value will remove more low-signal
cases, particularly high clouds.

For cloud retrievals in the polar regions using an au-
tonomous infrared spectrometer, noise and radiation bias rep-
resent instrument characteristics, while errors in the atmo-
spheric profiles will depend on the accuracy of knowledge of
the atmospheric state. In remote locations, this will in turn
depend on the accuracy of reanalysis data, such as from the
European Centre for Medium-range Forecasting (ECMWF)
Interim reanalysis dataset (ERA-Interim; Dee et al., 2011).
Wesslen et al. (2014) measured temperature and humidity
profiles and compared them to ERA-Interim. The measured
profiles were not assimilated into the reanalyses, and the lo-
cation of the measurements was distant from radiosonde as-
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similation sources. Thus, we assume the errors they found
in ERA-Interim temperature and humidity profiles are simi-
lar to what an autonomous spectrometer would experience in
remote locations. Based on their temperature errors, we also
performed retrievals for varying temperature errors: imposed
errors were 1 K at 10 km, decreasing to −0.5 K at 2 km, and
then increasing back to 1 K at 0.2 km. Because the tempera-
ture at the surface will be measured and thus known very ac-
curately, the imposed temperature error was reduced to 0 K
at the surface. As shown in Tables 1 and 2, the effect of the
varying temperature error based on Wesslen et al. (2014) was
found to be roughly equivalent to the effect of a positive tem-
perature bias of 0.2 K.

In addition to variable temperature errors, the effects of
using temperature profiles in the retrieval that fail to capture
temperature inversions were determined. Steep temperature
inversions are common in polar regions that can be difficult
to capture accurately from satellite. Such temperature inver-
sions are included in the atmospheric profiles used here (see
Cox et al., 2016). However, because measurements of surface
temperature would accompany a surface-based instrument,
extreme cases of error in profiling surface-based temperature
inversions would be apparent by comparing the temperature
measured near the instrument to the surface temperature in
the assumed profile. In addition to surface-based inversions,
aloft inversions are common, particularly in the presence of
a cloud. To address the effects of poorly profiled temperature
inversions, a set of retrievals was performed with temperature
inversions removed from temperature profiles used in the re-
trieval. Because the surface temperature would be known, the
true value was replaced in the erroneous profile, and errors
were allowed to increase over several layers to provide rea-
sonable temperature differentials across the lower layers (the
lowest model layers were set such that temperature differen-
tials would not be more than 1 K for the lowest 1 km and not
more than 5 K for the lowest 3 km). Resulting errors, shown
previously in (Fig. 4g), affect CO2 slicing/sorting more than
MLEV, particularly for low clouds, and thus MLEV might
be preferred for such cases. While surface-based temperature
inversions that were not captured by reanalysis data could
be identified and screened out from cloud-height retrievals,
a better use would be to perform the retrievals to provide
an important check on satellite and reanalysis data, correct-
ing for the surface inversion to the extent possible given the
known surface temperature and keeping in mind the elevated
uncertainties. (In fact the instrument proposed here could
also be used to improve temperature profiles, particularly for
the lower troposphere, as similar instruments have been in
use for such a purposes both from satellite and from the sur-
face. Such improvements would thus improve the reanalysis
results and therefore the input temperature to the cloud re-
trievals.)

For water vapor, Wesslen et al. (2014) find mean errors to
be typically positive and below 2 % for the first 3 km, after
which they increase to 5 to 10 % from 4 to 8 km. For this

work we assume a relative bias of 3 % throughout the atmo-
sphere. As for temperature, we assume the relative humidity
will be measured to high accuracy at the surface and cor-
rect the surface error to 0 %. This represents an underesti-
mate of error in the upper atmosphere; however, most of the
water vapor is in the lower atmosphere, where this represents
an overestimate of error compared to Wesslen et al. (2014).
Water vapor biases of ±3 % at all heights were assumed to
be roughly equivalent to the errors found by Wesslen et al.
(2014) for ERA-Interim. For comparison, water vapor errors
of 10 % were also calculated.

CO2 errors are expected to be on the order of 0.5 %, based
on the work of Alkhaled et al. (2008). Such CO2 errors were
found to produce negligible errors (not shown).

