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Abstract. Organic carbon (OC) and elemental carbon (EC)

are major components of atmospheric particulate matter

(PM), which has been associated with increased morbid-

ity and mortality, climate change, and reduced visibility.

Typically OC and EC concentrations are measured using

thermal–optical methods such as thermal–optical reflectance

(TOR) from samples collected on quartz filters. In this work,

we estimate TOR OC and EC using Fourier transform in-

frared (FT-IR) absorbance spectra from polytetrafluoroethy-

lene (PTFE Teflon) filters using partial least square regres-

sion (PLSR) calibrated to TOR OC and EC measurements

for a wide range of samples. The proposed method can be in-

tegrated with analysis of routinely collected PTFE filter sam-

ples that, in addition to OC and EC concentrations, can con-

currently provide information regarding the functional group

composition of the organic aerosol. We have used the FT-

IR absorbance spectra and TOR OC and EC concentrations

collected in the Interagency Monitoring of PROtected Vi-

sual Environments (IMPROVE) network (USA). We used

526 samples collected in 2011 at seven sites to calibrate

the models, and more than 2000 samples collected in 2013

at 17 sites to test the models. Samples from six sites are

present both in the calibration and test sets. The calibrations

produce accurate predictions both for samples collected at

the same six sites present in the calibration set (R2
= 0.97

and R2
= 0.95 for OC and EC respectively), and for sam-

ples from 9 of the 11 sites not included in the calibration

set (R2
= 0.96 and R2

= 0.91 for OC and EC respectively).

Samples collected at the other two sites require a different

calibration model to achieve accurate predictions. We also

propose a method to anticipate the prediction error; we cal-

culate the squared Mahalanobis distance in the feature space

(scores determined by PLSR) between new spectra and spec-

tra in the calibration set. The squared Mahalanobis distance

provides a crude method for assessing the magnitude of mean

error when applying a calibration model to a new set of sam-

ples.

1 Introduction

Organic carbon (OC) and elemental carbon (EC) are major

components of atmospheric particulate matter (PM), which

has been associated with increased morbidity and mortality

(Janssen et al., 2011; Anderson et al., 2012), climate change

(Yu et al., 2006; Bond et al., 2013), and reduced visibility

(Watson, 2002; Hand et al., 2012). The major sources of EC

are incomplete burning of fossil fuels and pyrolysis of bio-

logical material during combustion (Bond et al., 2007; Szi-

dat et al., 2009). OC may be either directly emitted from

sources, (e.g., incomplete combustion of organic materials)

or produced from chemical reactions involving organic car-

bon gases (Jacobson et al., 2000). Therefore, OC and EC are

monitored over long periods of time by large monitoring net-

works such as the Interagency Monitoring of PROtected Vi-

sual Environments network (IMPROVE, Hand et al., 2012;

Malm et al., 1994) in rural areas in the USA; the Chemical

Speciation Network/Speciation Trends Network (CSN/STN,
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Flanagan et al., 2006) in urban and suburban areas in the

USA; and the European Monitoring and Evaluation Pro-

gramme (EMEP, Tørseth et al., 2012) in Europe.

Typically OC and EC concentrations are measured using

thermal methods such as thermal–optical reflectance (TOR,

Chow et al., 2007; NIOSH 5040, Birch and Cary, 1996;

EUSAAR-2, Cavalli et al., 2010) from samples collected on

quartz filters. OC and EC are operationally defined by the

temperature gradient and gaseous environment in which car-

bon evolves from the sample. An optical method such as re-

flectance or transmittance is used to correct for pyrolysis of

the organic material (Cavalli et al., 2010; Chow et al., 2007).

However, TOR measurements are destructive and relatively

expensive.

To reduce the operating costs of large air quality moni-

toring networks, Dillner and Takahama (2015a, b) proposed

using Fourier transform infrared spectroscopy (FT-IR) as an

alternative for quantification of OC and EC. This analysis

technique is inexpensive, non-destructive, and rapid. It uses

PTFE samples, which are commonly used in PM monitoring

networks for gravimetric mass and elemental analysis. More-

over, many quantities of interest (e.g., organic functional

groups, OM and OM/OC) can be quantified from the same

FT-IR spectra (Ruthenburg et al., 2014; Takahama et al.,

2013; Russell, 2003).

In this work, we further evaluate the use of FT-IR as an

alternative method for quantification of TOR OC and EC

by extending the work of Dillner and Takahama (2015a, b)

to a different year and different sites. We used FT-IR ab-

sorbance spectra and TOR OC and TOR EC measurements

collected in the IMPROVE network. In the previous works,

the authors used PTFE samples collected at seven sites in

2011. The filters were collected every third day; two-thirds

of samples were used to calibrate the models and the re-

maining to test the calibration models. We used the same

calibration data set (collected in 2011) used by Dillner and

Takahama (2015a, b), and we extended the previous analy-

sis by (i) evaluating the models using test samples collected

at the same sites of the calibration data set but a different

year (2013), (ii) evaluating the models using test samples col-

lected at 11 different sites and a different year (2013) of the

calibration data set, and (iii) proposing a statistical method to

anticipate the prediction errors for each site.

To predict OC and EC values, we used partial least square

regression (PLSR, Sect. 2.3). PLSR is a common method to

develop calibration models for different compounds (Madari

et al., 2005; Weakley et al., 2014; Vongsvivut et al., 2012).

Moreover, we also propose a statistical modeling technique

to anticipate the estimation error and the goodness of the esti-

mation (Sect. 2.4). We use the squared Mahalanobis distance

(Mahalanobis, 1936; Cios et al., 1998) in the feature space

(scores of the PLSR; Barker and Rayens, 2003) to discrim-

inate between sites that likely have predictions outside the

predefined error range (presumably because their features are

not well modeled with the available data set).
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Figure 1. IMPROVE network sites.

