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Abstract. Polarimetric radar-based hydrometeor classifica-
tion is the procedure of identifying different types of hy-
drometeors by exploiting polarimetric radar observations.
The main drawback of the existing supervised classification
methods, mostly based on fuzzy logic, is a significant de-
pendency on a presumed electromagnetic behaviour of dif-
ferent hydrometeor types. Namely, the results of the classi-
fication largely rely upon the quality of scattering simula-
tions. When it comes to the unsupervised approach, it lacks
the constraints related to the hydrometeor microphysics. The
idea of the proposed method is to compensate for these draw-
backs by combining the two approaches in a way that mi-
crophysical hypotheses can, to a degree, adjust the content
of the classes obtained statistically from the observations.
This is done by means of an iterative approach, performed
offline, which, in a statistical framework, examines clustered
representative polarimetric observations by comparing them
to the presumed polarimetric properties of each hydrome-
teor class. Aside from comparing, a routine alters the con-
tent of clusters by encouraging further statistical clustering
in case of non-identification. By merging all identified clus-
ters, the multi-dimensional polarimetric signatures of vari-
ous hydrometeor types are obtained for each of the studied
representative datasets, i.e. for each radar system of inter-
est. These are depicted by sets of centroids which are then
employed in operational labelling of different hydrometeors.
The method has been applied on three C-band datasets, each
acquired by different operational radar from the MeteoSwiss
Rad4Alp network, as well as on two X-band datasets ac-
quired by two research mobile radars. The results are dis-
cussed through a comparative analysis which includes a cor-

responding supervised and unsupervised approach, empha-
sising the operational potential of the proposed method.

1 Introduction

Radar-based hydrometeor classification, that is the proper
identification of different types of hydrometeors from radar
observations, is important for an improved understanding of
atmospheric dynamics, an improved quantitative precipita-
tion estimation (QPE), an improved verification and assim-
ilation in numerical weather prediction models and opera-
tional nowcasting applications like aircraft or road safety
(Bringi et al., 2007). The spread of polarimetry for weather
radar has significantly changed the capability of radar sys-
tems to identify meteorological and non-meteorological
echoes, as well as to identify different hydrometeor types un-
der the radar umbrella (Bringi et al., 2007). The very first
efforts to overcome the ambiguity arising from the overlap
of measured reflectivity for different hydrometeors relied on
a dual-polarisation parameter – the differential reflectivity
(Seliga and Bringi, 1976; Hall et al., 1984). Since then, var-
ious methods, incorporating other Doppler dual-polarisation
(called polarimetric hereafter) parameters, have been devel-
oped for the three frequency bands of major interest (S, C
and X) (Bringi et al., 2007). Conceptually, all these meth-
ods can be categorised as supervised, unsupervised or semi-
supervised (Fig. 1).

Being by far the largest (Chandrasekar et al., 2013),
the first category encompasses mostly approaches based on
Boolean logic decision tree, Bayesian theory and the most
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Figure 1. Schematic generalisation of hydrometeor classification
methods.

intuitive ones, based on fuzzy logic. The common ground
for these seemingly different approaches is a necessity for
a very reliable set of polarimetric signatures (Straka et al.,
2000). These are obtained either by means of simulations
(e.g. Dolan and Rutledge, 2009) or by additionally involv-
ing some empirical knowledge (e.g. Al-Sakka et al., 2013).

Boolean logic decision tree methods are part of the earli-
est efforts to exploit radar polarimetry for the purpose of hy-
drometeor classification (Straka and Zrnic, 1993; El-Magd
et al., 2000). However, assuming mutual exclusivity of po-
larimetric parameters for different hydrometeor types, these
methods could not thoroughly exploit the potential of polari-
metric measurements.

