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Abstract. A high-fidelity lidar turbulence measurement tech-
nique relies on accurate estimates of radial velocity variance
that are subject to both systematic and random errors deter-
mined by the autocorrelation function of radial velocity, the
sampling rate, and the sampling duration. Using both sta-
tistically simulated and observed data, this paper quantifies
the effect of the volumetric averaging in lidar radial veloc-
ity measurements on the autocorrelation function and the de-
pendence of the systematic and random errors on the sam-
pling duration. For current-generation scanning lidars and
sampling durations of about 30 min and longer, during which
the stationarity assumption is valid for atmospheric flows, the
systematic error is negligible but the random error exceeds
about 10 %.

1 Motivation and approach

Coherent Doppler lidars (hereafter called lidars) are increas-
ingly being deployed to measure flow in the atmospheric
boundary layer (ABL) particularly for applications to wind
engineering (Banta et al., 2013). Accordingly, uncertainties
in lidar-derived mean wind velocity estimates have been well
characterized (Wang et al., 2016; Lindelöw-Marsden, 2009)
and methods and procedures have been developed for er-
ror reduction and uncertainty control (Clifton et al., 2013;
Gottschall et al., 2012). However, use of lidar for turbulence
measurements, while possible (Newman et al., 2016; Bran-
lard et al., 2013; Mann et al., 2010), is less established (Sathe
et al., 2015; Sathe and Mann, 2013). Two methods are com-
monly used to derive the second-order moments (i.e., veloc-
ity variances and momentum fluxes) of turbulent flow from
lidar data (Sathe and Mann, 2013). The first method initially
estimates the three orthogonal wind components from radial

velocities acquired through a scan geometry (e.g., the coni-
cal scan) and then uses the eddy covariance method to derive
the turbulence statistics. The second method involves three
steps: (1) obtaining radial velocities to form a time series at
different locations through a scan geometry, (2) estimating
radial velocity variance from the time series obtained in (1),
and (3) deriving the second-order moments based on their re-
lationships with the radial velocity variance. Estimates from
both methods have errors relative to the true or expected val-
ues defined as the ensemble means over all possible realiza-
tions, and these errors are commonly quantified in terms of
the systematic and random components. Systematic errors
are consistent deviations from the true values in all estimates,
and they are also referred to as biases. Random errors are
varying deviations from the true values arising for unknown
reasons and are commonly modeled as random variables fol-
lowing Gaussian distributions. The first method can suffer
from cross-contamination errors (biases) due to the correla-
tion between the radial velocities used for wind velocity es-
timates (Sathe et al., 2011). Therefore, the second method is
considered to be more suitable for lidar turbulence measure-
ments (Newman et al., 2016; Sathe et al., 2015; Sathe and
Mann, 2013; Mann et al., 2010)

Using the second method mentioned above, errors in the
estimated variances and momentum fluxes are accumulations
of the following three types of errors in the estimated radial
velocity variance:

– measurement errors caused by radial velocity estima-
tor uncertainty and atmospheric turbulence (Frehlich,
1997);

– attenuation errors due to the volumetric averaging effect
of lidar measurement (Sathe and Mann, 2013; Mann
et al., 2010);
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– sampling errors as a result of estimating the ensemble
mean by the time average (Mann et al., 2010; Lenschow
et al., 1994).

Measurement errors can be estimated and potentially re-
moved using either the autocovariance or spectrum of the
measured radial velocities (Frehlich, 2001; Lenschow et al.,
2000). Alternatively, the signal-to-noise ratio (SNR) can
also be used to approximate the measurement error (Pear-
son and Collier, 1999). Correction for the attenuation er-
ror requires knowledge of three dimensional spatial statis-
tics (Mann et al., 2010; Frehlich, 1997), and the accuracy
of this correction depends on the suitability of the selected
turbulence spectrum model and its parametrization (Sathe
and Mann, 2013; Mann et al., 2010). The sampling error
is well understood for turbulence statistics estimated from
sonic anemometer measurements (Lenschow et al., 1994),
but has not yet been studied for the radial velocity variance
estimated from lidar measurements. Mann et al. (2010) call
for a thorough sampling error analysis in order to understand
the difference between radial velocity variance and momen-
tum fluxes derived from lidars and sonic anemometers. The
size of sampling error is a function of the sampling inter-
val and duration (Lenschow et al., 1994), both of which are
determined by lidar scan geometries which can, in turn, be
optimized to minimize the uncertainty in the estimated turbu-
lence statistics (Sathe et al., 2015). Improved understanding
of sampling errors in lidar-derived radial velocity variance
estimates is a necessary prerequisite to the development of
robust techniques that will enable the widespread use of lidar
for high-fidelity turbulence measurements. Accordingly, the
objectives of this work are to improve the characterization of
radial velocity variance error properties and to develop tools
to quantify and reduce these errors.

The approach taken and the format of this paper are as
follows. The theoretical framework used herein to quantify
errors in radial velocity variance from lidar measurements
leverages the theory developed to characterize uncertainties
in statistical moments estimated from a time series of sonic
anemometer measurements in Lenschow et al. (1994), and
is modified to incorporate the effect of volumetric averag-
ing and the slow sampling rate of lidars (Sect. 3). The theo-
retical findings are then validated using empirical estimates
obtained from measurements of a Galion lidar and three
co-deployed sonic anemometers (Sect. 4). The theoretical
framework is then used to investigate the sampling duration
required to obtain a predefined error magnitude (Sect. 5).

