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Abstract. A satellite-based surface visibility retrieval has

been developed using Moderate Resolution Imaging Spec-

troradiometer (MODIS) measurements as a proxy for Ad-

vanced Baseline Imager (ABI) data from the next gen-

eration of Geostationary Operational Environmental Satel-

lites (GOES-R). The retrieval uses a multiple linear regres-

sion approach to relate satellite aerosol optical depth, fog/low

cloud probability and thickness retrievals, and meteorolog-

ical variables from numerical weather prediction forecasts

to National Weather Service Automated Surface Observ-

ing System (ASOS) surface visibility measurements. Vali-

dation using independent ASOS measurements shows that

the GOES-R ABI surface visibility retrieval (V ) has an over-

all success rate of 64.5 % for classifying clear (V ≥ 30 km),

moderate (10 km≤V < 30 km), low (2 km≤V < 10 km), and

poor (V < 2 km) visibilities and shows the most skill during

June through September, when Heidke skill scores are be-

tween 0.2 and 0.4. We demonstrate that the aerosol (clear-

sky) component of the GOES-R ABI visibility retrieval can

be used to augment measurements from the United States

Environmental Protection Agency (EPA) and National Park

Service (NPS) Interagency Monitoring of Protected Visual

Environments (IMPROVE) network and provide useful in-

formation to the regional planning offices responsible for de-

veloping mitigation strategies required under the EPA’s Re-

gional Haze Rule, particularly during regional haze events

associated with smoke from wildfires.

1 Introduction

Visibility is the greatest horizontal distance at which selected

objects can be seen and identified. Fog droplets and haze par-

ticles are small enough to scatter and absorb sunlight, leading

to reduced visibility. Fog-related reductions in visibility are a

leading safety factor in determining aircraft flight rules, pilot

certification, and aircraft equipment required for taking off

or landing. In addition to these important safety considera-

tions, reduced visibility due to regional haze also obscures

the view in our nation’s parks. Haze is caused when sunlight

encounters particles in the air. More particles mean more

absorption and scattering of light, which reduce visibility.

These suspended particles include fine mode aerosols such as

smoke, sulfate, nitrate, and secondary organic aerosols, with

diameters of less than 2.5 microns, as well as coarse mode

aerosols such as dust, sea salt, and volcanic ash, with diam-

eters of 10 microns and larger. The Clean Air Act authorizes

the United States Environmental Protection Agency (EPA)

to protect visibility, or visual air quality, through a number

of different programs. The EPA’s Regional Haze Rule (EPA,

1999) calls for state and federal agencies to work together

to improve visibility in national parks and wilderness areas

such as the Grand Canyon, Yosemite, the Great Smokies, and

Shenandoah.

The first effort to characterize visibilities in the United

States was by Eldridge (1966), who used weather observer

observations of daytime visible range from US Weather Bu-

reau and Air Force Air Weather Service stations to con-

struct distributions of climatic visibility during the period

from 1948 to 1958. Maps of seasonal climatic visibilities,

expressed as the percentage of time with visibilities less then
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thresholds of 2.5, 5.0, 10, 20, and 40 km, showed localized

regions over Southern California and the Ohio River valley

where visibilities were less than 5.0 km for 30–50 % of the

time, and less than 10 km for 50–80 % of the time, regardless

of the season. However, this analysis did not account for the

presence of fog, rain, or snow when constructing the maps of

climatic visibilities.

This manuscript introduces a satellite-based visibility re-

trieval that has been developed for the future National

Oceanic and Atmospheric Administration (NOAA) Ad-

vanced Baseline Imager (ABI) data from the next gen-

eration of Geostationary Operational Environmental Satel-

lites (GOES-R) (Schmit et al., 2005). Following Gupta and

Christopher (2009a, b), who used satellite aerosol optical

depth (AOD) to predict surface fine (less than 2.5 micron)

particulate mass (PM2.5), we adapt a multiple linear re-

gression approach to estimate surface visibility. To develop

and test the GOES-R ABI retrieval we use Moderate Reso-

lution Imaging Spectroradiometer (MODIS) Collection 5.1

AOD retrievals (Remer et al., 2005) in conjunction with

ABI retrievals of cloud optical thickness (COT) (Walther and

Heidinger, 2012) and fog/low cloud probability and thick-

ness (Gultepe et al., 2014) using MODIS radiances, in addi-

tion to meteorological variables from numerical weather pre-

diction model forecasts, to estimate surface visibility. This

satellite-based estimate of surface visibility can be used to

augment measurements from the National Weather Service

Automated Surface Observing System (ASOS) and the EPA

and National Park Service (NPS) Interagency Monitoring of

Protected Visual Environments (IMPROVE) network. Hoff

and Christopher (2009) present an overview of efforts to

relate satellite AOD retrievals to surface PM2.5. They con-

cluded that the best AOD-based estimate of PM2.5 is likely to

be no better than 30 % under ideal conditions, largely due to

variations in aerosol composition, boundary layer structure,

and the height of the aerosol layer. Since both AOD and vis-

ibility are determined by aerosol extinction their relationship

is not influenced by variations in aerosol composition but still

depends on boundary layer structure and height of the aerosol

layer. Previous efforts to relate AOD to surface visibility have

primarily focused on ground-based AOD measurements. Pe-

terson et al. (1981) compared 6 years of sun photometer mea-

surements of decadic turbidity at the EPA Research Triangle

Park Laboratory near Raleigh, NC, with observer-based es-

timates of visibility from the Raleigh Durham airport. AOD

is equal to decadic turbidity multiplied by a factor of 2.3.

Monthly correlation coefficients between turbidity and vis-

ibility were large during the summer (−0.66 in June and

−0.70 in July) and small during the winter (−0.02 in January

and −0.03 in February). Kaufman and Fraser (1983) used

correlations between sun photometer measurements of AOD

and nephelometer measurements of aerosol volume scatter-

ing coefficients to assess the feasibility of using satellite-

based AOD measurements to predict surface visibility (SV).

They compared inverse visibility (SV−1) measured at Bal-

timore, MD, and Dulles airports with AOD measurements

at Goddard Space Flight Center (GSFC) during 1980 and

1981. They found strong correlations between SV−1 at Bal-

timore and Dulles in both 1980 and 1981 (0.96 and 0.91,

respectively). They found good correlations between GSFC

AOD and SV−1 at Baltimore and Dulles during 1980 (0.85

and 0.84, respectively) but only moderate correlations dur-

ing 1981 (0.51 and 0.58, respectively). Bäumer et al. (2008)

used AErosol RObotics NETwork (AERONET) AOD mea-

surements to predict surface visibility near Karlsruhe, Ger-

many, during the 2005 AERO01 campaign. They found cor-

relations of 0.9 between measured and calculated visibilities.