2 Methods

2.1 IMPROVE network samples

In this work, we used samples from the IMPROVE net-

work collected in 2011 and 2013 (Table 1 and Fig. 1). We

divided these samples in four data sets (Table 1). Calibra-

tion 2011 is composed of 526 PTFE ambient samples col-

lected at seven sites in the USA in 2011 (filled and empty

squares symbols in Fig. 1) plus 36 laboratory blank sam-

ples. This data set is the same calibration set used by Dillner

and Takahama (2015a, b) including Sect. S3 in the Supple-

ment of Dillner and Takahama (2015b). Test 2011 is com-

posed of 269 PTFE ambient samples (plus 18 PTFE lab-

oratory blank samples) collected at the same sites and the

same year (2011) of the calibration data set (filled and empty

squares symbols in Fig. 1). This data set is the same test

set used by Dillner and Takahama (2015a, b). Test 2013

is composed of 949 PTFE ambient samples (plus 50 PTFE

laboratory blank samples) collected at six sites that are the

same sites but from a different year (2013) of the calibra-

tion data set (filled squares symbols in Fig. 1). Test 2013

additional (Addl) is composed of 1290 PTFE ambient sam-

ples (plus the same 50 PTFE laboratory blank samples of the

Test 2013 data set) collected at 11 different sites and a dif-

ferent year (2013) of the calibration data set (black triangles

in Fig. 1). Four of the eleven additional sites are urban sites,

some of the samples experienced significant smoke impact,

and some were collected at an IMPROVE site in South Korea

(with high sample loadings).

The IMPROVE network collects samples every third day

from midnight to midnight (local time) at a nominal flow rate

of 22.8 Lmin−1, which yields a nominal volume of 32.8 m3

and produces samples of particles smaller than 2.5 µm in

diameter (PM2.5). The FT-IR analysis is applied to 25 mm
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Table 1. IMPROVE network sites and number of samples in each data set described in Sect. 2.1.

Site ID Location Type Calibration 2011 Test 2011 Test 2013 Test 2013 Addl

1 Mesa Verde Rural 79 40 112 0

2 Olympic Rural 79 40 118 0

3 Phoenix Urban 61 31 120 0

3B Phoenix Urban 64 33 120 0

4 Proctor Maple R. F. Rural 70 35 122 0

4B Proctor Maple R. F. Rural 0 0 121 0

5 Sac and Fox Rural 35 18 0 0

6 St. Marks Rural 68 35 115 0

7 Trapper Creek Rural 70 36 121 0

8 Birmingham Urban 0 0 0 115

9 Bliss SP Rural 0 0 0 85

10 South Korea Urban 0 0 0 79

11 Fresno Urban 0 0 0 116

12 Gr. Smoky Mt. NP Rural 0 0 0 117

13 Hoover Rural 0 0 0 86

14 Okefenokee NWR Rural 0 0 0 117

15 Puget Sound Urban 0 0 0 121

16 Cape Romain NWR Rural 0 0 0 113

17 Tallgrass Rural 0 0 0 110

18 Yosemite Rural 0 0 0 115

18B Yosemite Rural 0 0 0 116

Total 526 269 949 1290

PTFE samples (Teflon, Pall Gelman – 3.53 cm2 sample area)

that are analyzed for gravimetric mass, elements, and light

absorption in the IMPROVE network. Quartz filters collected

in parallel to the PTFE samples are analyzed by TOR using

the IMPROVE A protocol to obtain OC and EC mass in the

IMPROVE network (Chow et al., 2007). The OC and EC val-

ues are also adjusted to account for flow differences between

the quartz and PTFE samples. IMPROVE samples lacking

either flow records for PTFE filters or TOR measurements

are excluded.

2.2 FT-IR analysis: spectra acquisition

We analyzed a total of 3034 PTFE ambient samples and 104

PTFE laboratory blank samples using a Tensor 27 Fourier

transform infrared (FT-IR) spectrometer (Bruker Optics, Bil-

lerica, MA) equipped with a liquid-nitrogen-cooled wide-

band mercury cadmium telluride detector. The samples are

analyzed using transmission FT-IR in air that has low levels

of water vapor and CO2 using an empty sample compart-

ment as the reference (a more detailed description is in Dill-

ner and Takahama, 2015a). The filter samples are not treated

prior to FT-IR analysis except that values interpolated during

the zero-filling process are removed. These spectra contain

2784 wavenumbers.

2.3 Building the calibration models

We used the calibration models developed by Dillner and

Takahama (2015a, b) to predict TOR OC and EC in the 2013

data sets. For each site, the samples collected in 2011 are

ordered by date and every third sample is removed and in-

cluded in the Test 2011 data set. The remaining samples are

placed in the Calibration 2011 data set.

Briefly, the calibraton models were developed using par-

tial least squares regression (PLSR, Wold et al., 1983; Geladi

and Kowalski, 1986) using the kernel PLS algorithm, imple-

mented by the PLS library (Mevik and Wehrens, 2007) of

the R statistical package (R Core Team, 2015). The goal is to

predict a set of coefficients b from a matrix of spectra X for

observation y (OC or EC), with residuals e:

y = Xb+ e. (1)

PLSR circumvents issues that arise when collinearity ex-

ists among variables in X (strong correlation of absorbances

across wavenumbers) and when the number of variables

(wavenumbers) in the spectra matrix X exceeds the number

of observation (rows of X). PLSR performs a bilinear de-

composition of both X and y: the matrix of spectra (X) is

decomposed into a product of orthogonal factors (loadings,

P) and their respective contributions (scores, T). Observed

variations in the OC or EC mass are reconstructed through

a combination of these factors (T) and a set of weights simul-

taneously (q) developed to relate features to the dependent
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and independent variables – scores and loadings describe the

covariance between X and y.