2 Preliminaries

A brief description of lidar measurements is given below. For
more details see Mann et al. (2008) and Sathe and Mann
(2012). Symbols introduced hereafter are explained in the
nomenclature in Appendix B.
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Figure 1. The schematic of lidar line of sight (LOS) orientation in
the streamline coordinate system

Based on the streamline coordinate system in Fig. 1, a
wind velocity vector is defined as

u= (u1,u2,u3), (1)

where u1, u2, and u3 are streamwise, transverse, and vertical
wind components respectively at position x = (x1,x2,x3).
Without loss of generality, we can assume that the mean
streamwise velocity U1 has been removed, and u only con-
sists of the fluctuating components of turbulence with zero
means. A lidar measures the radial velocity (vr) from the
Doppler frequency shift induced by the motion of scatterers
along the line of sight (LOS), where the orientation of LOS
is defined by the unit directional vector:

n= (cosφ sinθ,cosφ cosθ,sinφ), (2)

where θ is the azimuth angle that increases clockwise from
being zero in a positive x2 direction and φ is the elevation
angle relative to the x1–x2 plane (Fig. 1). The radial velocity
is the projection of wind velocity on the LOS and is defined
as

vr = n ·u. (3)

The Galion lidar used here is a pulsed lidar that measures
radial velocity with the step-stare technique in this applica-
tion. Each radial velocity is measured over a dwell time of
approximately 1.0 s, during which spectra of a large num-
ber of returned signals are averaged to improve the measure-
ment accuracy. When operated with a scan geometry, the li-
dar steers its transceiver to probe at different sets of θ and
φ. Hence, the sampling interval of two consecutive measure-
ments at one location depends on the dwell time, the scan
geometry, and the mechanical design of the lidar. The short-
est sampling interval can be achieved with the staring scan
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for which the lidar measures with fixed θ and φ; that is, the
sampling interval is close to the dwell time. The radial ve-
locity (vR) is estimated from an averaged spectrum acquired
over a range gate; hence, it is a weighted average of radial
velocities along the LOS:

vR(s)=

+∞∫
−∞

Q(s′)vr(s− s
′)ds′, (4)

where s denotes the range gate location and s′ is the range
distance on the LOS. Here we use the subscript R to denote
an average quantity and r to denote a point quantity. Note
that vR defined in Eq. (4) is the expected value of a radial ve-
locity measurement. The actual measured value differs from
vR due to measurement errors as discussed in Frehlich (1997)
and Sect. 1. The weighting function Q in Eq. (4) can be ap-
proximated by a Gaussian function (Kristensen et al., 2011):

Q(s′)=
1

√
2πσQ

exp

[
−
(s′− s)2

2σ 2
Q

]
, (5)

where the standard deviation σQ is a measure of the volumet-
ric averaging size, which is 15.4 m for the Galion lidar used
herein (Wang et al., 2016).

The covariance of vr (Rr) and vR (RR) along the x1 direc-
tion is defined as follows (Mann et al., 2008):

Rr(r1)= ninjRij (r1e1) (6)
RR(r1)= (7)

ninj

∫ +∞∫
−∞

Q(s′)Q(s′′)Rij
(
(s′′− s′)n+ r1e1

)
ds′ds′′,

where s′ and s′′ denote the range distance, Rij is the veloc-
ity tensor for the ith and j th velocity components, ni and nj
are the components of n, and e1 and r1 are the unit vector
and the separation distance on the x1 axis, respectively. Note
that i,j = 1,2,3 and summation is assumed over repeated in-
dices. We can map r1 to the temporal lag τ through the frozen
turbulence hypothesis (Taylor, 1938); r1 = U1τ . The spatial
autocorrelation function of vr (ρr) and vR (ρR) separated by
(r1,0,0) is then defined respectively as

ρr(r1)= Rr(r1)/µ2,r (8)
ρR(r1)= RR(r1)/µ2,R, (9)

where µ2,r = Rr(0) is the ensemble variance of vr, and
µ2,R = RR(0) is the ensemble variance of vR. Due to the
averaging given in Eq. (4), RR(0) < Rr(0) and the ratio
RR(0)/Rr(0) decreases when the size of volumetric aver-
aging increases (i.e., σQ/L1 increases, where L1 is the in-
tegral length scale of u1) (Mann et al., 2008). However,
RR(r1)= Rr(r1) when r1 is sufficiently large (e.g., r1� L1)
because values of Rr(r1) with large r1 are determined by ed-
dies of large sizes that are not affected by the averaging. As
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Figure 2. Examples of turbulence statistics of point radial veloc-
ity (vr) and averaged radial velocity (vR) derived from Eqs. (6)
and (7) using the isotropic turbulence model (Pope, 2000) and the
von Kármán spectra (Burton et al., 2011) with streamwise velocity
U1 = 8 ms−1, turbulence intensity= 12.5 %, and lidar elevation an-
gle= 10◦. The covariance and autocorrelation functions for vr (Rr
and ρr) and vR (RR and ρR) for azimuth angle θ = 30◦ are shown
in (a) and (b), respectively, as functions of r1/L1, where r1 is the
spatial lag in streamwise direction andL1 is the integral length scale
of streamwise velocity.RR and ρR are presented in terms of σQ/L1,
where σQ represents the size of volumetric averaging (see Eq. 5).
The effect of volumetric averaging on the integral length scale of
radial velocity is presented in (c) in terms of the relationship be-
tween LR/Lr and σQ/L1 for different θ values, where Lr and LR
are the integral length scales for vr and vR, respectively.

illustrated in Fig. 2, with the assumption of isotropic turbu-
lence, RR(r1) starts at a value lower than Rr(r1) at r1 = 0
and gradually converges to Rr(r1) as r1 increases. Because
Rr(0) and RR(0) are the denominators in Eqs. (8) and (9),
respectively, ρR ≥ ρr and (ρR−ρr) increases with increasing
σQ/L1.

As a result, if we denote Lr and LR respectively as the
integral length scales for vr and vR, LR > Lr and LR/Lr in-
creases with increasing σQ/L1 (Fig. 2). Although quantita-
tive evaluation of RR/Rr or (ρR− ρr) as a function of r1 re-
quires the knowledge of velocity tensors Rij , the qualitative
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statement above is also true for non-isotropic turbulence and
has implications for the errors of radial velocity variance es-
timates as demonstrated in the next section.

3 Errors in radial velocity variance

In the following, the analysis and notation used are from
Lenschow et al. (1994), and we use the word “error” to re-
fer to the sampling error of radial velocity variance estimated
from time series unless otherwise stated.

Radial velocity variance is estimated from time series of
radial velocity that is related to u(t)which is a stationary and
ergodic time series generated from a Gaussian process char-
acterized by the mean wind speed U1 and covariance tensors.
Assuming that the mean has been removed from u(t), it can
be shown that both vr and vR are also from a stationary and
ergodic time series of a Gaussian process that has the follow-
ing properties:

– zero ensemble mean for both vr and vR;

– ensemble variance µ2,r = 〈v
2
r 〉 and µ2,R = 〈v

2
R〉;

– ensemble autocorrelation ρr(τ ) and ρR(τ ).