They also provide an extensive overview of previous studies

on the relationship between visibility and aerosol properties.

This manuscript is arranged as follows. Sect. 2 presents

an overview of how satellite aerosol and cloud optical depth

retrievals can be used to estimate surface visibility and

presents results of validation studies using ASOS measure-

ments. Sect. 3 discusses how the surface visibility retrieval

can be used to monitor regional haze events within Class I

wilderness areas in support of the EPA Regional Haze Rule.

Sect. 4 provides results for specific regional haze episodes

associated with smoke from large wildfires. Sect. 5 presents

conclusions.

2 Background and method

Visibility is inversely proportional to extinction, which is a

measure of attenuation of the light passing through the atmo-

sphere due to the scattering and absorption by aerosol par-

ticles, molecular scattering, and gas absorption. The visibil-

ity calculation is based on the Koschmieder (1924) method,

which is based on scattering and absorption of light by

aerosol particles in the air between the object that is being

observed and the observer, and is given as

V =− ln(ε)/(σ (λ)), (1a)

where V is the visibility (in km), σ(λ) is the wavelength

(λ) dependent extinction coefficient (km−1), and ε is the

threshold visual contrast which is usually taken to be 0.02 or

0.05. The GOES-R ABI visibility algorithm uses 0.05 since

this is recommended by the World Meteorological Organiza-

tion (WMO) (Boudala and Isaac, 2009; WMO, 2008). Taking

the natural log of 0.05 results in

V = 3.0/σ(λ). (1b)

The Koschmieder method was developed for observation

along a horizontal track in which the length can be consid-

ered infinite, and therefore Eq. (1b) forms the theoretical ba-

sis for the GOES-R ABI visibility algorithm where AOD is

of a vertical layer. The extinction coefficient (σ(λ)) relates

the intensity (I (λ)) of light transmitted through a layer of

material with thickness (x) relative to the incident intensity
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(I0(λ)) according to the inverse exponential power law that

is usually referred to as the Beer–Lambert Law:

I = I0e
−σ(λ)x . (2)

Optical depth (τ(λ)) is defined as σ(λ)x. Expressing visibil-

ity in terms of τ gives

V = 3.0/(τ(λ)/x), (3)

where we have implicitly assumed that the extinction coeffi-

cient is constant over the thickness (x). Visibility most often

refers to horizontal visibility when it is based on an observer.

However, it is measured or inferred using local extinction. If

the extinction is locally both horizontally and vertically ho-

mogeneous then the vertical extinction is representative of

the horizontal extinction. Equation (3) is used for the GOES-

R ABI visibility algorithm in order to determine the visibility

in the surface layer, and it shows that visibility is inversely

proportional to optical depth divided by the thickness of the

material layer where the aerosol resides. This is similar to

the formulation used by Bäumer et al. (2008) except they

assumed a threshold visual contrast of 0.02 resulting in a co-

efficient of 3.912 instead of 3.0. From Eq. (3), the GOES-

R ABI visibility algorithm uses AOD at 550 µm to estimate

τ under clear-sky conditions and uses retrieved COT to es-

timate τ under cloudy conditions when fog or low clouds

have been detected. The GOES-R ABI visibility algorithm

assumes that the aerosols reside within the planetary bound-

ary layer (PBL) and uses the National Centers for Environ-

mental Prediction (NCEP) Global Forecasting System (GFS)

PBL depth to estimate x under clear-sky conditions and uses

retrieved fog and low cloud depth to estimate x when fog

or low clouds have been detected. If aerosols exist above

the PBL, the visibility at the surface will be underestimated

in the satellite-retrieved visibility. If the PBL is stable and

the aerosols are not well mixed within the PBL, which may

occur during the morning, then the visibility at the surface

could be overestimated in the satellite-retrieved visibility. We

could assume an exponential profile of extinction under sta-

ble PBL conditions but this has not been implemented in

the current version of the algorithm. ABI measurement re-

quirements are determined by the GOES-R Series Ground

Segment Functional and Performance Specification (NOAA,

2015), which requires that the visibility algorithm can distin-

guish between four visibility categories: clear (V ≥ 30 km),

moderate (10 km≤V < 30 km), low (2 km≤V < 10 km), and

poor (V < 2 km).

Validation of the GOES-R ABI aerosol (clear-sky) visibil-

ity retrieval based on Eq. (3) using MODIS Collection 5.1

AOD and a total of 155 077 coincident ASOS measurements

during 2007–2008 shows that Eq. (3) tends to overestimate

the frequency of poor and low visibility categories resulting

in a 55 % categorical success rate (CSR) for AOD-based visi-

bility estimates. The ASOS data must be within a 5 km radius

of the MODIS retrieval and within a minute of the MODIS

overpass time to be collocated. CSR is defined as the percent-

age of ASOS/MODIS measurement pairs that were assigned

to the same visibility category. This overestimate of low and

poor visibility relative to ASOS could be associated with an

increase in relative humidity (RH) at the top of the PBL under

stable conditions. Increased RH leads to increased aerosol

extinction due to hygroscopic growth of hydrophilic aerosols

and overestimates in the frequency of low and poor visibility

relative to ASOS since it measures surface visibility. For a

more in-depth discussion of the use of relative and specific

humidity gradients to determine boundary layer depths see

Seidel et al. (2010). Validation of the GOES-R ABI fog and

low cloud visibility retrieval based on Eq. (3) was performed

using a total of 10 468 ASOS coincident pairs during 2007–

2008. MODIS radiances were used as proxy data to gener-

ate the ABI COT and fog/low cloud probability retrievals. A

50 % probability of fog or low clouds was used as a threshold

for identification of fog and low cloud coincidences. Results

show that all of the ABI fog and low cloud visibility retrievals

fall within the low and poor visibility categories while more

than 50 % of the ASOS surface measurements report clear

or moderate visibility resulting in a 5.0 % CSR for 2007–

2008 ASOS coincident pairs. This overestimate is likely to

be associated with an increase in RH at the top of the PBL

under stable conditions. Low clouds are more likely to form

near the top of the PBL and may not reach the surface where

ASOS would observe fog.

To improve the categorical skill with respect to ASOS

measurements we adapted a “blended” retrieval approach.