Fuzzy logic has been considered to be the best way to
make use of polarimetric signatures known a priori in dis-
tinguishing between different hydrometeors (Vivekanandan
et al., 1999). Namely, inference combining matching scores
of different parameters with overlapping membership func-
tions precisely overcomes the mutual exclusivity limits of the
Boolean logic decision tree and makes methods less suscep-
tible to the potential presence of noise. Among the number
of methods developed for S, C and X bands we can distin-
guish between those using reflectivity at horizontal polarisa-
tion (ZH), differential reflectivity (ZDR), specific differential
phase shift (Kdp) and correlation coefficient (ρhv) (e.g. Dolan
et al., 2013) and those using linear depolarisation ratio (LDR)
(e.g. Straka et al., 2000). Also, we can discriminate between
methods using temperature as an external parameter (e.g. Zr-
nic et al., 2001), rather than relative altitude with respect to
the 0 ◦C isotherm (e.g. Lim et al., 2005), as well as between
those using two-, or more, dimensional membership func-
tions (e.g. Marzano et al., 2007), rather than one-dimensional
ones (e.g. Liu and Chandrasekar, 2000).

As the most widespread approach in hydrometeor classi-
fication, fuzzy-logic classification methods have been sub-
ject of several validation campaigns. One of the most ex-

tensive, the Joint Polarization Experiment (Ryzhkov et al.,
2005), demonstrated improved hail detection capabilities us-
ing ground measurements with hail-intercept vehicles. A
Bayesian approach proposed by Marzano et al. (2010) is an-
other representative supervised approach, in which each sim-
ulated class is characterized by its centre and covariance ma-
trix. The labelling of the observations is done by means of
Bayesian inference (the maximum a posteriori rule).

The most obvious limitation of this dominant class of
methods is the significant conditionality of the classification
decision to the quality of the supposedly known a priori po-
larimetric signatures.

A different approach, based on the unsupervised concept
and pioneered by Grazioli et al. (2015), tends to avoid us-
ing a priori known or presumed polarimetric signatures. The
focus is rather on exploiting the radar observations with the
aim of clustering a set of diverse polarimetric measurements
into distinct clusters which are to be labelled as different
hydrometeor types. In the mentioned method, the separa-
tion is achieved through agglomerative hierarchical cluster-
ing (AHC) and by simultaneously introducing a spatial tex-
ture information. The labelling of obtained clusters is done
once manually by taking into account both radar and non-
radar information.

The first notion of the semi-supervised method is found
in Liu and Chandrasekar (2000), in which employing neu-
ral networks in updating the membership functions reduces
classification algorithm to a neuro-fuzzy system. However,
the most representative for this category would be a region-
based method proposed in Bechini and Chandrasekar (2015),
the emphasis of which is on improving the output of fuzzy-
logic schema by applying clustering with a significant spatial
(regional) constraint, which introduces an important robust-
ness with respect to the inevitable noise in the measurements.

As was the case with the introduced unsupervised ap-
proach, the idea behind the semi-supervised approach we
propose here is to avoid heavily relying on the presumed
polarimetric properties of hydrometeors, though not entirely.
Namely, the intentions were (i) to allow for the “glimpse” of
the presumed hydrometeor microphysical properties through
a constrained clustering and simultaneously; (ii) to automa-
tise labelling of the obtained clusters (influence of the super-
vised concept); (iii) to make the classification decision crite-
ria conform to the data specificities, particularly potential im-
perfections of the radar measurements (influence of the unsu-
pervised concept); and (iv) to ensure the operational potential
of the method by keeping the implementation simple enough
for real-time operation.

This is achieved by involving, in a computationally effi-
cient bin-based approach, two classical data processing tools:
k-medoids clustering and Kolmogorov–Smirnov (KS) test.
On one hand, the “glimpse” of the presumed microphysics
comes through the appropriately modified state-of-the-art as-
sumptions (Dolan and Rutledge, 2009; Dolan et al., 2013).
On the other hand, the influence of the technical specifici-
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ties of radar is taken into account by comparatively work-
ing on datasets acquired by three MeteoSwiss Rad4Alp (Ger-
mann et al., 2015) C-band operational radars (Albis, Monte
Lema and Plaine Morte) and two X-band mobile radars (MX-
Pol, belonging to École Polytechnique Fédérale de Lausanne
(EPFL), and DX50, operated by MeteoSwiss). As a result,
we obtain for each of the considered radars a set of centroids
in a multi-dimensional space, formed by four polarimetric
parameters and a liquid/melting/ice phase indicator. These
are later used to classify observed precipitation by simply
applying an Euclidean distance criterion, which makes the
method very suitable for operational use. Qualitative and
quantitative performance tests are performed through com-
parison with the appropriate supervised and unsupervised
routines, as well as through comparison with hydrometeor
types observed at ground level with a two-dimensional video
disdrometer (2DVD), and by involving external information,
such as hail operational product and rain-gauge measure-
ments.