The brackets 〈·〉 denote the ensemble average.
The measured radial velocity (v̂R) from a lidar will deviate

from the expected value (vR) as a result of the measurement
error (Frehlich, 2001). The bias introduced by the measure-
ment error is negligible for a lidar measurement with a high
pulse accumulation number (e.g., 20 000 for the Galion lidar)
(Frehlich, 2001, 1997). The random measurement error in v̂R
is modeled by an independent Gaussian random variable with
zero mean and variance σ 2

R, which is inversely proportional
to the SNR (Pearson and Collier, 1999; Frehlich and Yad-
lowsky, 1994). Turbulence can cause σ 2

R to increase by an
amount that is proportional to the range gate size and the tur-
bulent kinetic energy (TKE) dissipation rate (Frehlich, 1997).
Frehlich et al. (1994) show that the amount of increase due to
turbulence is about 20 % for a 48 m range gate size. For the
Galion lidar with 30 m range gate size, the contribution from
turbulence to σ 2

R is no more than 10 % with a relative weak
SNR and a TKE dissipation rate on the order of 0.01 m2 s−3

(based on the method in Frehlich, 1997). Therefore, it is a
good approximation to estimate σ 2

R from the SNR data us-
ing Eq. (5) in Pearson and Collier (1999) for the Galion lidar
(Wang et al., 2016).

Assuming zero bias in the measurement error, it can be
shown that the radial velocity variance (µ̂2,R(T )) estimated
from lidar measurements over a sampling period of T can be
represented as

µ̂2,R(T )= µ2,R(T )+ σ
2
R, (10)

where µ2,R(T ) is the estimate of µ2,R from a time series
over a period T without measurement errors. According to

Lenschow et al. (1994),

µ2,R(T )= µ2,R+Es,R(T )+ εr,R(T ), (11)

where

– Es,R(T ) is systematic sampling error that is defined as
〈µ2,R(T )〉−µ2,R;

– εr,R(T ) is random sampling error that is characterized
by a Gaussian distribution with zero mean and variance
denoted as E2

r,R(T ).

Both systematic and random errors are results of estimating
ensemble means by time averages over a finite time period;
therefore, Es,R(T ) and E2

r,R(T ) must be functions of T . Note
that σ 2

R in Eq. (10) is independent of T and can be estimated
and removed using the SNR data as discussed above. Hence,
we assume no measurement error in the following derivation
ofEs,R(T ) andE2

r,R(T ) from a disjunct time series of vR. The
derived results for vR can also be used for vr. As discussed in
more detail in the subsequent text, the difference between vr
and vR in terms of the relative sampling errors derives solely
from the difference between ρr and ρR.

Radial velocities from a pulsed lidar naturally form a dis-
crete time series (see Sect. 2). For example, when a pulsed
lidar is configured to estimate turbulence statistics with the
six-beam method of Sathe et al. (2015), the lidar samples
six locations sequentially, and therefore the sampling inter-
val (δt) at one location is 6 times the sampling interval per
one lidar measurement (i.e., δt > 6 s and is at least 60 times
slower than a sonic anemometer sampling at 10 Hz). Hence,
the radial velocity variance from a time series of vR acquired
over a period T with a sampling interval δt is estimated from

µ2,R(T )=
1
N

N∑
i=1

[
vR(ti)−µ1,R(T )

]2
, (12)

where ti is the time stamp of measurement, N = 1+ T/δt
is the sample number, and µ1,R(T ) is the ensemble mean
estimate:

µ1,R(T )=
1
N

N∑
i=1

vR(ti). (13)

The radial velocity variance estimated from Eq. (12) has a
systematic error Es,R given by

Es,R = 〈µ2,R(T )〉−µ2,R =−〈µ
2
1,R(T )〉. (14)

Note that 〈µ2
1,R(T )〉 is the sample mean variance; hence the

systematic error is always negative, and its relative magni-
tude is given by Box et al. (2015):

es,R =−
Es,R

µ2,R
=
S1,R

N2 , (15)
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where

S1,R =

N∑
i=1

N∑
j=1

ρR(ti − tj ). (16)

The variance of the random error εr,R(T ) of radial velocity
variance estimated from Eq. (12) is defined as

E2
r,R =

〈[
µ2,R(T )−〈µ2,R(T )〉

]2〉
. (17)

Applying the Isserlis relation of a Gaussian process
(Lenschow et al., 1994), it can be shown that the relative sam-
pling random error variance is

e2
r,R =

E2
r,R

µ2
2,R
=

2
N4 S

2
1,R+

2
N2 S2,R−

4
N
S3,R, (18)

where

S2,R =

N∑
i=1

N∑
j=1

[
ρR(ti − tj )

]2
; (19)

S3,R =

N∑
i=1

N∑
m=1

N∑
n=1

[ρR(ti − tm)] [ρR(tn− ti)] . (20)

The error expressions derived in Eqs. (15) and (18) are valid
for vr variance with the replacement of the autocorrelation
and the variance by ρr and µ2,r, respectively.

It is clear from Eqs. (15) and (18) that the errors are func-
tions of the sampling interval, sampling duration, and au-
tocorrelation function. The averaging defined in Eq. (4) af-
fects the shapes of the radial velocity covariance and auto-
correlation function as illustrated using the isotropic turbu-
lence model (Fig. 2). To investigate the impact of anisotropic
turbulence under realistic atmospheric conditions, wind vec-
tors are statistically simulated from the Risø Smooth-Terrain
(SMOOTH) spectrum model using TurbSim (https://nwtc.
nrel.gov/TurbSim). The simulation domain is 725×60×12 m
(x1× x2× x3) centered at 80 m above the ground, and has a
horizontal and vertical resolution of 1.0 and 0.5 m, respec-
tively. In these simulations, the mean wind speed is 8 ms−1

and the time interval is 0.125 s. Point radial velocities (vr) are
calculated using Eq. (3) for varying LOS orientations in the
horizontal plane relative to the x1 direction (denoted by β in
Fig. 1) with a fixed elevation angle of 10◦. Lidar-equivalent
radial velocities (vR) are derived by averaging vr on the LOS
within ±30 m from the domain center using the weighting
function in Eq. (5). As expected, variance reduction occurs
for all LOS orientations. The difference between RR and Rr
in Fig. 3 is similar to that in Fig. 2, and can be explained
using the structure function (Dr) defined as