The final two rows of each table give estimates of com-
bined sources of error, estimated as follows. First, we note
that the effects of radiation bias and temperature bias are very
similar (compare Fig. 4a, b, d, and e), so only one needs to
be included; here we include radiation bias. We assume some
cancellation of errors between radiation bias and tempera-
ture and thus reduce the radiation bias to 0.15 RU, but we
assume no cancellation between radiation bias and water va-
por bias, pairing positive radiation bias with negative water
vapor bias. Thus we simulate the combined error budget by
imposing 0.2 RU for noise, 0.15 RU for radiation bias, and
−3 % for water vapor. This is expected to be roughly equiva-
lent to what is attained by combining errors in quadrature and
is referred to in this work as combined error. In Fig. 4i, the
combined errors are shown for both sets of calculations; there
are approximately twice as many points on panel (i) as the
other panels. For high clouds, errors for CO2 slicing/sorting
are highly variable and both positive and negative, while for
MLEV they are strongly negatively biased. This occurs be-
cause the sources of error tested do not cause strong positive
biases in MLEV (only strong negative biases) regardless of
the sign of the error.

As Table 1 shows, for low clouds, mean biases are almost
always positive and errors (as mean bias+ standard deviation
of error) are ≤ 0.65 km for all sources of error tested (except
for when temperature inversions are absent from the tempera-
ture profiles), illustrating the accuracy with which low clouds
can be retrieved. For high clouds (Table 2), the situation is
quite different; error magnitudes can be larger than 2 km for
a single source of error. It is thus important to distinguish
low clouds from high clouds. Referring back to Figs. 4 and 5,
note the dashed line in each panel. For all errors shown, only
a few points fall in the region to the upper left of this line, and
these are mainly in the presence of strong temperature inver-
sions. When a strong temperature inversion is present, only
clouds retrieved above 4 km by MLEV can be assumed to be
high clouds. Further, in extreme cases of misrepresenting a
steep temperature inversion, the same may be true for CO2
slicing/sorting. However, if the surface temperature suggests
the absence of a strong temperature inversion, the analysis
here indicates that large positive biases will not generally be
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found for retrievals of low clouds (for similar error levels).
Instead, positive biases will generally be limited to the value
shown by the line. For example, clouds with bases at 1 km
will not generally be retrieved above 3.5 km. This means that
when a high height is retrieved, the true cloud base is proba-
bly high. Furthermore, when MLEV and CO2 slicing/sorting
disagree by more than 2 km, the true cloud-base is probably
high. This allows accurate categorization of most clouds into
low or high in the absence of strong temperature inversions
and for well-characterized temperature inversions. As will be
shown in more detail for a resolution of 4 cm−1, errors are
strongly height dependent.

5.4 Hybrid methods

The fact that MLEV and CO2 slicing/sorting show different
susceptibilities to different sources of errors suggests that the
best method is to use them in combination. This is reason-
able as they use overlapping but distinct frequency regions.
The exact details of how this is done will depend on the rel-
ative magnitudes of errors for a given case, which in turn
depends on knowledge of the atmospheric state. However, a
few details are worth pointing out here.

Methods for combining MLEV and CO2 slicing/sorting
are worth pursuing but are beyond the scope of this work.
They could include combining them at the algorithmic level:
for example, in a Bayesian analysis that determines the op-
timal solution based on the intersection of the mean ±1
standard deviation probabilities for CO2 slicing/sorting and
MLEV. Otherwise, they could be combined post-retrieval
by calculating a weighted combination of retrieved cloud
heights for the two methods, where the weights depend on
the uncertainty levels of the radiance, knowledge of the at-
mospheric state, and retrieved heights. Regardless, how best
to combine CO2 slicing/sorting and MLEV will depend on
resolution and the magnitudes of sources of error and will
require estimates of how errors are propagated into errors in
retrieved cloud heights. The extra computational time taken
for running both CO2 slicing/sorting and MLEV is minimal
because the most time-consuming computations are the cal-
culations of Bc, tc, and Rc for each model layer, and this set
of calculations is identical for the two methods (see step 1
for each method in Sects. 3.2 and 3.3).

In addition to the methods discussed here, an additional
candidate for a hybrid cloud-height retrieval is one that re-
lies on multi-angle sky views. Rathke et al. (2002) used a
geometric method to retrieved cloud temperature from down-
welling infrared radiance spectra measured using the Univer-
sity of Puget Sound infrared spectrometer during the Surface
Heat Budget of the Arctic (SHEBA) campaign (see Rathke
et al., 2002, and references therein). This method was not
compared with the MLEV and CO2 slicing/sorting meth-
ods here for three reasons. First, they found RMS errors in
cloud temperatures to be 5.1 K, whereas errors for a spec-
tral method were found to be only 2.9 K (errors were deter-