The article is organised as follows: in Sect. 2 we introduce
the employed statistical methods. Section 3 contains a de-
tailed description of the proposed method, along with some
auxiliary analyses. In Sect. 4 we illustrate some results of the
classification applied to C- and X-band datasets and simulta-
neously analyse them through appropriate comparisons with
independent measurements. Finally, Sect. 5 concludes the ar-
ticle through a discussion and provides some perspectives.

2 Background on employed statistical methods

The proposed semi-supervised algorithm mainly relies on
two statistical tools, elaborated in the following subsections:
the unsupervised k-medoids clustering and the KS statistical
test. These two methods serve as a sort of link between the
polarimetric radar measurements and the hydrometeor scat-
tering hypotheses.

2.1 Unsupervised clustering

As it would be the case with the k-means (Lloyd., 1982), the
employed k-medoids algorithm (Kaufman and Rousseeuw,
2009) is used to partition the multivariate observation vec-
tors (x1,x2, . . .xn) into k subsets or clusters (S1,S2, . . .Sk) in
such a way that the subsets minimiseD, the sum of distances
between the observations and the centroids of subset µi :

D =

k∑
i=1

∑
x∈Si

di(x−µi). (1)

The distance d can vary from squared Euclidean norm ‖ · ‖22
default k-means distance, `1 norm (introduced by (Kaufman
and Rousseeuw, 1987), in the original k-medoids algorithm),
to the standardised Euclidean distance:

di =

∥∥∥∥x−µiσ Si

∥∥∥∥
2
, (2)

which is normalised with respect to the standard deviation
of the subset (σ Si ) that we have adopted for our approach.
It is an iterative algorithm, where centroids are recalculated
after each iteration, during which the composition of the sub-
sets changes. Once the composition becomes stationary, the
algorithm has converged. Unlike the case for the k-means,
where a centroid does not necessarily belong to the dataset,
the centroid of a subset in the k-medoids algorithm, named
medoid, is always a member of a set. This makes k-medoid
more robust to the presence of outlier data, particularly when
partitioning smaller sets of observations. The implementa-
tion of the method depends on the size of the observations
sample, following criteria of the default MathWorks (2015)
version.

– For small samples (up to 3000 observations), we em-
ploy the partitioning around medoids (PAM) algorithm
(Kaufman and Rousseeuw, 2009). This procedure as-
sumes minimising D by swapping between medoids
and non-medoids.

– For large samples (from 3000 to 10 000 observations),
an algorithm proposed in Park and Jun (2009) is used.
The minimisation of D is achieved as in the case of k-
means, by choosing the closest medoid to the hypothet-
ical corresponding k-means centroid.

– For very large samples (more than 10 000 observations),
only a random selection of cluster’s samples is consid-
ered in recalculating medoids.

As foreboded in the introduction, the vector x has five di-
mensions in our case: four polarimetric parameters and a liq-
uid/melting/ice phase sigmoidal indicator. Different distribu-
tions are characterized with different kurtosis (e.g. ZH usu-
ally has far more negative kurtosis than Kdp) and therefore
the need to standardise (normalise) the Euclidean distance by
dividing it by the standard deviation of the considered vari-
able.

2.2 Kolmogorov–Smirnov test

The two-sample KS test is a non-parametric hypothesis test
which tells us whether two samples can be characterized with
the same probability distribution, whereas the one-sample
version determines whether the sample is distributed accord-
ing to particular distribution (Kolmogorov, 1933; Smirnov,
1948).