Dr(τ )= 2[Rr(0)−Rr(τ )] (21)
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Figure 3. Covariance (Rr and RR on the left) and autocorrelation
functions (ρr and ρR on the right) of the point radial velocity (vr)
and averaged radial velocity (vR) derived from statistically sim-
ulated time series using TurbSim with the SMOOTH model and
the default parameter values. Covariance and autocorrelation func-
tions are presented for four different LOS orientations here as indi-
cated by the angle of LOS relative to the mean wind direction (β).
The time lag (τ ) is normalized by τ0, which is the first time when
ρr = 1/e at β = 0. A fixed elevation angle of 10◦ is used.

for a given time lag (τ ) and used to represent the energy of
eddies of sizes that are smaller than the scale U1τ (Pope,
2000). Volumetric averaging only attenuates the energy of
eddies of small sizes (Mann et al., 2008). When τ is small
relative to the integral timescale τ0, volumetric averaging
causes Dr(τ ) to decrease; hence, RR decreases more slowly
than Rr with respect to τ per Eq. (21). When τ/τ0 is large
(e.g., τ/τ0 > 0.25), RR = Rr because volumetric averaging
has little effect on eddies of scales of large τ . The differ-
ence between RR and Rr results in ρR > ρr for all time
lags and LOS orientations (Fig. 3). Simulations conducted
with the Kaimal (IECKAI) spectrum model TurbSim (https:
//nwtc.nrel.gov/TurbSim) produce similar results. Errors as-
sociated with the autocorrelation functions ρr/ρR derived
from the simulated vr/vR from both models are shown in
Fig. 4. Although the difference between the errors of vari-
ance of vr and vR varies with LOS orientation and turbulence
model (i.e. the turbulence structure), errors associated with
vR are consistently higher than those related to vr, indicating
that volumetric averaging increases errors associated with ra-
dial velocity variance estimates.

Thus both the statistically simulated wind data and physi-
cal reasoning provide evidence that volumetric averaging in-
creases the autocorrelation of radial velocity and inflates the
errors in radial velocity variance estimates. Further confirma-
tion will be provided in the next section, where data from a
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Figure 4. The relative systematic error (es) and random error vari-
ance

(
e2

r

)
derived from the autocorrelation functions of the sim-

ulated point radial velocity (ρr) and averaged radial velocity (ρR)
from the SMOOTH model in (a) and (c) and from the IECKAI
model in (b) and (d) (TurbSim) as functions of the angle between
the LOS and mean wind direction (β). The sampling duration is
100τ0, where τ0 is the first time when the point radial velocity au-
tocorrelation crosses 1/e at β = 0◦.

field experiment are used to show the effects of volumetric
averaging and sampling duration on the errors.

4 Errors from observations

4.1 Experiment setup

Measurements presented herein were obtained during the
Prince Edward Island Wind Energy Experiment (PEIWEE)
conducted at the Wind Energy Institute of Canada (WEICan)
site on the North Cape of PEI (Barthelmie et al., 2016).
During the experiment, a Galion lidar was configured with
20 kHz pulse repetition frequency and 1.0 s dwell time to
scan at four elevation angles (4.8, 10.0, 15.2, and 20.6◦) with
a fixed azimuth angle of 349◦ such that the seventh range
gate of the lidar sampled at 20, 40, 60 m (and 80 m) above the
ground where three Gill Windmaster Pro sonic anemometers
were installed on a slender meteorological mast and sampled
at 10 Hz. The sampling interval of the lidar at each elevation
angle is about 7.5 s, which is similar to the sampling inter-
val of the six-beam technique used for turbulence measure-
ment in Sathe et al. (2015). The measurements from the sonic
anemometers are used to describe the atmospheric turbulence
conditions and evaluate the accuracy of the lidar measure-
ments.

The lidar conducted automatic cleaning at the beginning of
each hour, resulting in a 60 s gap in the measurements; thus
analysis presented here uses a sample period of one hour.
Measurement errors were corrected in lidar radial velocity
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Figure 5. Time series of (a) hourly mean and (b) variance of radial
velocity (vR) from the lidar (markers) and the sonic anemometers
(lines) and time series of (c) hourly mean wind speed and (d) di-
rection from the sonic anemometers at three different heights. The
mean and variance of radial velocity from the hourly time series
classified as stationary using the method of Foken and Wichura
(1996) are shown by the filled markers. The dashed line in (d) gives
the wind direction under which the sonic anemometers are in the
center of the wind turbine wake.

variance estimates using the SNR data according to Eq. (5)
in Pearson and Collier (1999). Radial velocity variance from
the sonic data is estimated by extrapolating the autocovari-
ance of the first 10 time lags to lag zero, assuming that au-
tocovariance is linearly proportional to τ 2/3 for the first 10
lags (Lenschow et al., 2000). Comparison of the hourly mean
and variance of radial velocities from the lidar and sonic
anemometers indicates good agreement (correlation coeffi-
cient= 0.998) with the exception of periods around 18 May
2015 23:00 UTC when the measurements were in the wake of
a wind turbine located 60 m southwest of the Galion (Fig. 5).
The variance is consistently higher (on average by 19 %) for
the sonic radial velocity than the lidar radial velocity because
of the expected attenuation in variance caused by volumetric
averaging.

Stationarity is the fundamental assumption required to ob-
tain theoretical estimates of the errors (as in Sect. 3). Thus,
the hourly time series of radial velocity from both the lidar
and sonic anemometers are evaluated for stationarity using
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the approach of Foken and Wichura (1996). Each hourly time
series is evenly divided into 12 subsets. If the mean of the
variance of the subsets deviates by less than 30 % from the
variance of the hourly time series, the time series is consid-
ered to be stationary. Among all the hourly time series ob-
tained at the three heights, 34 concurrent pairs of lidar and
sonic data pass the stationarity test (Fig. 5); therefore, they
are used to derive the empirical estimates of errors.

4.2 Error estimation method

The systematic error es(Tn,T ) and random error variance
e2

r (Tn,T ) associated with sampling duration Tn derived from
a time series of length T are estimated using the follow-
ing stationary bootstrap method (Politis and Romano, 1994),
where the sample numbers associated with T and Tn are de-
noted as N and Nn, respectively.