mined by comparison to radiosonde temperature at the height
determined to correspond to the cloud base by co-located
lidar). Second, the multi-angle method is only appropriate
for horizontally homogeneous clouds. Third, the method re-
trieved cloud temperature and thus cannot distinguish be-
tween heights above and below an inversion. However, such
a method could help improve cloud-height determination for
homogeneous clouds by incorporation into a hybrid method
that makes primary use of the CO2 slicing/sorting method.
For example, a multi-angle method could be used to improve
knowledge of the spectral dependence of the emissivity. Ho-
mogeneous clouds can be identified using a simple test; cases
in which ln[1−Robs/Bc] is found to be inversely proportional
to the cosine of the zenith viewing angle are identified as ho-
mogeneous.

5.5 Effect of resolution on retrieval and choice of
instrument characteristics

For CO2 slicing/sorting in the absence of errors, the mag-
nitude of the mean bias in retrievals for high clouds in-
creases with resolution, with the bias changing from ∼ 0 km
at 2 cm−1 to −1 km at 4 cm−1 (refer back to dashed red line
in Fig. 6b, but note that the figures shows the absolute value
of the mean bias). This is primarily due to the assumption that
the emissivity is constant. As described previously, the vari-
ation of the emissivity with wavenumber results in a mean
bias of −0.9 at a resolution of 0.5 cm−1, but this bias is re-
moved to a large extent by fitting the emissivity at high-signal
points to a best-fit line and using the best-fit line to calculate a
smoothly varying (linear rather than constant) emissivity. At
resolutions coarser than∼ 2 cm−1, this correction is hindered
by an insufficient number of points, and the bias reappears;
note that a bias of −0.9 explains much of the magnitude of
the bias shown for CO2 slicing/sorting in Fig. 6b at 4 and
8 cm−1. A similar increase is evident when errors are im-
posed (dashed red line in Fig. 6c), but it occurs at a lower
resolution (1 cm−1) and is overall larger due to the additional
effect of the imposed errors.

For low clouds in the absence of imposed error, the pos-
itive mean biases at fine resolution (lower left of panel b)
are due to an effective emitting height that is slightly above
cloud base. The fact that mean biases are smaller at coarser
resolution and when error is imposed is due to fortuitous
cancellation of errors. Overall, for low clouds mean biases
are fairly small (less than 0.2 km). Thus for low clouds, it
is the variation of the error, rather than bias error, that best
demonstrates expected retrieval errors. The variation in the
error (expressed by the standard deviation) is larger when er-
rors are imposed and grows with coarsening resolution. The
opposite is true for high clouds: variations in errors do not
change much with coarsening resolution, so it is the increas-
ingly negative bias with imposed errors and with coarsening
resolution that needs to be taken into account. However, note
that overall there is less dependence on resolution in the pres-
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ence of errors, particularly for CO2 slicing/sorting. Thus in
the presence of errors, there is less benefit in using measure-
ments at finer resolution.

On the basis of this resolution dependence, we explore the
error budget at 4 cm−1. Comparing Figs. 4 and 5, we see
the effect of reducing the resolution from 0.5 to 4 cm−1 for
high clouds is generally to lower the retrieved cloud base,
in keeping with the enhanced mean bias shown in Fig. 6.
For MLEV, at the coarser resolution, noise has a very large
impact, resulting in retrieved heights that are below ∼ 4 km
regardless of true base height. Furthermore, for most error
sources when MLEV is used, there are a number of cases for
which errors are more than 2 km for clouds with bases near
the surface. This occurs in part because MLEV has lost the
ability to differentiate between clouds with bases above and
below an inversion. (It is not clear why these errors are not
apparent for combined errors, but note that the differences in
local emissivity variances for choices above and below in-
versions can be extremely small in the presence of errors for
coarse resolution, resulting in high sensitivity to minor dif-
ferences in errors.) Thus this analysis suggests that at a reso-
lution of 4 cm−1 and for noise ≥ 0.2 RU, MLEV is of limited
utility as a stand-alone method, although MLEV could pro-
vide information in a hybrid CO2 slicing/sorting and MLEV
method. It is of interest to know whether these biases are
born out in retrievals from real clouds; however, we are un-
aware of any measurements of downwelling radiance cur-
rently made at 4 cm−1 resolution. Reducing the resolution of
instruments currently deployed near active cloud profilers (li-
dar and ceilometer) and comparing retrieved cloud heights is
an interesting topic for future work. For CO2 slicing/sorting,
errors are large but the retrieval can still provide informa-
tion. For example, most clouds with retrieved heights above
2.5 km can be reliably classified as high clouds. Overall,
for CO2 slicing/sorting (requiring a cloud signal of 2.2 RU),
mean biases are−0.08 km for low clouds, with a standard de-
viation in the error of 0.43 km, and mean biases are −1.3 km
for high clouds, with standard deviations in the error of
1.5 km.