X= TP>+E (2)

y = Tq>+f (3)

The two sets of factors are related through a weighting matrix

W to reconstruct the set of regression coefficient b:

b =W
(

P>W
)−1

q>. (4)

Candidate models for calibration are generated by varying

the number of factors used to represent the matrix of spectra.

To select the number of factors we used K = 10 fold cross

validation (CV, Hastie et al., 2009; Arlot and Celisse, 2010)

on the calibration 2011 data set (Sect. 2.1). We used the min-

imum root mean square error to select the model with least

prediction error (RMSEP).

For the calibration of the FT-IR spectra to TOR EC, in or-

der to eliminate bias in the calibration and improve prediction

capability for low EC samples (EC< 2.4 µg), we used the hy-

brid calibration approach described in Dillner and Takahama

(2015b). We used two calibration models: the first uses sam-

ples in the calibration set that are in the lowest one-third of

the EC mass range to predict samples in the test set that are

also in the lowest one-third of the EC mass range; the sec-

ond one is utilized for the remaining samples. Localization of

the calibration (with respect to concentration) is a commonly

used method to improve the performance of the calibration,

often at the more difficult to measure low end of the range.

2.4 Anticipating prediction errors

For samples collected during different periods or different lo-

cations, it is useful to know whether the present calibration

model is appropriate for a new sample or a new set of sam-

ples. Using features present in FT-IR spectra, we propose

a method to anticipate the prediction error in OC or EC con-

centrations prior to applying the calibration model. The pur-

pose of such an approach is to determine whether a particular

calibration model is suitable for a new set of samples without

requiring an assessment of prediction accuracy using TOR

OC and EC measurements a posteriori. The feature space is

a low-dimensional projection of the absorbance spectra that

has been associated with prediction capability for TOR OC

and EC, and is determined by the factor scores determined

by PLSR (Eqs. 2 and 3). We calculate the centroid (µ) and

the covariance (6) of the calibration samples projected in the

feature space:

µ= (µ1,µ2, . . .,µk)
>, µj =

1

n

n∑
i=1

tij ∀j = 1, . . .,k (5)

6 = cov
(
t i, tj

)
, i = 1. . .,n j = 1. . .,k, (6)

where k is the number of factors used to represent the matrix

of spectra; n is the number of PTFE samples included in the

Calibration 2011 data set; t are the columns of the scores

matrix.

For each calibration sample, we calculate the squared Ma-

halanobis distance (D2
M) between the sample itself and the

centroid of the calibration set, taking into account the co-

variance matrix to normalize the distance according to the

magnitude of dispersion in each dimension.

D2
M,i = (t i −µ)

>6−1 (t i −µ) , i = 1, . . .,n (7)

We then project absorbance spectra of the test set (Table 1)

in the feature space, and calculate the D2
M between each test

sample and the centroid (µ) of the calibration set.

We present our evaluation for two cases. In the first case,

we calculate the D2
M and errors for the calibration and test

sets according to the sampling site, and calculated the mean

D2
M and mean absolute error for each site. In the second case,

we considered the D2
M and absolute error for each sample,

without aggregation. We considered acceptable predictions

to be the ones that have errors within the magnitude of the

2011 data set, and unacceptable predictions those for which

the errors are greater. As boundaries for the discrimination, in

the first case, we used the greatest mean D2
M plus 1 standard

error (SE) and the greatest mean absolute error plus 1 SE

found in the Test 2011 set. In the second case, we used the

greatestD2
M and the absolute error found in the Test 2011 set

(except for one sample that we considered an outlier, Fig. S3

in the Supplement).

The samples collected in 2013 are divided into four clas-

sifications, which can be visualized by membership in one

of four quadrants in a plot of absolute error vs. D2
M (Figs. 5

and 11). True negative (TN) samples (or sites) are those for

which the D2
M (or mean D2

M) and absolute error (or mean

absolute error) fall in the third (bottom left) quadrant. For

TN samples, the D2
M gives a reliable indication that the pre-

diction error is within magnitude of 2011 samples. True posi-

tive (TP) samples (or sites) are those that lie in the first (upper

right) quadrant; theD2
M provides a reliable indication that the

prediction error is greater than the magnitude of 2011 sam-

ples. False negative (FN) samples (or sites) lie in the sec-

ond (upper left) quadrant; the D2
M is not indicative of the

increased errors above the 2011 predictions. False positive

(FP) samples (or sites) are those that lie in the fourth (bot-

tom right) quadrant; sample spectra have significantly higher

D2
Ms but do not have increased prediction errors over 2011

predictions.

2.5 Model evaluation

We evaluated the calibration models (trained with the cali-

bration 2011 data set, Sect. 2.3) on the three data sets de-

scribed in Sect. 2.1. The quality of each calibration is eval-

uated by calculating four performance metrics: bias, error,

normalized error, and the coefficient of determination (R2)

of the linear regression fit of the predicted FT-IR OC and

FT-IR EC to measured TOR OC and EC. FT-IR OC and EC

Atmos. Meas. Tech., 9, 441–454, 2016 www.atmos-meas-tech.net/9/441/2016/
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are the OC and EC predicted from the FT-IR spectra and the

PLSR calibration model. The bias is the median difference

between measured (TOR) and predicted (FT-IR) for the test

set. Error is the median absolute bias. The normalized er-

ror for a single prediction is the error divided by the TOR

value. The median normalized error is reported to provide an

aggregated estimate. The performance metrics are also cal-

culated for the collocated TOR observations and compared

to those of the FT-IR OC and FT-IR EC to TOR OC and

TOR EC regression. The minimum detection limit (MDL)

and precision of the FT-IR and TOR methods are calculated

and compared. The MDL of the FT-IR method is 3 times the

standard deviation of the laboratory blank samples in the test

sets (Sect. 2.1). The MDL for the TOR method is 3 times the

standard deviation of 514 blank samples (Desert Research

Institute, 2012). Precision for both FTIR and TOR is calcu-

lated using 14 parallel samples in the data set Test 2011 at the

Phoenix site, 240 parallel samples in the data set Test 2013

at the Phoenix and Proctor Maple R. F. sites, and 115 paral-

lel samples in the data set Test 2013 Addl at the Yosemite

site. For evaluation of the FT-IR predictions against TOR

reference values, we used 621 measurements collected in

2013 from seven IMPROVE sites with collocated TOR mea-

surements (Everglades, Florida; Hercules Glade, Missouri;

Hoover, California; Medicine Lake, Montana; Phoenix, Ari-

zona; Saguaro West, Arizona; Seney, Virginia).