– A new time series of size of N is constructed by re-
sampling blocks of the original time series. To keep the
new time series stationary, the sizes of the blocks are
randomly drawn from a geometric distribution, and the
locations (the start of each block) are randomly drawn
from a discrete uniform distribution on (1,2, . . .,N ).
The only parameter to be specified is the optimal mean
block size for the geometric distribution, which is found
by minimizing the mean squared error of the estimate of
the sample mean variance (Politis and White, 2004).

– A subset of size of Nn is randomly selected from the
new time series and its mean and variance, denoted as
µ1(Tn,i) and µ2(Tn,i), respectively, are recorded. The
subscript i denotes that it is the ith resampling.

– Sequences of µ1(Tn,i) and µ2(Tn,i) are acquired after
repeating the two steps above forNb times. The variance
of the sample mean 〈µ2

1(Tn,T )〉 is approximated as〈
µ2

1(Tn,T )
〉
=

1
Nb

Nb∑
i=1

µ2
1(Tn,i). (22)

– Per the definition in Eq. (14), the systematic error
es(Tn,T ) can be calculated as

es(Tn,T )=

〈
µ2

1(Tn,T )
〉

µ2(T )
. (23)

– To calculate the random error variance, the expected
value 〈µ2(Tn,T )〉 is first estimated by adding the sys-
tematic error to µ2, which is approximated by µ2(T ),
i.e.,

〈µ2(Tn,T )〉 = µ2(T )−
〈
µ2

1(Tn,T )
〉
. (24)

Then the random error variance is derived with the fol-
lowing equation:

e2
r (Tn,T )=

1
Nb

∑Nb
i=1
[
µ2(Tn,i)−〈µ2(Tn,T )〉

]2
µ2

2(T )
. (25)
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Figure 6. An example of the autocorrelation and errors in radial ve-
locity variance estimate using data from the hour starting at 19 May
2015 04:00 at 40 m height. The autocorrelation functions derived
from the lidar and sonic measurements are presented in (a). Sys-
tematic errors (es) and random errors

(
e2

r

)
are presented in (b)

and (c), respectively. Errors associated with both lidar and sonic
anemometer data are estimated using the autocorrelation function
from measurements (denoted by Mρ ) and the stationary bootstrap
method (denote by Mb) described in Sect. 4.2.

4.3 Observed errors

Two methods are used to estimate the errors associated with
different sampling durations after the means are removed
from hourly time series of the point radial velocity from
sonic anemometers (vr,sonic) and lidar-measured averaged ra-
dial velocity (vR,lidar). The first method, denoted as the Mρ

method, is based on Eqs. (15) and (18) and the autocorrela-
tion function derived from measurements (Fig. 6a). The ob-
served autocorrelation functions show the postulated effect
of volumetric averaging on the autocorrelation function. For
all the hourly time series studied here, the autocorrelation of
vR,lidar at time lag one (τ = 7.5 s) is significantly higher than
that of vr,sonic (Fig. 7). At time lag two (τ = 15 s), the auto-
correlation of vR,lidar is still larger than that of vr,sonic, but the
difference is not always statistically significant. Beyond time
lag two (τ > 15 s), the difference between the autocorrelation
of vR,lidar and vr,sonic vanishes. Because integral timescales of
streamwise velocity calculated from the sonic data are all be-
low 30 s, we assume that the autocorrelation function values
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Figure 7. Comparison of the values of radial velocity autocorrela-
tion function from sonic data (ρsonic) and lidar data (ρlidar) at the
first time lag δt = 7.5 s. The 95 % confidence interval of ρlidar is
indicated by the error bar.

of both vr,sonic and vR,lidar are zero for time lags larger than
60 s. The autocorrelation-based systematic error and random
error variance will be denoted as es,ρ and e2

r,ρ , respectively.
The second method, denoted as the Mb method, uses the sta-
tionary bootstrap method described in Sect. 4.2, and the re-
sultant systematic error and random error variance will be
denoted as es,b and e2

r,b, respectively (see the example given
in Fig. 6).

Consistent with expectations, error estimates from both
Mρ and Mb methods are higher for vR,lidar than vr,sonic
(Fig. 8) due to the difference in autocorrelation functions.
The random errors estimated from both methods in general
decrease with height except for a few cases related to theMρ

method (Fig. 9). The systematic errors show a similar trend
with height (not shown here). This is possibly the result of
increasing turbulence integral length scale with height. For
a pulsed lidar, increasing integral length scale can cause the
amount of attenuation of radial velocity variance to decrease
(Mann et al., 2010) and consequently the errors to decrease
(as demonstrated in Fig. 2). Both methods give very similar
estimates of systematic error, although there are some hours
for which the Mρ method produces higher systematic errors
than the Mb method (Fig. 10). The median of es from vR,lidar
is 1.5/0.9 % for T = 30/55 min. Estimates of random error
from the Mρ method are always higher than the Mb method,
due in part to the negative bias in theMb method (Politis and
White, 2004) (Fig. 10). For vR,lidar, the median of e2

r from
vR,lidar is 1.6/0.9 % and the median of er (standard devia-
tion) is 12.7/9.5 % for T = 30/55 min, respectively. Despite
the expected difference between errors from the two meth-
ods, both methods consistently confirm the trend of decreas-
ing error with increasing sampling duration (Fig. 11), and the
relatively close agreement of results from the two approaches
offers empirical support for the relationships between the er-
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Figure 8. Comparison of systematic errors estimated from sonic
data (es,sonic) and from lidar data (es,lidar) in (a) for a sampling du-
ration of 30 min and (c) a sampling duration of 55 min, and compar-
ison of the random error estimated from sonic data

(
e2

r,sonic

)
and

from lidar data
(
e2

r,lidar

)
in (b) for a sampling duration of 30 min

and (d) a sampling duration of 55 min. The method used to esti-
mate the errors is indicated by the subscript in the legend, where
ρ denotes the Mρ method using the autocorrelation function and b
denotes the Mb method using the stationary bootstrap method. The
solid lines are the 1 : 1 lines.

rors and the autocorrelation function of radial velocity as de-
scribed by Eqs. (15) and (18) for ergodic and stationary time
series.