The blended visibility retrieval is constructed using a

weighted combination of a “first guess” visibility estimate

from Eq. (3) and a multiple linear regression visibility esti-

mate that includes additional meteorological predictors for

both aerosol and fog/low cloud visibilities. These additional

meteorological predictors are included to account for the fact

that the aerosol extinction is generally not uniform over the

depth of the PBL as assumed in Eq. (3) and each regres-

sion term accounts for potential variability of the aerosol

extinction profile through the PBL. The aerosol multiple re-

gression includes a bias adjustment, the first guess aerosol

visibility, AOD, RH at the top of the PBL, 2 m RH, mean

PBL RH, PBL lapse rate, PBL height, 2 m temperature, tem-

perature at the top of the PBL, and PBL height plus sur-

face height as predictors. The fog/low cloud multiple regres-

sion includes a bias adjustment, the first guess fog visibility,

COT, RH at the top of the PBL, 2 m RH, mean PBL RH,

PBL lapse rate, PBL height, 2 m temperature, temperature

at the top of the PBL, PBL height plus surface height, and

fog/low cloud probability predictors. Multiple linear regres-

sion between the ASOS visibility and the 10 aerosol visibil-

ity predictors was performed to determine regression coeffi-

cients for best estimate of ASOS visibility for each month us-

ing historical (2007–2008) ASOS/MODIS coincident pairs.

This is referred to as “multiple regression” aerosol visibility.

Tables 1 and 2 summarize the regression coefficients used
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Table 1. Aerosol multiple regression coefficients for bias, first guess aerosol visibility (visaodfg), aerosol optical depth (aod), relative humid-

ity at top of the PBL (rhpbltop), 2 m relative humidity (rh2m), mean PBL relative humidity (rhpbl), PBL lapse rate (pbllapse), PBL height

(pblhght), 2 m temperature (t2m), temperature at the top of the PBL (tpbltop), and PBL height plus surface height (pblhght+ zsfc) predictors.

Regression coefficients for aerosol visibility meteorological predictors

Month bias visaodfg aod rhpbltop rh2m rhpbl

Jan 65.3879 0.002681 −32.7991 0.059726 0.337285 −0.37413

Feb 110.073 0.001269 −28.2057 0.064463 0.348682 −0.4631

Mar 158.992 0.000747 −21.1998 −0.04379 0.196516 −0.19396

Apr 164.344 0.000582 −17.9588 0.005875 0.0857 −0.14395

May 248.679 0.000475 −22.074 −0.03625 −0.1029 0.052229

Jun 213.282 0.006177 −18.939 −0.17207 −0.13245 0.238551

Jul 191.874 0.00188 −20.8431 −0.16686 −0.25839 0.341579

Aug 342.033 0.002103 −16.2641 −0.12326 −0.31524 0.267925

Sep 320.941 0.002513 −28.4085 −0.04582 −0.34777 0.237827

Oct 205.162 0.00042 −34.4769 −0.02746 −0.01746 −0.01722

Nov 110.973 0.001301 −50.2803 0.054206 −0.04584 −0.1145

Dec 86.4592 0.001137 −28.4511 −0.0169 0.39957 −0.38517

Month pbllapse pblhght t2m tpbltop pblhght+ zsfc

Jan 1.35551 −0.0022 −0.38765 0.264323 0.005734

Feb 0.817403 −0.00171 0.025732 −0.29479 0.003831

Mar 0.543207 −0.00048 −0.1832 −0.25684 0.002566

Apr 0.427875 −0.00571 −0.29303 −0.11643 0.001656

May 0.914754 −0.00781 −0.88391 0.209703 0.001608

Jun 1.26467 −0.00018 −0.77187 0.153594 0.002156

Jul 0.795759 −0.00329 −0.68573 0.172793 0.001889

Aug 1.03763 −0.00297 −1.16973 0.169742 0.000507

Sep 0.306594 −0.00268 −0.92885 0.001714 −0.00022

Oct 0.291529 −0.00958 −0.27099 −0.24501 0.00121

Nov 0.812836 −0.0069 −0.45903 0.235632 0.004573

Dec 0.640483 −0.00796 0.059203 −0.20531 0.00422

for the aerosol and fog/low cloud visibility meteorological

predictors, respectively. Optimal weighting between the first

guess and multiple regression visibility estimates for aerosol

and fog/low cloud visibility is determined based on assess-

ment of required categorical accuracy (percent correct clas-

sification), required precision (standard deviation of categor-

ical error), Heidke skill score (Brier and Allen, 1952), which

measures the fractional improvement relative to chance, and

false alarm rate (Olson, 1962). Results of Heidke skill score

and false alarm rate tests show that an 80 % multiple regres-

sion weighting resulted in the largest improvement relative

to chance for both clear and moderate aerosol visibility and

reduces false detections for low aerosol visibility. The CSR

for the blended aerosol visibility retrieval was 69 % for the

2007–2008 ASOS coincident pairs, which is a significant

improvement over the first guess retrieval based on Eq. (3).

Based on these tests, the ABI aerosol visibility blended re-

trieval uses a 20/80 % weighting of the first guess and multi-

ple regression aerosol visibility estimates. Results of Heidke

skill score and false alarm rate tests show that a 70 % multi-

ple regression weighting resulted in the largest improvement

relative to chance for both moderate and low visibilities and

minimizes false detections for clear visibilities for the fog

and low cloud cases. The CSR of the blended fog and low

cloud visibility estimates is 47 % for 2007–2008 ASOS co-

incident pairs. Based on these tests, the ABI fog/low cloud

visibility blended retrieval uses a 30/70 % weighting of the

first guess and multiple regression fog/low cloud visibility

estimates. The combination of blended aerosol and blended

fog/low cloud visibility estimates is used for the GOES-R

ABI visibility retrieval.

GOES-R ABI visibility retrievals from all MODIS Terra

and Aqua overpasses over the continental United States have

been validated against ASOS visibility measurements dur-

ing January 2010–December 2013. Figure 1 shows categor-

ical histograms of the coincident ASOS and GOES-R ABI

merged visibilities during 2010–2013. The majority (59.9 %)

of the ASOS observations fall under the clear visibility cate-

gory. The GOES-R ABI visibility retrieval results in a 64.5 %

CSR for 122 461 ASOS/MODIS measurement pairs during

January 2010–December 2013. The GOES-R ABI visibility

retrieval capture the frequency of ASOS visibility relatively

well but tends to overestimate the frequency of clear visibil-

ity and underestimate the frequency of moderate, low, and
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Table 2. Fog/low cloud multiple regression coefficients for bias, first guess fog visibility (viscotfg), cloud optical thickness (cot), relative

humidity at top of the PBL (rhpbltop), 2 m relative humidity (rh2m), mean PBL relative humidity (rhpbl), PBL lapse rate (pbllapse), PBL

height (pblhght), 2 m temperature (t2m), temperature at the top of the PBL (tpbltop), PBL height plus surface height (pblhght+ zsfc), and

fog/low cloud probability (fogprob) predictors.