3 Results and discussion

In this section, we first evaluate and discuss the performance

of the models by comparing the predicted with the observed

TOR OC (Sect. 3.1) and TOR EC (Sect. 3.3) measurements

for ambient samples collected in the four data sets described

in Sect. 2.1. Then, in Sects. 3.2 and 3.4 we describe the re-

sults of the prediction error anticipation for the FT-IR OC

and FT-IR EC respectively.

3.1 Prediction of TOR OC from FT-IR spectra

The comparison between predicted FT-IR OC and measured

TOR OC for the data sets described in Sect. 2.1 is shown

in Fig. 2. The first row refers to the Calibration 2011 and

Test 2011 data set. In this work, the results obtained with the

Test 2011 are used for comparison with the results obtained

with the Test 2013 and Test 2013 Addl data sets. The detailed

description and discussion of the Test 2011 results can be

found in Dillner and Takahama (2015a).

In the case of predictions based on ambient samples col-

lected at the same sites of the calibration data set but in a dif-

ferent year (Test 2013 data set, bottom left panel in Fig. 2),

we observe that the performance metrics show good agree-

ment between measured (TOR OC) and predicted OC val-

ues (FT-IR OC). Moreover, comparing these metrics with the

ones obtained with the Test 2011 data set, we note that the
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Figure 2. Scatter plots and performance metrics between FT-IR OC

and TOR OC for the four data sets described in Sect. 2.1. Concentra-

tion units of µgm−3 for bias and error are based on the IMPROVE

nominal volume of 32.8 m3.

R2 is better in the former, and the bias, error, and normal-

ized error are slightly worse in the former. However, these

differences are not substantial, and we can conclude that the

predictions made with the Test 2011 and Test 2013 data sets

are similar. A t test at a confidence level of 95 % between

the Test 2011 and Test 2013 predictions, and one between

their absolute errors, confirmed this observation. From Fig. 3

(performance of the collocated TOR OC measurements), we

observe that the metrics are similar to the ones obtained

with the Test 2011 data set. The bias (0.09 µg m−3), error

(0.12 µg m−3), and normalized error (18 %) of the Test 2013

data set are slightly worse than the ones obtained with the

collocated TOR OC (0, 0.06 µgm−3 and 11 % respectively).

However, these differences are not substantial as shown in

Table 2, which compares the MDLs and precisions of FT-IR

OC predictions and TOR OC measurements. Table 2 shows

that both the MDL and precision of the Test 2013 are in the

same range of the TOR OC and slightly better than the ones

obtained with the Test 2011 data set. It is also interesting to

note that in the Test 2013 data set there are two samples no-

tably above the maximum values used in the calibration data

set, and the model is still able to predict them accurately.

This observation agrees with the results found by Dillner and

Takahama (2015a) (non-uniform A case), in which the au-

thors used samples with TOR OC in the lowest two-thirds

of the TOR OC range to predict samples with TOR OC in

the highest one-third of the TOR OC range, and the highest

one-third of samples were well predicted.

www.atmos-meas-tech.net/9/441/2016/ Atmos. Meas. Tech., 9, 441–454, 2016
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Table 2. MDL and precision for FT-IR OC and TOR OC.

TOR OC FT-IR OC FT-IR OC FT-IR OC FT-IR OC

Calibration 2011 Test 2011 Test 2013 Test 2013 Addl

MDL (µgm−3)a 0.05 013 0.16 0.10 0.10

% below MDL 1.5 2.5 6.0 3.3 0.6

Precision (µgm−3)a 0.14 0.08 0.13 0.07 0.14

Mean blank (µg) NRb
−0.18± 1.4 −0.41± 1.8 1.78± 1.1 1.78± 1.1

a Concentration units of µg m−3 for MDL and precision are based on the IMPROVE volume of 32.8 m3. b Not reported.

The bottom right panel in Fig. 2 shows the performance of

the calibration model for samples collected at different sites

and a different year (Test 2013 Addl data set) to the sam-

ples used for calibration. The bias, error, and normalized er-

ror (0.06, 0.13 µg m−3, and 14 %) are in between the ones

found for the Test 2011 and Test 2013 data sets. However,

the scatter plot and the R2 metric show worse agreement be-

tween measured TOR OC and predicted FT-IR OC values

(R2
= 0.89) than the ones obtained with the Test 2011 and

Test 2013 data sets (R2
= 0.94 and 0.97 respectively). The

scatter plot also shows that the model tends to overestimate

the OC values. A t test at a confidence level of 95 % be-

tween the Test 2013 and Test 2013 Addl predictions, and one

between their absolute errors, shows a statistical difference

between the results obtained with the two data sets. These

results can be explained by the consideration that the sites

where the samples of the Test 2013 Addl were collected may

have different composition and loadings of OC than the ones

used in the calibration data set. Therefore, the calibration

model does not have enough information to model the dif-

ferent features of these sites. However, the MDL and preci-

sion are similar to the one obtained with the collocated TOR

data set, indicating that low concentrations are more likely to

be precise than high concentrations. This could be explained

by the fact that the majority of the ambient samples used for

calibration were collected at rural sites (76 % from six sites),

and the ones collected at the urban site (Phoenix) may have

different features (composition and mass range) from the

ones collected in the Test 2013 Addl data set, many of which

are urban or highly polluted (Birmingham (Alabama), Fresno

(California), Puget Sound (Seattle, Washington), and South

Korea).