5 Discussions

On the basis of empirical evidence presented in Sect. 4, in
the following we use the theoretical framework presented in
Sect. 3 to describe how the error in estimating radial veloc-
ity variance from lidar measurement that results from (i) au-
tocorrelation function, (ii) sampling duration, and (iii) sam-
pling interval can be minimized. The first factor (autocorrela-
tion function) is determined by the underlying wind field, the
lidar LOS orientation, and the size of volumetric averaging
(i.e., σQ in Eq. 5), and needs to be specified to estimate un-
certainty in the variance estimates. It typically approximates
an exponential but the precise functional form and the rate of
decay varies depending on the flow field. Therefore, in prac-
tice, error reduction can only be achieved by adjusting the
other two factors: sampling duration (T ) and sampling inter-
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Figure 10. Comparison of lidar radial velocity systematic errors
es,ρ and es,b estimated using the autocorrelation (Mρ ) method and
the stationary bootstrap (Mb) methods, respectively, for (a) a sam-
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comparison of the lidar radial velocity random errors e2

r,ρ and e2
r,b

estimated using the Mρ method and the Mb method, respectively,
for (b) a sampling duration of 30 min and (d) a sampling duration
of 55 min. The measurement heights are shown in the legend.
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and the sam-
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data using the autocorrelation method (gray lines) and the station-
ary bootstrap method (box plots). All errors are normalized by the
errors estimated from the autocorrelation method with a sampling
duration of 55 min.
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Figure 12. Contours of the relative variance
(
e2

r

)
of random errors of radial velocity variance from lidar measurements estimated with the

isotropic turbulence model (Pope, 2000) and the von Kármán spectra (Burton et al., 2011) as a function of the sampling duration (T ) and the
sampling interval (δt) normalized by the integral timescale (τ0) for four different β values, where β is the angle between the LOS and the
wind direction. The weighting function (Eq. 5) representing the volumetric averaging has a standard deviation σQ = 0.2L1, where L1 is the
streamwise integral length scale. The other input parameters include the elevation angle φ = 10◦ and the mean wind speed U1 = 8 ms−1.

val (δt), with assumption or knowledge of the autocorrelation
function ρ(τ).

Atmospheric turbulence is rarely isotropic, and for all the
hours presented in Sect. 4 the three wind components had
non-equal variance. However, here we use the isotropic tur-
bulence model to model the autocorrelation function, noting
that it is always possible to find an integral length scale to
reproduce the observed autocorrelation function of radial ve-
locity from lidar measurements with the isotropic turbulence
model (Pope, 2000) and the von Kármán spectra (Burton
et al., 2011) (e.g., Fig. 6). Therefore, we argue that with a
proper length scale, the isotropic turbulence model can gen-
erate an autocorrelation function that can be used to approx-
imate non-isotropic turbulence conditions, justifying the use
of the isotropic turbulence model here.

Based on the isotropic turbulence model and the von Kár-
mán spectra, the relative systematic error (es) is negligible
in comparison to the random error. Hence, only the analysis
of random error variance

(
e2

r
)

or standard deviation (er) is
given below. The magnitude of e2

r is not sensitive to the sam-

pling interval (δt). Because the integral timescale (τ0) has
the order of magnitude of 10 s and δt = 1–10 s, it is likely
that δt/τ0 < 1, implying that in practice the sampling inter-
val is a minor factor on error reduction (Fig. 12). Increasing
the size of volumetric averaging in terms of σQ can cause e2

r
to increase with a rate that decreases to nearly zero when the
sampling duration increases and the LOS moves from being
parallel to perpendicular to the wind direction (i.e., β from 0
to 90◦) (Fig. 13). Therefore, it is also a minor factor on er-
ror reduction when the sampling duration is long. The LOS
orientation relative to the wind direction (β) naturally affects
the properties of random errors because the timescale of ra-
dial velocity varies with β. For example, for the isotropic tur-
bulence model used here, streamwise velocity has the largest
timescale and as a result, errors are large when the LOS is
aligned with the wind direction (i.e., β = 0◦) (Figs. 12a and
13a). In general e2

r is not sensitive to β, but it must be ac-
knowledged that the effect of β on e2

r will change if a dif-
ferent turbulence model is applied. The factor that has the
most significant effect on error reduction is the sampling du-
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Figure 13. Contours of the relative variance
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)
of random errors of radial velocity variance from lidar measurements estimated with

the isotropic turbulence model (Pope, 2000) and the von Kármán spectra (Burton et al., 2011) as a function of the sampling duration (T )
normalized by the integral timescale (τ0) and the volumetric averaging size (σQ) normalized by the streamwise integral length scale (L1)
for four different β values, where β is the angle between the LOS and the wind direction. The other input parameters include the sampling
interval δt = 0.5τ0, the elevation angle φ = 10◦, and the mean wind speed U1 = 8 ms−1.

ration (Figs. 12 and 13). Thus optimization of lidar opera-
tion for retrieval of radial velocity variance can be considered
through the lens of “how long is long enough?” (Lenschow
et al., 1994). Provided that the optimum six-beam configura-
tion proposed in Sathe et al. (2015) (i.e., φ = 45◦) is applied
to the Galion lidar for which σQ = 15.4 m under neutral at-
mospheric conditions over flat terrain, both the systematic
and random errors are almost independent of LOS orienta-
tion and surface roughness length, which is used to predict
the integral length scale and turbulence intensity (Fig. 14).
The systematic error is lower than 1.0 % when T > 30 min
(Fig. 14). The standard deviation (er) of random errors can
be reduced from 12.0 to 9.0 % by increasing the sampling
duration from 30 to 60 min (Fig. 14), which is consistent
with the observed standard deviation 12.7–9.5 % in Sect. 4.3.
The standard deviation remains higher than 6.0 % when T
increases to 120 min (Fig. 14). Note that the volumetric av-
eraging increases er by less than 1.0 % because of its rela-
tively small size (σQ/L1 < 0.1). The implication of the anal-
ysis above is that, given that 0.5–1.0 h is usually the length
over which the stationarity assumption is valid in the ABL

(Larsén et al., 2016), the random error in radial velocity vari-
ance estimates will likely be around 10.0 % and it will be dif-
ficult to estimate radial velocity variance with random errors
lower than 5.0 %.