Regression coefficients for fog/low cloud visibility meteorological predictors

Month bias viscotfg cot rhpbltop rh2m rhpbl

Jan 12.579 −2.65708 −0.02046 0.169246 1.19418 −1.83799

Feb 98.5937 −3.24155 −0.00745 −0.34592 0.34142 −0.88173

Mar 114.42 −7.08866 −0.02672 0.59534 1.30254 −2.52998

Apr 212.164 −10.9161 −0.05456 0.070336 0.770728 −1.95193

May 373.987 −9.53948 −0.05558 −1.40813 −1.0635 1.53344

Jun 371.406 −7.38332 0.025901 −2.24021 −0.16803 1.49541

Jul 246.62 −4.40236 0.012443 −4.04248 −0.54056 3.92192

Aug 147.202 −9.49104 −0.05982 −1.25803 −1.50024 2.62571

Sep 193.671 −9.93674 −0.0574 −0.92217 −1.8585 2.45118

Oct 176.718 −2.56813 −0.03199 −0.77974 0.100988 0.373931

Nov 30.5473 −1.48106 −0.01932 −1.05789 0.323024 0.373914

Dec −2.39151 −4.14431 −0.00627 −0.02919 −0.09455 −0.12258

Month pbllapse pblhght t2m tpbltop pblhght+ zsfc fogprob

Jan 0.967626 11.015 −1.0044 1.17683 0.004598 −0.09335

Feb 0.078064 −1.50126 0.741054 −0.7351 0.00489 −0.08965

Mar 0.34288 1.69033 1.7438 −1.87214 0.000927 −0.09008

Apr 0.249843 −16.1806 2.88001 −3.12655 −0.00044 −0.17389

May 0.585293 −19.3097 −0.05953 −0.85291 0.005951 −0.04787

Jun 0.282177 −15.9934 0.963552 −1.82975 0.003903 −0.19144

Jul 1.35404 −32.5426 2.52488 −2.96303 0.004724 −0.48559

Aug −0.98966 −31.7148 4.14971 −4.41582 −0.00267 −0.38578

Sep 0.858375 −11.3469 −0.01412 −0.50033 0.002041 0.105595

Oct −0.76862 −15.4938 3.09443 −3.41753 −0.00597 −0.4022

Nov 0.373224 −16.0381 3.57892 −3.47473 0.00292 −0.17429

Dec 0.058036 2.77937 −0.07394 0.242283 0.002166 −0.13538

poor visibility during this time period. These results are con-

sistent with those obtained from the 2007–2008 ASOS co-

incidences used to generate the multiple regression coeffi-

cients.

RH sensitivity studies for May and June 2010 were con-

ducted to explore the sensitivity of CSR to (1) 2 m RH,

(2) mean PBL RH, and (3) RH at the top of the PBL. Each of

these RH variables range from greater than 95 % to less than

10 % with medians of 43 % (2 m RH), 53 % (mean PBL RH),

and 56 % (RH at the top of the PBL). The full set of May–

June 2010 coincidences (11 699) show a CSR of 66.8 %.

Comparisons were conducted for six subsets of the full data

with 2 m RH, mean PBL RH, and RH at the top of the PBL

for greater than or equal to 50 % RH and for less than 50 %

RH. The results for the mean PBL RH showed the strongest

sensitivity with a CSR of 63.8 % for RH greater than or equal

to 50 % (6966 or 59.5 % of the coincidences) and a CSR of

71.2 % for RH less than 50 % (4733 or 40.5 % of the coin-

cidences). This confirms that the visibility retrieval performs

best under low RH conditions.

Figure 2 shows a monthly mean time series of the ASOS

validation statistics for the GOES-R ABI visibility algorithm

from January 2010 through December 2013. Heidke skill

score values (red line) between 0.2 and 0.4 are considered

“good” skill, values between 0.15 and 0.25 are considered

“medium” skill, and values less than 0.15 are deemed “use

with caution”. Hyvarinen (2014) and Murphy (1996) showed

that the Finley tornado forecasts from 1884 had a Heidke

skill score value of 0.355 and deemed these forecasts as

being acceptable for having skill. Therefore, a Heidke skill

score value of approximately 0.3 is acceptable for defining

“good” skill in our study. The “good” skill scores generally

tend to occur from June through September (green shading),

“medium” skill scores occur from January through March

(yellow shading), and “use with caution” skill scores oc-

cur in April and May and from October through December

(red shading). The CSR values (blue line) ranges from 58 to

69 % and generally shows higher values from April through

November and lower values from December through March.

The false alarm rate values (dashed black line) range from

0.24 to 0.41 with the lowest values generally from January

www.atmos-meas-tech.net/9/409/2016/ Atmos. Meas. Tech., 9, 409–422, 2016
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Figure 1. Categorical histograms of the coincident ASOS and ABI merged visibilities for January 2010 through December 2013. LCLD

denotes low cloud and SDQF denotes standard deviation quality flag.

Figure 2. Monthly mean time series of the ASOS validation statistics for the version 5 ABI visibility algorithm from January 2010 through

December 2013.

through March and in June. Overall, the GOES-R ABI visi-

bility algorithm performs the best from June through Septem-

ber.

3 Monitoring regional haze with the GOES-R ABI

visibility retrieval

The EPA Regional Haze Rule (EPA, 1999) requires states, in

coordination with the US EPA, NPS, Fish and Wildlife Ser-

vice, and Forest Service, to develop and implement air qual-

ity protection plans to reduce pollution that causes visibility

impairment in Class I wilderness areas. The aerosol compo-

nent of the GOES-R ABI visibility retrieval provides a means

of monitoring aerosol visibility on a daily basis across the

United States to support state and tribal implementation of

the Regional Haze Rule. Within the ruling, the EPA proposed

that visibility targets and tracking of visibility changes over

time be expressed in terms of the “deciview” haze index. The

deciview haze index (dV ), Eq. (4), was developed by Pitch-

ford and Malm (1994) for use in presenting data for the light-

Atmos. Meas. Tech., 9, 409–422, 2016 www.atmos-meas-tech.net/9/409/2016/
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Figure 3. Monthly frequency of land-only bins that had a percentage frequency of at least 50 % of aerosol visibility values ≥ 20 dV and of

at least 180 retrieval counts (red line plot) and monthly frequency of WF-ABBA detected fires (blue line plot) by month in the United States

(24–52◦ N latitude and 65–130◦ W longitude) for January 2010 through December 2013.

extinction coefficient (bext), which is the inverse of σ(λ)

expressed in inverse mega-meters (Mm−1) of ambient air.