This observation is supported by the results in Fig. 4. In

this case, the calibration and the test data sets are composed

of the ambient samples collected at the rural sites of each

data set. The performance metrics show accurate agreement

between measured (TOR OC) and predicted OC values (FT-

IR OC) for all the data sets. Moreover, it is worth noting that

in the Test 2013 and Test 2013 Addl there are samples that

are above 200 µg (probably due to fire events). Even though

these samples are outside the calibration range, the model

is still able to predict them with reasonable accuracy (with

a tendency of overestimation).
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Figure 3. Scatter plot and performance metrics between the mea-

surements of the collocated TOR OC. Concentration units of

µgm−3 for bias and error are based on the IMPROVE nominal vol-

ume of 32.8 m3.

On the basis of these results, we can conclude that (i) it is

possible to use PTFE ambient samples to calibrate a model

that predicts TOR OC values from PTFE ambient samples

collected at the same sites (both rural and urban) in the same

or different years to the ones used for the calibration accu-

rately; (ii) it is possible to use PTFE ambient samples, col-

lected at rural sites, to calibrate a model that predicts TOR

OC values from PTFE ambient samples collected at differ-

ent rural sites and in different years to the ones used for the

calibration accurately.

3.2 Anticipation of the prediction error: FT-IR OC

As shown in Fig. 5, theD2
Ms are smaller in the calibration set

than in the test set because the latent variables comprising

the feature space were defined using the former. Moreover,

the D2
Ms increase for the test samples that have different fea-

tures from the ones used in calibration. Figure 5 shows the

aggregated (per site) mean D2
M against the mean absolute er-

ror for each data set. In accordance with the results shown

in Sect. 3.1, the Test 2011 and Test 2013 sites present D2
Ms

similar to the ones found in the calibration data set (all sites

lie in TN sector). On the other hand, the Test 2013 Addl data
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Figure 4. Scatter plots and performance metrics between FT-IR OC

and TOR OC for the rural sites of the four data sets described in

Sect. 2.1. Concentration units of µgm−3 for bias and error are based

on the IMPROVE nominal volume of 32.8 m3.
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Figure 6. Scatter plot and performance metrics between FT-IR OC

and TOR OC for the Test 2013 Addl data sets (Sect. 2.1) without the

ambient samples collected at Fresno and Korean sites. Concentra-

tion units of µgm−3 for bias and error are based on the IMPROVE

nominal volume of 32.8 m3.

set contains two sites (10 represents the South Korea site and

11 represents the Fresno site, Table 1) which have both mean

D2
M and mean absolute errors above the boundaries used for

discrimination of unacceptable prediction errors (TP sector).

This diagnostic indicates that the two sites may contain dif-

ferent sources and chemical composition that are not well

represented in the Calibration 2011 data set.

The scatter plot and the performance metrics of the Test

2013 Addl without the samples collected at the two sites an-

ticipated (and confirmed) to have high errors are shown in

Fig. 6. The R2 metric notably improves from 0.89 to 0.96,

and the remaining evaluation statistics are also improved.

Moreover, a t test at a confidence level of 95 % between

the predictions and one between their absolute errors shows

a statistical difference between the results obtained with the

two data sets.

The evaluation of predictions using a calibration model

constructed from only the Korea and Fresno sites is shown

in Fig. 7. The calibration set uses two-thirds of the ambi-

ent samples (we followed the same methodology that we

used to prepare the Calibration 2011 data set) collected in

2013 at the two sites and one-third for the test. The re-

sults show that with the appropriate calibration samples,

we can also achieve accurate predictions of TOR OC val-

ues (bias=−0.03 µgm−3, error= 0.16 µgm−3, normalized

error= 10 %, and R2
= 0.96) in these two sites. For com-

parison, Fig. S1 shows the evaluation of predictions at the

Korean and Fresno sites using the Calibration 2011 data

set (bias= 0.28 µgm−3, error= 0.43 µgm−3, normalized er-

ror= 25 %, and R2
= 0.79). A t test at a confidence level of

95 % between the predictions and one between their abso-

lute errors shows a statistically significant reduction in mean

errors for predictions using the new calibration (Fig. 7) and

those using the base case calibration (Fig. S1). Therefore, we
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Table 3. FT-IR OC, anticipation of the prediction error per sample. Percentage of ambient samples falling in the FN (false negative), FP

(false positive), TN (true negative), and TP (true positive) sectors. Performance metrics of the models that exclude predictions of samples

that fall in the FP and TP sectors.

Performance metrics

Data set FN FP TN TP Bias Error Norm. error R2

(µgm−3)∗ (µgm−3)∗

Test 2011 0 % 0 % 99.6 % 0.4 % 0.01 0.08 11 % 0.96

Test 2013 0.2 % 0.2 % 99.5 % 0.1 % 0.09 0.12 18 % 0.96

Test 2013 Addl 1.7 % 0.6 % 94.5 % 3.2 % 0.05 0.12 14 % 0.92

∗ Concentration units of µg m−3 for bias and error are based on the IMPROVE volume of 32.8 m3.
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Figure 7. Scatter plot and performance metrics between FT-IR OC

and TOR OC of the Korea and Fresno sites (site ID 10 and 11 re-

spectively). A new calibration set, based on two-thirds of the ambi-

ent samples collected at these two sites in 2013, is used for a ded-

icated model. Concentration units of µgm−3 for bias and error are

based on the IMPROVE nominal volume of 32.8 m3.

can conclude that sites with samples that are on average dis-

similar to those in the calibration are shown to benefit from

the construction of a separate calibration model.