If the instrument characteristics assumed here (noise of
0.2 RU and bias of 0.2 RU) are difficult to achieve, it is also
possible to screen out more optically thin cloud cases by in-
creasing the cloud–signal threshold. The threshold of 2.2 RU
(corresponding to optical depths below 0.25 to 0.5) removed
many of the clouds with bases of 2 km and above; a larger
threshold would exclude even more. Thus a stricter threshold
would result in greater retrieval accuracy, at the cost of elim-
inating more thin clouds from the analysis. In other words,
retrieval accuracy is directly dependent on cloud signal and
will be greater for thicker clouds. To better understand how
the magnitude of retrieval errors depends on the threshold
used for cloud detection, Fig. 7 shows cloud retrieval error at
4 cm−1 for combined errors as functions of both cloud signal
and cloud height. The x axis for panels (b) and (c) is cloud
signal, computed as the RMS difference between cloudy and

c
b

(a) (b)

(c)

Figure 7. (a) Binned means of the absolute values of errors in re-
trieved cloud heights (x axis) as a function of cloud-base height
(y axis), for estimated combined error budget (see text). (b) Abso-
lute value of cloud-height retrieval error (given in color bar in km)
as a function of cloud signal (root mean square of cloudy/clear-sky
radiance) and true cloud-base height. A small random number is
added to cloud-base heights in this panel to make them more easily
distinguishable. (c) Binned means of the absolute values of errors
as a function of cloud signal. Cloud heights were retrieved using
CO2 slicing/sorting from downwelling radiances at a resolution of
4 cm−1.

clear-sky radiance at the wavenumbers used in the retrieval,
and the y axis for panels (a) and (b) is true cloud base. In
all panels, colors indicate the absolute value of cloud error;
cloud errors are binned in panels (a) and (c). In panel (b),
symbol size depends on cloud optical depth, illustrating the
strong correlation between cloud signal and optical depth.
Average absolute cloud-height errors decrease from 1.8 km
at low cloud signal, to 0.2 km at high signal (panel c). The ab-
solute values of cloud-height errors also generally decrease
with decreasing cloud height (panel a). This is partly because
higher clouds tend to have lower signal but also occurs inde-
pendent of cloud signal.

The statistics of cloud-base heights used in this work are
similar to those measured in the Arctic (see Cox et al., 2016,
and references therein), with 79 % of the clouds below 2 km.
Thus a surface-based spectrometer would be of the greatest
benefit for retrieving the heights of low clouds, which are
common in both the Antarctic (Bromwich et al., 2012; Ma-
hesh et al., 2005) and the Arctic (Intrieri et al., 2002).

6 Conclusions

Two established methods for retrieving cloud height from up-
welling infrared radiances are modified for retrievals from
downwelling infrared radiances: the MLEV and the CO2
slicing/sorting method. Modifications to CO2 slicing/sorting
make use of the method of Mahesh et al. (2001a) for CO2
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slicing of downwelling radiances. For CO2 slicing/sorting, a
low bias (∼−0.9 km) is found in retrievals of clouds with
bases of 2 km or higher; a correction to this bias is presented
that assumes a smooth, rather than constant, emissivity at
wavenumbers selected by CO2 sorting (∼ 720–811 cm−1).
However, it is found that this correction can only be applied
when other errors are low.

Working towards the goal of assessing the feasibility of
cloud-height retrievals from an infrared spectrometer de-
signed to be used in remote polar locations, and the in-
strumental considerations (noise and bias in measured ra-
diances) permitting useful retrievals, errors in cloud-height
retrievals using the two methods are assessed for simulated
radiances. Simulated radiances include single-layer, mixed-
phase clouds for a variety of cloud and atmospheric con-
ditions characteristic of the Arctic, at resolutions of 0.1
to 8 cm−1. Retrieval errors are estimated for instrumental
sources of error and errors in the atmospheric state that are
likely to be experienced in measurements. Retrieval errors
are found to vary slightly for different ice habits; because ice
habit is not an assumption of the retrieval model, this vari-
ation is attributed to differences in the spectral variation of
the emissivity spectra. The effects of vertical, horizontal, and
temporal variations in the cloud are investigated, including
the effects of varying optical depth and phase partitioning
(uniformly mixed-phase clouds vs. liquid-topped ice clouds).
For clouds with bases below 2 km, retrieved cloud height
for physically thinner, denser clouds and clouds with uni-
formly mixed ice and liquid are found to correspond more
closely to true cloud-base height than more diffuse clouds
and liquid-topped clouds. This is attributed to lower effective
emitting heights. Clouds of intermediate effective emitting
heights (diffuse but homogeneous) form the base dataset for
the remaining analysis.