The relatively high sampling error discussed above, in
combination with measurement and attenuation errors de-
scribed in Sect. 1, will propagate through and result in a
bias and random error in the estimated turbulence parame-
ters. The bias is mainly due to the attenuation error from
volumetric averaging. The contribution from the measure-
ment error to the bias can be ignored given that the SNR
and the number of spectra used for radial velocity estimation
are high (i.e., the dwell time is sufficiently long). The ran-
dom error in the estimated turbulence parameters is mainly
from the random sampling error. Thus, we can consider
only attenuation and sampling errors in error quantification
and scan geometry optimization for lidar turbulence mea-
surements. The error quantification method is given in Ap-
pendix A for lidar-derived second-order moments (i.e., ve-
locity variances and momentum fluxes), and is applied to
evaluate the uncertainty in the second-order moments esti-
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Figure 14. Variation of the systematic error (es) and variance of
random error
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)
with respect to the sampling duration (T ) in (a)

and (b), respectively, predicted from the isotropic turbulence model
(Pope, 2000) and the von Kármán spectra (Burton et al., 2011) at
80 m height under neutral conditions for surface roughness lengths
(z0) from 10−3 to 100 m and LOS orientations β from 0 to 90◦,
where β is the angle between the LOS and the wind direction. The
blue lines with squares and the dark lines are the mean error values
from the entire range of z0 and β for the averaged and point ra-
dial velocity variance, respectively. The red shaded areas denote the
range of errors of the averaged radial variance. The equation used
to estimate the integral length scale can be found in Wang et al.
(2016) with a mean wind speed of 7 ms−1 and Coriolis parameter
of 10−4 s−1. The elevation angle φ = 45◦.

mated with the optimal scanning geometry of the six-beam
method from Sathe et al. (2015) using the turbulence condi-
tions, attenuation errors, and sampling errors observed dur-
ing the PEIWEE experiment. The derived uncertainties of
both the streamwise velocity variance and the vertical mo-
mentum flux, in terms of the relative standard deviation, de-
crease with increasing sampling duration (Fig. 15). The un-
certainty values are similar for the streamwise velocity vari-
ance derived from the six-beam method and the sonic data
(Fig. 15); they are around 10 % for T = 30 min and 8 % for
T = 55 min. However, the vertical momentum flux derived
from the six-beam method is much higher than that from the
sonic data (Fig. 15). For a 30 (55) min sampling duration, the
median uncertainty is 38 (28) % for the vertical momentum
flux derived from the six-beam method and 11 (8) % from
the sonic data. Such large uncertainties in the derived tur-
bulence statistics can introduce uncertainty when verifying
lidar turbulence measurements with sonic data. Using the
median uncertainty values in Fig. 15 and the linear model
for verification, statistical simulations show that the coeffi-
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Figure 15. Box plots of the relative standard deviation of the
streamwise velocity variance 〈u′2〉 and vertical momentum flux
〈u′w′〉, assuming that they are derived from the six-beam method
from Sathe et al. (2015) (denoted by the subscript lidar) and the
sonic data (denoted by the subscript sonic) based on the observed
hourly time series in Sect. 4.1. Only those hourly data with 〈u′w′〉<
−0.1 m2 s−2 are included. Relative standard deviations for the six-
beam method are calculated using the method in Appendix A and
the observed attenuation and sampling errors in Sect. 4, and those
for sonic data are based on the derived turbulence statistics from the
sonic data described in Sect. 4.1 and error quantification methods
given in Lenschow et al. (1994). The sampling duration is denoted
by the colors of box plots (see the legend).

cients of determination (i.e., R2) for the vertical momentum
flux are 0.552± 0.073 for a 30 min sampling duration and
0.694± 0.065 for a 55 min sampling duration. The uncer-
tainty is much lower for the streamwise velocity variance.
The R2 values are 0.905± 0.020 for a 30 min sampling du-
ration and 0.946± 0.012 for a 55 min sampling duration.

6 Concluding remarks

Use of lidar for estimation of turbulence fields if realized
could revolutionize atmospheric boundary layer character-
ization studies and has applications to many fields. Accu-
rate radial velocity variance estimates are necessary (but
not sufficient) to obtain robust turbulence statistics from li-
dar. The accuracy of radial velocity variance estimates and
their relationship to pseudo-point measurements from sonic
anemometers are determined by (i) the applicability of the
stationarity assumption, (ii) the effect of volumetric averag-
ing on the radial velocity autocorrelation function, (iii) the
sampling interval, and (iv) the sampling duration. Of these
factors, (i), the stationarity assumption, is determined only by
atmospheric conditions, but it is most likely to be achieved
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within the period of 1 h in environments where the surface
conditions are homogeneous. The second factor, (ii), the vol-
umetric averaging, is dictated by the probe length that is de-
termined by the lidar properties; it causes the radial velocity
autocorrelation function to increase, and thus increases er-
rors in radial velocity variance estimates. Large probe length
can result in high errors. The third factor, (iii), the sampling
interval, is determined partly by the scan geometry which is
needed to sample radial velocities with different LOS orien-
tations to reconstruct the wind field, and partly by the lidar
configurations of e.g., the dwell time of each measurement
and the scanning speed. Errors are not sensitive to the sam-
pling interval because the sampling interval for lidar turbu-
lence measurement is commonly smaller than the turbulence
integral timescale. The last factor, (iv), the sampling dura-
tion, which together with the sampling interval determines
the number of samples available for radial velocity estimates,
can only be extended to the limit implied by the stationarity
assumption, but in principle, as sampling duration increases,
the errors associated with the radial velocity variance de-
crease.

Given these constraints on radial velocity variance esti-
mates, this paper uses theories and empirical observations to
show that for sample periods for which stationarity can rea-
sonably be asserted (approximately 1 h), the systematic error
can be reduced to a level lower than 1 %, and the standard
deviation of random errors will be around 10 %. These errors
will propagate through to estimation of turbulence statistics
from lidar measurements, and thus provide a fundamental
limit on the likely accuracy of those estimates.