The results of the D2
M against the absolute error for each

sample (without any aggregation) are reported in Table 3.

In the Supplement, we show the plots of the D2
M distances

against the absolute errors for each site (Figs. S2–S5). For

each data set, Table 3 reports both the percentage of samples

falling in the FN, FP, TN, and TP sectors and the performance

metrics of the models that exclude unacceptable predictions

(samples falling in the FP and TP sectors). The Test 2013

data set presents a low percentage (0.4 %) of erroneous clas-

sifications (samples falling in the FN and FP sectors), and the

performance metrics are in line with what we found in Fig. 2.

The Test 2013 Addl contains 3.2 % of well-classified un-

acceptable predictions that are TP. Most of these unaccept-

able predictions are due to samples collected at the Korean

(1.9 %) and Fresno (0.9 %) sites (0.4 % from three other

sites, Fig. S5). Moreover, the Test 2013 Addl contains 2.3 %

of erroneous classifications falling in either FP or FN sectors

(1.1 % is from the Korean samples, 0.4 % from Fresno sam-

ples, and 0.8 % from seven other sites, Fig. S5). The R2 met-

ric improves from 0.89 to 0.92 with respect to the results

found in Fig. 2. The bias, error, and normalized error are sim-

ilar. However, because 1.7 % of samples are in the FN sector

(and we consider them acceptable), this explains the lower

prediction performance in comparison to the case in which

all the Korean and Fresno samples are excluded (Fig. 6).

This analysis suggests that spectral signals projected into

the feature space of a particular PLS calibration model con-

tain useful information for anticipating the magnitude of pre-

diction errors. The ability to anticipate the quality of predic-

tions based on spectra features is relevant for strategic collec-

tion of calibration samples and selection of available sam-

ples from which a calibration model can be constructed. We

expect that the capability for discrimination at the level of in-

dividual samples can be improved in future studies. The D2
M

is a strong classifier in the case that the scores T are normally

distributed in the multivariate (MV, in this case 47 dimen-

sions) feature space. Indeed, the D2
M (Eq. 7) is the exponen-

tial term of the MV normal (MVN) distribution and repre-

sents the distance between each point and the mean of the

MVN distribution. Assessing the assumption of multivariate

normality is a challenging process because different meth-

ods may provide different results under different assump-

tions and conditions (Mecklin and Mundfrom, 2005). Both

the Henze–Zirkler (Henze and Zirkler, 1990) and Mardia

MV normality test (Mardia, 1970) on the calibration scores

lead to a rejection of the null hypothesis (at 95 % confidence

level) that the scores are normally distributed. It is plausible

to conceive of spectral preprocessing methods improving the

MVN assumption, or to invoke different similarity metrics

that do not require a specific distribution of points in the fea-

ture space. However, even while the assumption of MVN is

not fulfilled, we report that the meanD2
M provides indication

of samples dissimilar to those comprising the calibration set

when aggregated at the site level.

3.3 Prediction of TOR EC from FT-IR spectra

In this section, we extend the analysis done in Sects. 3.1 and

3.2 to the case of TOR EC measurements. For this case, as
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Figure 8. Scatter plots and performance metrics between FT-IR EC

and TOR EC for the four data sets described in Sect. 2.1. Concentra-

tion units of µgm−3 for bias and error are based on the IMPROVE

nominal volume of 32.8 m3.

described in Sect. 2.3, we use the hybrid model proposed by

Dillner and Takahama (2015b).

The comparison between predicted FT-IR EC and mea-

sured TOR EC for the data sets described in Sect. 2.1 is

shown in Fig. 8. The first row refers to the Calibration 2011

and Test 2011 data set. In this work, the results obtained with

the Test 2011 are used for comparison with the results ob-

tained with the Test 2013 and Test 2013 Addl data sets. The

detailed description and discussion of the results obtained

with the Test 2011 data set can be found in Dillner and Taka-

hama (2015b).

In the case of predictions based on ambient sample col-

lected at the same sites of the calibration data set but from

a different year (Test 2013 data set, bottom left panel in

Fig. 8), we observe that the performance metrics show good

agreement between measured (TOR EC) and predicted EC

values (FT-IR EC). Moreover, it shows similar performance

to the prediction based on ambient samples collected at the

same sites and year of the calibration (Test 2011). A t test

at a confidence level of 95 % between the Test 2011 and Test

2013 predictions, and one between their absolute errors, con-

firmed this observation. The results are similar to FT-IR OC

(Sect. 3.1).

From Fig. 9 (performance of the collocated TOR EC mea-

surements), we observe that the metrics are similar to the

ones obtained with the Test 2011 and Test 2013 data sets.

The normalized error is higher for FT-IR EC (21 and 24 %

for Test 2011 and Test 2013 respectively) than for collocated

TOR EC measurements (14 %). Table 4 compares the MDLs
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Figure 9. Scatter plot and performance metrics between the mea-

surements of the collocated TOR EC. Concentration units of

µgm−3 for bias and error are based on the IMPROVE nominal vol-

ume of 32.8 m3.

and precisions of FT-IR EC predictions and TOR EC mea-

surements and it shows that the MDL is very similar to TOR

EC and the precision is better than (less than half) of TOR

EC.

The bottom right panel in Fig. 8 shows the performance of

the calibration model for samples collected at different sites

and in a different year (Test 2013 Addl data set) of the sam-

ples used for calibration. We observe that the performance

metrics show worse agreement between measured TOR EC

and predicted EC values (FT-IR EC), than the ones obtained

with the Test 2011 and Test 2013 data sets. A t test at a con-

fidence level of 95 % between the Test 2013 and Test 2013

Addl predictions, and one between the absolute errors, shows

a statistical difference between the results obtained with the

two data sets.