In the absence of imposed errors, cloud-height retrievals
from simulated spectra using CO2 slicing/sorting and MLEV
are found to have roughly equivalent, high accuracies at res-
olutions of 0.5 cm−1 or finer, with retrieval errors typically
< 0.5 km for clouds with visible optical depths greater than
0.3 to 0.5. As resolution becomes coarser, retrieval errors in-
crease. However, in the presence of errors, the dependence
on resolution is weakened. Overall, CO2 slicing/sorting is
found to be more accurate than MLEV for low clouds and
in the presence of errors, but the two methods are found to
have differing sensitivities to different sources of error: CO2
slicing/sorting is more sensitive to bias in observed radiation
and errors in the temperature profile, while MLEV is more
sensitive to noise and humidity errors. This complementarity
suggests that an approach that combines the two methods is
ideal. In particular (for expected error magnitudes), it can be
assumed that the cloud base is high when either method re-
trieves a high cloud. This can be helpful to improve or screen
out cases where one method fails completely, e.g., when a
near-surface height is retrieved for a cloud base above 2 km
for only one method. Thus, a hybrid method combining CO2

slicing and MLEV could provide greater accuracy. Other
possible hybrid methods include geometric retrievals based
on multi-angle measurements (Rathke et al., 2002), which
would allow characterization of cloud horizontal homogene-
ity and could improve retrieval accuracy for cases identified
as horizontally homogenous.

Retrieval accuracy is found to decrease with decreasing
cloud signal, where cloud signal is defined to be the RMS
difference, at the selected wavenumbers, between observed
and clear-sky radiances. A cloud–signal threshold of 2.2 RU
is found to screen out most cases with cloud optical depths
below 0.25 and many cases with cloud optical depths below
0.5. Proportionally more high clouds are screened out than
low clouds because high clouds typically have lower signal
(because they emit less, due to lower cloud temperature, and
less cloud emission reaches the surface). However, retrievals
for high clouds are also found to be less accurate independent
of cloud signal. For real clouds, high clouds are also typically
thinner optically than low clouds, thus applying the threshold
to real observations is expected to remove even more high-
cloud cases, proportionally to low-cloud cases.

At a resolution of 4 cm−1, for expected errors in the
atmospheric state and instrument noise level and bias of
0.2 mW/(m2 sr cm−1), average retrieval accuracies are found
to be better than ∼ 0.5 km for cloud bases within 1 km of
the surface, increasing to ∼ 1.5 km at 4 km. The coarser res-
olution will allow greater instrument throughput and thus
greater flexibility in instrumental characteristics such as
choice of detector. To further improve the signal-to-noise
level, the studies here suggest that temporal averaging of
spectra will permit cloud-height retrievals that correspond to
time-averaged cloud properties to within similar uncertainty.
If these instrument characteristics are not feasible, retrievals
may be performed for a smaller subset of thicker clouds by
increasing the cloud–signal threshold, which would exclude
a large portion of high clouds. Future work should include
characterization of errors for cloud-height retrievals from
real-world measurements by comparison to other measure-
ments (e.g., from a collocated active instrument). The de-
tailed analysis presented here can help optimize instrument
characteristics.

The sensitivity demonstrated here for a surface-based in-
frared spectrometer to low clouds, which are most common
in polar regions, is an important complement to satellite-
based measurements, particularly infrared instruments, for
which retrievals of low-level cloud are challenging.

7 Data availability

The dataset of perfect resolution downwelling radiance
spectra characteristic of the Arctic (Cox et al., 2015a) is
available on the Arctic Observing Network (AON) Arctic
data repository (at https://arcticdata.io/catalog/#view/doi:10.
5065/D61J97TT) and is described by Cox et al. (2016). Com-
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puter codes for creating cloudy spectra (runDisort_mat and
runDisort_py), which use DISORT (Stamnes et al., 1988),
are available at https://github.com/prowe12; see also Rowe
et al. (2013).
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