Pitchford and Malm state that the dV is the preferred metric

for presenting these data because it is more linearly related to

the human perception of regional haze and is the most com-

mon measure of visibility for air quality studies (Richards,

1999). The EPA ruling tracks visibility trends based on 5-

year averages of annual deciview values for the most im-

paired (upper 20 %) and least impaired (lower 20 %) days

relative to “natural” visibility conditions for Class I areas.

The National Acid Precipitation Assessment Program (NA-

PAP) used annual averaged speciated aerosol concentrations,

extinction efficiencies, and relative humidity to estimate nat-

ural visibility conditions of ∼ 10 dV in the eastern USA and

∼ 5 dV in the western USA (Irving, 1992). The higher nat-

ural visibility conditions in the eastern USA arise due to re-

gional sources of biogenic secondary organic aerosols and

increased relative humidity compared to the western USA.

The EPA ruling acknowledges that determination of “natu-

ral” visibility includes a number of issues, in particular, the

contribution of wildfires to natural visibility variations.

dV = 10lne(bext/10 Mm−1) (4)

Assuming a PBL depth of 1 km and a MODIS AOD preci-

sion of 0.05 (Remer et al., 2005) corresponds to a bext of

50 Mm−1 in Eq. (4) and results in an estimated 16 dV limit

of detection for the GOES-R ABI visibility retrieval, which is

above natural visibility levels for both the western and east-

ern USA established by the Regional Haze Rule. This esti-

mated dV precision shows that the GOES-R ABI visibility

retrieval is best suited for quantifying periods of reduced vis-

ibility and not background conditions. A time series of the

frequency of occurrence of reduced visibility (assumed to be

≥ 20 dV ) over the continental United States for January 2010

through December 2013 is shown in Fig. 3 as a red line plot.

dV ≥ 20 roughly corresponds to the poor+ low+moderate

visibility classes shown in Fig. 1. To construct this time se-

ries we compute the monthly frequency of reduced visibil-

ity for land-only bins (0.5× 0.5 ◦ latitude/longitude) over the

United States (24–52◦ N latitude and 65–130◦ W longitude)

that had at least 180 valid GOES-R ABI aerosol visibility

retrievals per bin with at least 50 % of aerosol visibility val-

ues ≥ 20 dV within the bin for each month. A threshold of

180 monthly aerosol retrievals was used to ensure a sufficient

sample size so the monthly mean dV values would be rep-

resentative. The 180 monthly aerosol retrievals are approxi-

mately 25 % of the maximum monthly number of aerosol re-

trievals possible in a bin. The frequency of reduced visibility

(≥ 20 dV ) shows both seasonal and interannual variability.

Reduced visibility occurs most frequently from June through

September with a secondary peak during the January through

March time period. The June through September maximum

in reduced visibility is also when the visibility product per-

forms at its best in terms of skill. The periods with low fre-

quencies of reduced visibility correspond to the time periods

where the skill in the retrieval is low and should be used with

caution.
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To explore the relationship between the frequency of re-

duced visibility and wildfires we construct monthly maps

of fire detection frequency from January 2010 through De-

cember 2013 within 0.25× 0.25◦ bins over the continental

United States using GOES East fire detections from Ver-

sion 6.5 of the Wildfire Automated Biomass Burning Al-

gorithm (WF-ABBA) (Prins and Menzel, 1992, 1994). The

WF-ABBA is a dynamic multispectral thresholding contex-

tual algorithm that uses the visible (when available), 3.9

micron, and 10.7 micron infrared window bands to locate

and characterize hot spot pixels (Schmidt et al., 2013).

The algorithm is based on the sensitivity of the 3.9 mi-

cron band to high temperature subpixel anomalies and is

derived from a technique originally developed by Matson

and Dozier (1981) for NOAA Advanced Very High Reso-

lution Radiometer (AVHRR) data. The WF-ABBA incorpo-

rates statistical techniques to automatically identify hot spot

pixels in the GOES imagery. Once the WF-ABBA locates

a hot spot pixel, it incorporates ancillary data in the pro-

cess of screening for false alarms and correcting for water

vapor attenuation, surface emissivity, solar reflectivity, and

semi-transparent clouds. In addition, an opaque cloud mask

is used to indicate regions where fire detection is not pos-

sible and meta-data are provided about the processing re-

gion and block-out zones due to solar reflectance, clouds, ex-

treme view angles, saturation, and biome type. There are six

WF-ABBA fire detection categories; processed, saturated,

cloudy, high probability, medium probability, and low prob-

ability. The low probability category is often indicative of

false alarms in North America and along cloud edges and at

high viewing angles at sunrise and sunset. Therefore, the low

probability fire pixels are not included in the fire detection

analysis in this study. Time series of fire frequency are calcu-

lated by summing up the fire counts within all 0.25× 0.25◦

bins for each month for 2010–2013 over the continental

United States.

Determining the accuracy of fire detection is challenging

and ultimately requires very high resolution information and

excellent geolocation (Schmidt et al., 2013). The accuracy

of WF-ABBA data can be determined though by compar-

ing against MODIS fire data. Hoffman (2006) found that ap-

proximately 62.8 % of the GOES filtered fire pixels over the

western hemisphere (when low probability fire pixels are ex-

cluded) have a MODIS match in 2004 (59.7 % in 2005). In

addition, Reid et al. (2009) found that because many fires

only burn actively during a fraction of the day, the WF-

ABBA with its superior temporal sampling detects twice as

many fires overall in South and North America compared to

MODIS. However, the superior spatial resolution and radio-

metric precision of MODIS, detects 6–10 times as many fires

in each overpass compared to WF-ABBA (Reid et al., 2009).