For the case of OC, we found that the model, based on

rural sites only, predicts TOR OC values from PTFE am-

bient samples collected at different rural sites and differ-

ent years to the ones used for the calibration accurately

(Sect. 3.1). For the case of EC, the models trained only with

the rural sites (Fig. 10) have lower R2 (0.88, 0.90, and 0.87

respectively for the three test sets) than the ones that use the

entire calibration set (0.96, 0.95, and 0.87, Fig. 8). However,

looking at the plots in Fig. 10 we observe that the predicted

FT-IR EC values do not differ substantially from the TOR EC

values, and the worse performance metric is explained by the

low concentrations measured at the rural sites: R2 decreases

(the total sum of squares tends to zero) when the measure-

ments are close to zero.
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Table 4. MDL and precision for FT-IR EC and TOR EC.

TOR EC FT-IR EC FT-IR EC FT-IR EC FT-IR EC

Calibration 2011 Test 2011 Test 2013 Test 2013 Addl

MDL (µgm−3)a 0.01b 0.02 0.02 0.01 0.01

% below MDL 3 0 1 0 0

Precision (µgm−3)a 0.11 0.04 0.04 0.03 0.04

Mean blank (µg) NRc 0.02± 0.17 0.06± 0.17 0.06± 0.14 0.06± 0.14

a Concentration units of µg m−3 for MDL and precision are based on the IMPROVE volume of 32.8 m3. b Value reported for network

(0.44 µg) in concentration units. c Not reported.
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Figure 10. Scatter plots and performance metrics between FT-IR

EC and TOR EC for the rural sites of the four data sets described

in Sect. 2.1. Concentration units of µgm−3 for bias and error are

based on the IMPROVE nominal volume of 32.8 m3.

3.4 Anticipation of the prediction error: FT-IR EC

The aggregated (per site) mean D2
M against the mean abso-

lute error for each data set is shown in Fig. 11. Similar to the

results shown in Sect. 3.3, the Test 2011 (except for site 5)

and Test 2013 sites present D2
M similar to the ones found in

the calibration data set (all the sites lie in the TN sector). Un-

like the OC case (Sect. 3.2), the Birmingham site (number 8)

is misclassified (it lies in the FN sector). Moreover, site 11

(Fresno) has a mean D2
M close to the boundary, but it lies in

the TP sector. The Korean site (10) has both mean D2
M and

mean absolute errors above the boundaries used for discrimi-

nation between acceptable and unacceptable predictions (TP

sector). Figure 12 shows the scatter plot and the performance

metrics of the Test 2013 Addl without the samples collected

at the two sites we have classified as not acceptable (Fresno

and Korea). We note that the predictions are less spread and
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Figure 11. FT-IR EC. Anticipation of the prediction error. Mean

squared Mahalanobis distance (between the scores of each data set

described in Sect. 2.1 and the centroid of the calibration data set)

against mean absolute error (between TOR OC and FT-IR OC). The

measurements are aggregated per site. Each site is denoted with the

site ID used in Table 1.

the R2 metric improves from 0.87 to 0.91. The remaining

metrics are almost identical (Fig. 8 for comparison). More-

over, a t test at a confidence level of 95 % between the pre-

dictions, and one between their absolute errors, shows a sta-

tistical difference between the results obtained with the two

data sets.

The evaluation of predictions using a calibration model

constructed from only the Korea and Fresno sites is shown

in Fig. 13. The calibration set uses two-thirds of the am-

bient samples (we followed the same methodology that we

used to prepare the Calibration 2011 data set proposed by

Dillner and Takahama, 2015a, b) collected in 2013 at the

two sites and one-third for the test. The results show that with
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Table 5. FT-IR EC, anticipation of the prediction error per sample. Percentage of ambient samples falling in the FN (false negative), FP

(false positive), TN (true negative), and TP (true positive) sectors. Performance metrics of the models that exclude predictions of samples

that fall in the FP and TP sectors.

Performance metrics

Data set FN FP TN TP Bias Error Norm. error R2

(µgm−3)∗ (µgm−3)∗

Test 2011 0 % 0 % 100 % 0 % 0 0.02 20 % 0.97

Test 2013 0.3 % 0.2 % 99.5 % 0 % 0 0.03 24 % 0.96

Test 2013 Addl 0.5 % 2.3 % 96.2 % 1 % 0.02 0.04 24 % 0.92

∗ Concentration units of µg m−3 for bias and error are based on the IMPROVE volume of 32.8 m3.
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Figure 12. Scatter plot and performance metrics between FT-IR OC

and TOR OC for the Test 2013 Addl data sets (Sect. 2.1) without the

ambient samples collected at Fresno and Korean sites. Concentra-

tion units of µgm−3 for bias and error are based on the IMPROVE

nominal volume of 32.8 m3.

the appropriate data set, also in Fresno we can achieve accu-

rate predictions of EC values (R2
= 0.93, bias= 0 µgm−3,

error= 0.06 µgm−3, and normalized error= 11 %). The per-

formance metrics at the Korean site (R2
= 0.66, bias=

−0.07 µgm−3, error= 0.11 µgm−3, and normalized error=

18 %) are not as good as Fresno and are mostly due to one

sample. The predictions for all other samples are more ac-

curate. By removing the one erroneous sample, R2 increases

from 0.66 to 0.84. For comparison, Fig. S7 shows the evalu-

ation of predictions at the Korean and Fresno sites using the

Calibration 2011 data set (R2
= 0.85, bias= 0.05 µgm−3, er-

ror= 0.10 µgm−3, and normalized error= 22 % and R2
=

0.60, bias= 0.13 µgm−3, error= 0.17 µgm−3, and normal-

ized error= 33 % at Fresno and Korea sites respectively).