7 Data availability

The raw lidar and sonic data used in this paper can be down-
load from https://blogs.cornell.edu/barthelmie/files/2015/05/
amt2016-83-1sqkw4c.zip.
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Appendix A: Error quantification for lidar turbulence
measurements

According to the linear relationship between the wind veloc-
ity and radial velocity in Eq. (3), the radial velocity variance
(without averaging) associated with the ith pair of azimuth
and elevation angles at a point can be expressed as (Sathe
et al., 2015)

µ
(i)
2,r = g

T
i m, (A1)

where m is a vector that contains the six components of the
velocity covariance tensor, and gi is a vector determined by
θi and φi . The expression for gi can be found in Eq. (4) in
Sathe et al. (2015). The superscript T denotes matrix trans-
pose. The radial velocity variance estimated from lidar mea-
surements is represented by

µ̂
(i)
2,R = µ

(i)
2,R+ δ

(i)
r µ2,R, (A2)

where δ(i)r is the relative random sampling error with zero
mean and variance e2

r,R, and µ(i)2,R is the ensemble variance
of radial velocity from lidar measurements. Because of the
attenuation error in lidar radial velocity variance,

µ
(i)
2,R = aiµ

(i)
2,r, (A3)

where ai is the attenuation factor of volumetric averaging and
0< ai < 1. Combining Eqs. (A2) and (A3), the estimated ra-
dial velocity variance becomes

µ̂
(i)
2,R = aiµ

(i)
2,r+ aiδ

(i)
r µ

(i)
2,r. (A4)

Given a scan geometry, radial velocity variances estimated at
different locations form a vector µ̂2,R and a system of equa-
tions expressed using the following matrix equation:

Gm= µ̂2,R, (A5)

where the ith row of matrix G is gT
i . Then, the estimate ofm

is

m̂=Kµ̂2,R, (A6)

where K= (GTG)−1GT. It can be shown that the error in the
estimated velocity covariance tensor can be expressed as

m̂−m=K(A− I)µ2,r+KAδr, (A7)

where εr is a vector of relative random sampling error of the
estimated radial velocity variance, I is the identity matrix,
and A is a diagonal matrix filled with ai on the ith diagonal.
The first term on the right-hand side of Eq. (A7) defines the
bias in the estimated velocity covariance tensor, and the sec-
ond term is the random error vector that follows a Gaussian
distribution with zero mean and covariance matrix:

6m = (KA)6(KA)T, (A8)

where 6 is the covariance matrix of the random sampling er-
ror. Assuming independence between the random sampling
errors, 6 is a diagonal matrix with the ith diagonal term

given by
[
e
(i)
r µ

(i)
2,r

]2
. T, the diagonal of 6m, defines the ran-

dom error variance of the estimated velocity covariance ten-
sor.
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Appendix B: Nomenclature.

β Angle between the wind direction and lidar laser beam (◦)
δt Lidar radial velocity sampling interval (s)
δr Relative random sampling error of the estimated radial velocity variance
δr Vector of δr
εr,R Random measurement error of lidar radial velocity variance estimate (m2 s−2)
θ Lidar azimuth angle (◦)
µ1(T ) Estimated mean of a random variable over a sampling duration T
µ1,R(T ) Estimated mean of averaged radial velocity over a sampling duration T (ms−1)
µ2(T ) Estimated variance of a random variable over a sampling duration T
µ2,R Ensemble variance of averaged radial velocity (m2 s−2)
µ2,R(T ) Estimated variance of averaged radial velocity over a sampling duration T (m2 s−2)
µ̂2,R(T ) Estimated variance of radial velocity from lidar measurements over a sampling duration T (m2 s−2)
µ̂2,R Vector of estimated radial velocity variance from lidar measurements (m2 s−2)
µ2,r Ensemble variance of point radial velocity (m2 s−2)
ρR Autocorrelation of averaged radial velocity
ρr Autocorrelation of point radial velocity
6 Random sampling error covariance matrix of µ̂2,R (m4 s−4)
6m Error covariance matrix of m̂ (m4 s−4)
σQ Standard deviation of radial velocity weight function (m)
σR Standard deviation of random measurement error of vR (ms−1)
τ Autocorrelation or autocovariance time lag (s)
τ0 Integral timescale (s)
φ Lidar elevation angle (◦)
A Diagonal matrix formed by a vector of a
a Attenuation factor of radial velocity variance due to averaging
Dr Structure function (m2 s−2)
E2
r,R Variance of random sampling error in variance estimates using averaged radial velocities (m4 s−4)

Es,R Systematic sampling error in variance estimates using averaged radial velocities (m2 s−2)
e1 Unit vector in streamwise direction (m)
e2

r Relative variance of random sampling errors
e2

r,ρ Estimated e2
r using autocorrelation function

e2
r,b Estimated e2

r using the bootstrap method
e2

r,R Relative variance of random sampling error in variance estimates using averaged radial velocities
es Relative systematic sampling error
es,ρ Estimated es using autocorrelation function
es,b Estimated es using the bootstrap method
es,R Relative systematic sampling error in variance estimates using averaged radial velocities
es,r Relative systematic sampling error in variance estimates using point radial velocities
g Vector of the coefficients that relates m to µ2,r
G Matrix of the coefficients that relates m to µ2,r
K Matrix defined as (GTG)−1GT

I Identify matrix
L1 Integral length scale of the streamwise velocity (m)
LR Integral length scale of the averaged radial velocity (m)
Lr Integral length scale of the point radial velocity (m)
m Vector of the components of the velocity covariance tensor (m2 s−2)
m̂ Estimate of m (m2 s−2)
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N Radial velocity sample number
Nb Repetition time of bootstrap sampling
Nn Sampling numbers obtained over a sampling duration Tn
n Unit directional vector of lidar line of sight
Q Radial velocity weighting function
Rij Wind velocity covariance tensor (m2 s−2)
RR Covariance of averaged radial velocity (m2 s−2)
Rr Covariance of point radial velocity (m2 s−2)
r1 Spatial lag in the streamwise direction (m)
s Lidar range gate location (m)
s′ Lidar range distance (m)
s′′ Lidar range distance (m)
T Sampling duration of a full time series (s)
Tn Sampling duration of a subset of time series (s)
t Measurement time stamp (s)
U1 Mean streamwise velocity (ms−1)
u Wind velocity vector (ms−1)
u1 Streamwise velocity component (ms−1)
u2 Transverse velocity component (ms−1)
u3 Vertical velocity component (ms−1)
vR Averaged radial velocity (ms−1)
vR,lidar Radial velocity measured by lidars (ms−1)
v̂R Measured radial velocity (ms−1)
vr Point radial velocity (ms−1)
vr,sonic Radial velocity measured by sonic anemometers (ms−1)
x Position vector (m)
x1 Coordinate in the streamwise direction (m)
x2 Coordinate in the transverse direction (m)
x3 Coordinate in the vertical direction (m)
z0 Surface roughness length (m)
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