The monthly frequency of WF-ABBA detected fires in

the United States has both seasonal and interannual variation

(Fig. 3 blue line plot). The highest monthly frequency of fires

occurs in general from May to September, which coincides

Figure 4. Top panel: histograms of collocated dV values for IM-

PROVE regression (monthly bias-corrected) retrieval (green), IM-

PROVE (blue), and ABI Retrieval (red) for June–September 2010–

2012; bottom panel: density plot of collocated dV values for IM-

PROVE regression (monthly bias-corrected) retrieval versus IM-

PROVE for June–September 2010–2012.

with the highest monthly frequency of decreased aerosol

visibility (≥ 20 dV ). In particular, 2011 and 2012 had an

overall higher monthly frequency of fires compared to 2010

and 2013 for the May–September time period, suggesting a

link between increased fire frequency and reduced visibility

during these time periods. The overall correlation between

monthly number of bins with aerosol visibility ≥ 20 dV and

monthly WF-ABBA fire frequency for 2010–2013 is 0.621

(r2
= 0.368). The highest monthly fire frequency occurred in

April and June 2011 and August 2012. The GOES-R ABI

visibility algorithm performs the best in the June–September

time period based on Heidke skill score results, so June 2011

and August 2012 are examined in more detail later in this

study.

To support implementation of the Regional Haze Rule, the

EPA funded deployment of a PM2.5 monitoring network and

expansion of the IMPROVE network. The IMPROVE pro-

gram has been collecting data since 1988 and continues to

collect and analyze visibility data from Class I federal area

monitoring sites throughout the United States. IMPROVE

Atmos. Meas. Tech., 9, 409–422, 2016 www.atmos-meas-tech.net/9/409/2016/



J. Brunner et al.: Satellite-based estimates of surface visibility 417

Table 3. Monthly best-fit slope and best-fit intercept for IMPROVE regression (bias correction) and monthly R2, mean bias and RMSE for

ABI retrieval, and monthly bias-corrected mean bias and bias-corrected RMSE for 2010–2012.

Month Best-fit Best-fit R2 Mean RMSE Bias Bias

slope intercept bias (dV ) (dV ) correct correct

mean RMSE

bias (dV ) (dV )

Jan −1.1023 36.4580 0.1625 −10.8849 13.4078 0.0000 5.9185

Feb −0.1636 15.5408 0.0044 −10.5062 12.1024 0.0000 5.4492

Mar 0.1881 7.6731 0.0041 −10.6476 12.0766 0.0000 5.4652

Apr 0.7282 −1.8458 0.0693 −7.0356 8.3192 0.0000 4.4152

May 1.1256 −7.7528 0.2113 −5.4832 6.9299 0.0000 4.2352

Jun 1.0490 −9.6288 0.4018 −8.5652 9.4916 0.0000 4.0894

Jul 1.2669 −12.3919 0.4078 −6.8952 8.0983 0.0000 4.2259

Aug 1.1913 −9.9631 0.2744 −6.1345 7.4911 0.0000 4.2729

Sep 0.9755 −5.8022 0.2102 −6.2834 7.7897 0.0000 4.6042

Oct 0.4016 4.5648 0.0167 −5.9223 7.6706 0.0000 4.7862

Nov −0.0642 12.5096 0.0004 −8.8879 10.9596 0.0000 6.1215

Dec −0.7746 26.9088 0.0366 −7.8733 10.5208 0.0000 6.3939

data for 2010–2012 are used to assess how well the GOES-R

ABI visibility retrieval performs in characterizing visibility

within Class I areas. The IMPROVE and GOES-R ABI re-

trievals are collocated in time (same day) and space (within

±0.25◦) and monthly mean IMPROVE and GOES-R ABI

dV values are calculated for each IMPROVE site. Corre-

lations, mean biases, and root-mean-square error (RMSE)

for IMPROVE versus the GOES-R ABI aerosol visibility re-

trieval are calculated from this collocated data for the 3-year

period (2010–2012) for each month and are shown in Ta-

ble 3. The largest correlations are near 0.63 (r2 of 0.4018

and 0.4078) and occur in June and July, respectively. There

is a distinct bias toward lower monthly mean dV values for

IMPROVE compared to the GOES-R ABI retrieval for all

months. This is mainly because of the GOES-R ABI retrieval

limit of detection of approximately 16 dV due to the preci-

sion of the MODIS aerosol optical depth retrieval.

Due to this bias toward higher monthly mean dV values

compared to IMPROVE data, a monthly regression (includ-

ing bias correction) needs to be applied to the GOES-R ABI

aerosol visibility retrieval to more accurately detect visibil-

ity values measured from ground-based IMPROVE sites. Ta-

ble 3 also shows the monthly best-fit slope, best-fit inter-

cept, bias-corrected mean bias, and bias-corrected RMSE.

After applying the monthly regression coefficients, the bias

with respect to IMPROVE measurements is removed and the

monthly bias-corrected RMSE values are reduced with the

lowest values during the April–October time period. Since

the GOES-R ABI retrieval performs at its best during the

June–September time period based on Heidke skill score re-

sults and since the IMPROVE versus bias-corrected GOES-

R ABI aerosol visibility retrieval results show highest cor-

relations and lowest RMSE values during this time period,

we will focus for the remainder of this study on the June–

September time period.

Histograms of collocated dV values for IMPROVE (blue),

GOES-R ABI aerosol visibility retrieval (red), and bias-

corrected GOES-R ABI aerosol visibility retrieval (green),

for June–September 2010–2012 are shown in Fig. 4 top

panel. The GOES-R ABI aerosol visibility retrieval peaks

around 20 dV and most values exceed 16 dV because of the

MODIS limit of detection. Applying the IMPROVE-based

monthly regression to the GOES-R ABI aerosol visibility re-

trieval shifts the peak to 13–14 dV and decreases the magni-

tude of the peak slightly. The IMPROVE peak occurs at 8–

9 dV shows a more log-normal histogram with a much wider

tail compared to the histograms of the GOES-R ABI aerosol

visibility retrieval. Figure 4 bottom panel shows a density

plot of collocated dV values for the GOES-R ABI aerosol

visibility retrieval with the monthly regression applied ver-

sus the IMPROVE measurements for June–September 2010–

2012. The density plot shows that the IMPROVE dV mea-

surements have more variability than the adjusted GOES-R

ABI aerosol visibility retrieval, which are now mostly less

than 20 dV .