A t test at a confidence level of 95 % between the predictions,

and one between their absolute errors, shows a statistically

significant reduction in mean errors for predictions using

the new calibration (Fig. 13) and those using the base case

calibration (Fig. S7). Therefore, we can conclude that sites

with samples that are on average dissimilar to those in the

calibration are shown to benefit from the construction of

a separate calibration model.

The results of theD2
M (and absolute error) for each sample

(without any aggregation) are reported in Table 5, and in the

Supplement we show the corresponding figures (Figs. S8–

S11). For each data set, Table 5 reports both the percentage

of samples falling in the FN, FP, TN, and TP sectors and

the performance metrics of the models that exclude unac-

ceptable samples (those falling in the FP and TP sectors).

The Test 2013 data set presents a low percentage (0.5 %)

of erroneous classifications (samples falling in the FN and

FP sectors), and the performance metrics, for the test sets

with unacceptable samples excluded, are in line with what

we found when all samples are included (Fig. 8). The Test

2013 Addl contains 1 % of well-classified unacceptable pre-

dictions TP. Most of these unacceptable predictions are due

to samples collected at the Korean site (0.7 %, Fresno; 0.2 %,

Hoover, 0.1 %; Fig. S11). Moreover, the Test 2013 Addl

presents 2.8 % of erroneous classifications (Korea, 1.2 %;

Fresno, 0.7 %; four sites, 0.9 %; Fig. S11). The R2 metric,

for the test sets with unacceptable samples excluded, im-

proves from 0.87 to 0.92 with respect to the results found

when all samples are included (Fig. 8). The bias, error, and

normalized error are similar.

We note that for this work, the boundaries are chosen

heuristically (maximum D2
M and absolute error found in the

2011 data set, Sect. 2.4), and they tend to classify the great

majority of the samples (96.3 %) in the Test 2013 Addl data

set as well predicted (TN). The choice of different bound-

aries, spectral preprocessing, or distance metric (as discussed

for OC in Sect. 3.2), may lead to a less generous classification

and an improved discrimination between acceptable and un-

acceptable predictions, with particular care to minimize FN

classifications. However, as for OC, the analysis of EC sug-

gests that spectral signals projected into the feature space of

a particular PLS calibration model contain useful informa-

tion for anticipating the magnitude of prediction errors, and

using the D2
M, we still obtain useful results as tested by the

performance metrics in Fig. 12 and Table 5. The anticipation

error for the FT-IR EC predictions is less accurate than the

one found in the OC case (the Birmingham site was misclas-
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Figure 13. Scatter plot and performance metrics between FT-IR EC and TOR EC of the Korea and Fresno sites (site ID 10 and 11 respec-

tively). A new calibration set, based on two-thirds of the ambient samples collected at these two sites in 2013 is used for a dedicated model.

Concentration units of µgm−3 for bias and error are based on the IMPROVE nominal volume of 32.8 m3.

sified for EC but not for OC), but we expect that the capabil-

ity for discrimination can be improved in future work for the

same reasons given in Sect. 3.2.

4 Conclusions

In this work, we have used FT-IR spectra of particles col-

lected on ambient PTFE filters (without spectral preprocess-

ing) to predict the concentrations of TOR OC and EC using

partial least square regression. We extended the work of Dill-

ner and Takahama (2015a, b) by (i) evaluating the models

using test samples collected at the same sites as the calibra-

tion data set but a different year (2013); (ii) evaluating the

models using test samples collected at 11 different sites and

a different year (2013) to the calibration data set; (iii) propos-

ing a statistical method to anticipate the prediction errors for

each site.

Our results show that ambient samples collected at the

same sites in the same or different years to the ones used

for the calibration accurately predict TOR OC and EC values

(0.94≤ R2
≤ 0.97 for FT-IR OC and 0.95≤ R2

≤ 0.96 for

FT-IR EC). Moreover, the precisions and the MDLs of the

FT-IR OC and FT-IR EC are in the same order of the pre-

cision and MDL of the measurements reported by the TOR

methods. We further determine that using samples collected

at rural sites to calibrate a model for OC improves the pre-

diction at different rural locations and in different years as

the ones used for the calibration (R2
= 0.97). This result is

likely due to similar loadings and OC sources at these sites.

In contrast, due to the low EC concentrations (EC≤ 60 µg)

recorded at the rural sites, the EC predictions are less accu-

rate (R2
= 0.87) because of the lower signal-to-noise ratio.

We further demonstrate that spectral features contain in-

formation that can be used to anticipate prediction errors for

OC and EC using a particular calibration model. In our as-

sessment using the squared Mahalanobis distance in the fea-

ture space of PLSR, sites with samples which are on aver-

age dissimilar to those in the calibration set are identified

and shown to benefit from the construction of separate cali-

bration models. Building separate calibration models leads to

improvements in R2 from 0.79 to 0.96 for the OC evaluation,

and from 0.60 to 0.66 and from 0.85 to 0.93 for EC at Korea

and Fresno sites, respectively. These improvements are sta-

tistically significant as determined by a test of significance in

the mean absolute errors. We posit it to be possible that this

assessment can be improved with spectral preprocessing or

additional statistical algorithms; at the present time this work

illustrates a framework that may guide strategic calibration

model development and calibration sample collection.

Therefore, we conclude that FT-IR spectra of aerosol sam-

ples collected on PTFE filters can be calibrated to TOR mea-

surements (using partial least squares regression) to provide

robust predictions of TOR OC and EC concentrations. The

calibration models based on samples collected in selected

sites can be used in subsequent years and at locations that,

on average, have similar features to those in the calibration

set. Moreover, identification of sites that are, on average, dis-

similar to those in the calibration set provides an opportunity

to develop dedicated calibration models specific to samples

from these sites.

The Supplement related to this article is available online

at doi:10.5194/amt-9-441-2016-supplement.
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