Errors in the estimated PBL depth are one of the largest

uncertainties in the visibility estimate. To examine the sen-

sitivity of the bias-corrected GOES-R ABI aerosol visibil-

ity retrieval to errors in PBL depth we first need to char-

acterize the PBL depth errors and then perform sensitivity

experiments to assess the impact of these errors. Verifica-

tion was performed using CALIPSO (Winker et al., 2003,

2009) PBL depth retrievals. The CALIPSO PBL depths are

derived using a Haar wavelet analysis to detect boundaries

in scattering ratio (i.e., a normalized backscatter) in lidar ob-

servations. The CALIPSO PBL depth is defined as the al-

titude where the maximum amplitude average wavelet oc-
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Figure 5. Top left panel: IMPROVE mean observed visibility (dV ) in the United States for June 2011; top right panel: WF-ABBA fire

frequency in the United States for June 2011; bottom left panel: IMPROVE regression (bias-corrected) retrieval mean dV in the United States

for June 2011; bottom right panel: scatter plot of collocated mean dV IMPROVE regression (bias-corrected) retrieval versus IMPROVE for

all IMPROVE sites for June 2011.

curs computed over a range of Haar filter widths ranging

from 0.9 to 1.65 km (R. E. Kuehn, personal communica-

tion, 2013). Comparison between the GFS and CALIPSO

PBL depths over the continental USA during the period from

June–September, 2012, showed that the GFS PBL depth was

biased low by 533 m over land with RMSEs of 659 m (mean

bias removed). The mean retrieved PBL depth over land was

1982 m so the GFS bias is approximately 28 % of the mean

during this period. To quantify the impact of these PBL bi-

ases on the visibility estimates we conducted sensitivity stud-

ies assuming uniform ±500 m errors in continental US PBL

depths over land+water during the period from 11 to 17 Au-

gust 2012. Comparisons between the control and sensitivity

visibility calculations showed that adding 500 m to the PBL

depth resulted in a 0.91 dV decrease in visibility while sub-

tracting 500 m to the PBL depth resulted in a 1.65 dV in-

crease in visibility on average during this period. RMSE dif-

ferences (mean bias removed) between the control and sen-

sitivity calculations were 0.84 and 1.82 dV for +500 and

−500m PBL errors, respectively. The mean visibility dur-

ing this time period was 15.68 dV , so visibility biases due

to PBL depth errors range from 5 to −10 % while visibility

uncertainties due to PBL RMSEs range from 5 to 12 %.

4 Results

June 2011 shows a significant increase in the IMPROVE

mean observed dV measurements over an extensive region of

the central and eastern USA (Fig. 5 top left panel). Monthly

mean dV values are in the 20–25 dV range especially over

the mid-Mississippi Valley, Ohio Valley, southeastern and

mid-Atlantic regions. Much lower monthly mean dV values

are over the IMPROVE sites throughout the western USA (5–

10), Great Lakes (10–15), and northeastern region (10–15).

Figure 5 top right panel shows the WF-ABBA fire frequency

in the United States for June 2011. WF-ABBA fire detection

was binned in 0.25× 0.25◦ latitude/longitude bins. There are

major fires over the southwest USA particularly in eastern

Arizona, New Mexico, southeastern Colorado, west-central

Texas, and north-central Mexico during this time period.

Smoke from these fires, along with fires over the lower Mis-

sissippi Valley, results in increased dV values over the central

and eastern USA. In addition, increased fire frequency over

southern Georgia, northern Florida, and eastern North Car-

olina leads to increased dV over the eastern USA. Figure 5

bottom left panel shows the GOES-R ABI aerosol visibility

retrieval mean dV with the IMPROVE regression applied for
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Figure 6. Top left panel: IMPROVE mean observed visibility (dV ) in the United States for August 2012; top right panel: WF-ABBA

fire frequency in the United States for August 2012; bottom left panel: IMPROVE regression (bias-corrected) retrieval mean dV in the

United States for August 2012; bottom right panel: scatter plot of collocated mean dV IMPROVE regression (bias-corrected) retrieval versus

IMPROVE for all IMPROVE sites for August 2012.

June 2011. Overall, increased mean dV values are found over

the central and eastern USA, consistent with the IMPROVE

sites, but with slightly lower (often by 3–5 dV ) values than

the IMPROVE measurements. Lower mean dV values are

found over the western, USA which is also consistent with

the IMPROVE sites. There were very few bins with sufficient

retrievals over the Great Lakes and northeastern region due to

persistent clouds so it is difficult to compare with IMPROVE

in those locations. Figure 5 bottom right panel shows a scatter

plot of collocated mean dV for the GOES-R ABI aerosol vis-

ibility retrieval with the IMPROVE regression applied versus

IMPROVE measurements during June 2011. The GOES-R

ABI retrieval was required to be within 0.25× 0.25◦ lati-

tude/longitude of the associated IMPROVE site and occur

on the same day for coincidence. June 2011 had the high-

est correlation (0.74, r2
= 0.5494) for any of the months for

2010–2012. The RMSE value was 3.8633 dV with mean bi-

ases of −0.4796 dV .

The IMPROVE network shows high (20–25) dV mea-

surements over central and southern Idaho and moderately

high (17–20) dV values over extreme northeastern Califor-

nia and southern Montana in August 2012 (Fig. 6 top left

panel). In addition, moderately high (17–20) IMPROVE dV

measurements occur over parts of the Tennessee Valley and

mid-Atlantic regions. In contrast, lower IMPROVE dV are

found over the southwestern USA (5–10) and over the Great

Lakes and northeastern USA (10–15). Figure 6 top right

panel shows the WF-ABBA fire frequency in the United

States for August 2012. Widespread major fires are found

over the northwestern USA particularly in central and south-

ern Idaho, southeastern Oregon, and northeastern Califor-

nia. Smoke from these fires results in increased dV from

northeastern California to southern Montana. In addition,

moderate fire frequencies over the lower Mississippi Valley

contribute to the moderately high (17–20) IMPROVE dV

seen over the Tennessee Valley. Figure 6 bottom left panel

shows the GOES-R ABI aerosol visibility retrieval with the

IMPROVE regression applied for August 2012. Moderately

high (17–20) dV is retrieved over southeastern Oregon and

southern Idaho. These values are slightly lower than the

IMPROVE measurements and are shifted to the south. No

IMPROVE sites were available in southeastern Oregon for

comparison. Over the Tennessee Valley, the bias GOES-R

ABI retrieval slightly underestimates the mean dV values

compared to the IMPROVE measurements. Figure 6 bottom

right panel shows a scatter plot of collocated bias-corrected
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Figure 7. Top left panel: time series plot for 2011 of Bandelier National Monument in New Mexico of daily mean dV for IMPROVE (black

line) and IMPROVE regression (bias-corrected) ABI retrieval (triangle symbol is daily mean dV with standard deviation line); top right

panel: same as top panel but for time series plot for 2011 of Cape Romain National Wildlife Refuge in South Carolina; bottom left panel:

same as top panel but for time series plot for 2012 of Craters of the Moon National Monument in Idaho; bottom right panel: same as top

panel but for time series plot for 2012 of Cape Romain National Wildlife Refuge in South Carolina.

GOES-R ABI aerosol visibility retrieval versus IMPROVE

measurements for all IMPROVE sites for August 2012. Au-

gust 2012 had a correlation value of 0.637 (r2
= 0.4059)

with RMSE values of 3.6509 dV and the mean biases of

0.1009 dV .

Figure 7 top left panel shows a time series plot of 2011

daily mean dV for IMPROVE (black line) and the GOES-R

ABI aerosol visibility retrieval with the IMPROVE regres-

sion applied (triangle symbol is daily mean dV with stan-

dard deviation line) at Bandelier National Monument in New

Mexico. Green indicates “good” skill (June–September),

yellow is “medium” skill (January–March), and red peri-

ods should be used with caution (April–May and October–

December). There are two prominent peaks in the IMPROVE

daily mean dV measurements. One peak occurs in early June

2011 while a second peak occurs in early July 2011. Both of

these peaks are captured in the GOES-R ABI aerosol visi-

bility retrieval but the magnitude of the June 2011 retrieved

peak is substantially less than IMPROVE measurements. The

magnitude of the July 2011 retrieved peak is very similar to

the IMPROVE peak. These enhanced peaks occur because

of decreased aerosol visibility due to smoke from major fires

over eastern Arizona in June 2011 and from major fires over

northern New Mexico in July 2011. In August and Septem-

ber 2011, the GOES-R ABI retrieval tends to overestimate

the daily mean dV by around 5 dV compared to IMPROVE.

Figure 7 top right panel shows a time series plot for 2011

of daily mean dV for IMPROVE and GOES-R ABI aerosol

visibility retrieval with the IMPROVE regression applied at

the Cape Romain National Wildlife Refuge in South Car-

olina. A prominent peak in the daily mean dV occurs in both

the IMPROVE and GOES-R ABI retrieval in late June 2011.

This enhanced peak occurs because of decreased aerosol vis-

ibility due to smoke from major fires over southern Geor-

gia and northern Florida during this time period. In addition,

throughout June–August 2011 the bias-corrected retrieval of

daily mean dV seems to capture the trends in the IMPROVE

data fairly well.

Figure 7 bottom left panel shows a time series plot of daily

mean dV for IMPROVE and GOES-R ABI aerosol visibility

Atmos. Meas. Tech., 9, 409–422, 2016 www.atmos-meas-tech.net/9/409/2016/



J. Brunner et al.: Satellite-based estimates of surface visibility 421

retrieval with the IMPROVE regression applied for 2012 of

Craters of the Moon National Monument in Idaho. There are

two prominent peaks in the daily mean dV that occur in the

IMPROVE data. One peak occurs in mid to late-August 2012

while a second peak occurs in mid-September 2012. Both of

these peaks are also captured in the GOES-R ABI retrieval

but the magnitude of both peaks is substantially less com-

pared to the IMPROVE peaks. These enhanced peaks occur

because of decreased aerosol visibility due to smoke from

major fires over southeastern Oregon and southern/central

Idaho in August 2012 and from major fires over central Idaho

in September 2012. In June and July 2012, the retrieval tends

to overestimate the daily mean dV by around 5 dV compared

to IMPROVE.

Figure 7 bottom right panel shows a time series plot of

daily mean dV for IMPROVE and GOES-R ABI aerosol vis-

ibility retrieval with the IMPROVE regression applied for

2012 of Cape Romain National Wildlife Refuge in South

Carolina. Overall, for June–September 2012, the GOES-R

ABI retrieval does a very good job with the trends and mag-

nitudes for daily mean dV compared to IMPROVE. There

are no prominent peaks in the daily mean dV data for both

IMPROVE and the GOES-R ABI retrieval and the peaks for

June–September 2012 are at a substantially lower dV value

(higher aerosol visibility value) compared to the peak for

June 2011 at Cape Romain. These trends make sense because

there was no major fires (and very low fire frequency) during

the June–September 2012 time period over the southeastern

USA compared to June 2011 when there were major fires

(and high fire frequency) over southern Georgia and north-

ern Florida.

5 Conclusions

A satellite-based surface visibility retrieval has been devel-

oped for the GOES-R ABI instrument using MODIS proxy

data and validated using independent ASOS surface visibil-

ity measurements. The GOES-R ABI surface visibility re-

trieval has an overall success rate of 64.5 % for classify-

ing clear (V ≥ 30 km), moderate (10 km≤V < 30 km), low

(2 km≤V < 10 km), and poor (V < 2 km) visibilities during

January 2010–December 2013, and shows the most skill dur-

ing June through September, when Heidke skill scores are

between 0.2 and 0.4. Variability in the frequency of clear-

sky (aerosol) surface visibility retrievals larger than 20 dV

is shown to be correlated with seasonal and interannual vari-

ability in fire detections, illustrating the importance of smoke

from wildfires in regional haze events. Comparison with visi-

bility measurements from the IMPROVE network during pe-

riods of significant wildfire activity requires additional bias

corrections due to the relatively high (∼ 16 dV ) limit of de-

tection of the GOES-R ABI retrieval when expressed in de-

civiews, but it shows that the GOES-R ABI aerosol visibility

retrieval is able to capture reductions in visibility due to wild-

fire smoke and can be used to augment measurements from

the IMPROVE network. Quantitative evaluation of the errors

in the GFS PBL, which is one of the largest uncertainties

in the visibility estimate, shows that the GFS PBL estimates

are systematically low by ∼ 500 m (28 %) with RMSEs of

659 m (mean bias removed) over the continental USA during

June–September 2012. August 2012 sensitivity studies using

the IMPROVE regression visibility retrieval show that biases

due to PBL depth errors range from 5 to −10 % while uncer-

tainties due to PBL RMSEs range from 5 to 12 %. The ability

of current polar orbiting and future geostationary satellites to

monitor visibility on a daily or hourly basis over the conti-

nental United States provides improved visibility monitoring

within our national parks and useful information to the re-

gional planning offices responsible for developing mitigation

strategies required under the EPA’s Regional Haze Rule.
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