The test itself is based on the comparison between empiri-
cal cumulative distribution functions (F ) of two samples, the
test statistic DKS being the supremum of the set of their dis-
tances:

DKS
= sup

xj

(
|F1(xj )−F2(xj )|

)
, xj ∈ x, (3)

with the absolute value making the test two-tailed. The de-
cision to accept the H0 hypothesis, which assumes that two
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samples are being derived from the same probability distri-
bution, is made either by comparing the test statistic with the
critical value or by comparing the p value with the test sig-
nificance α (type I error). Through the dependence of critical
value and p value on the number of samples, related to the
test power 1−β, the test decision depends as well on β (type
II error). A type I error is the false rejection of a true H0 hy-
pothesis, while a type II error is the failure to reject a false
H0 hypothesis.

In our case, the two samples are the values of the observed
parameter xj (one of the five considered parameters) and the
expected values of the same parameter (issued from the em-
ployed membership functions), as will be elaborated in the
following section. The decision is based on comparing the
value of the test statistic with the critical value as determined
by Pearson and Hartley (1972).

3 Algorithm

The algorithm contains the “offline” part, which does not run
in real time, and the “online” part, which runs operationally,
as part of the processing chain of a radar network. The former
is the core of the presented semi-supervised method. In this
part the classification is configured through the preparation
of representative dataset and the derivation of centroids. The
latter part assumes the labelling of sample volumes as well
as the estimation of the classification uncertainty.

3.1 “Offline” algorithm

The process starts with the selection of representative ob-
servations, aiming to get a dataset which contains all hy-
drometeor types we should potentially be able to detect and
identify: crystals (CR), aggregates (AG), light rain (LR), rain
(RN), rimed ice particles (RP), vertically aligned ice (VI),
wet snow (WS), ice hail and high-density graupel (IH) and
melting hail (MH). This choice of classes, inspired by Dolan
and Rutledge (2009) and Dolan et al. (2013), and finally con-
cluded by taking into account the operational preferences,
represents a conventional set of hydrometeor types, with the
exception of a strongly emphasized hail, which is present in
two classes. At X band, with the MXPol radar, we did not
manage to observe any vertically aligned ice while collect-
ing representative observations and, thus, we had to omit the
VI class. Nevertheless, this selection of classes is not manda-
tory, because the proposed approach can be used with any set
of hydrometeor classes; i.e. new classes can be added quite
easily.

3.1.1 Data preparation

At C band, representative observations are selected by care-
fully sampling 8 days of radar measurements for Albis and
Monte Lema radars and 4 days for Plaine Morte radar, in-
volving several stratiform and convective precipitation events

(from all four seasons). The reason behind the smaller initial
set for Plaine Morte radar (4 days) is the lower regional fre-
quency of hail storms and our desire to keep the proportions
of different hydrometeors similar for all radars. All three
considered operational radars have the same scanning pat-
tern covering the entire azimuth revolution with 20 eleva-
tions (plan position indicators (PPIs) from −0.2 to 40◦) in
5 min, resulting in 288 full scans per day. Clutter contami-
nated pixels, as identified by the slightly adjusted (emphasis-
ing the role of polarimetry) operational clutter removal rou-
tine (Germann and Joss, 2004), as well as the pixels below
the noise level threshold, are removed. However, the sam-
pling is restricted to the elevations from 3.5 to 11◦, as well
as to the range between 3 and 40 km. The lower elevation
boundary was chosen to avoid any potential residual clut-
ter, while the upper one, combined with the selected range,
restricts the considered altitude below 7.5 km, sufficient to
sample all types of precipitating hydrometeors.

Selection itself is a sort of constrained random sampling.
As an effort to encourage the diversity of present hydrome-
teor types, we aim to obtain the distributions of parameters
(particularly ZH), as platykurtic as possible, in the following
ranges:

1. ZH: −10–60 dBZ,

2. ZDR: −1.5–5 dB,

3. Kdp: −0.5–5 deg km−1,

4. ρhv: 0.7–1,

5. Ind: −1–1.

The values of selected polarimetric parameters can be as-
sociated with different microphysical properties of the parti-
cles: ZH indicates concentration, size and density, ZDR in-
dicates shape, orientation and density, Kdp indicates con-
centration and shape and ρhv indicates homogeneity. There-
fore, information they provide is to a degree complementary
and should lead to the inference of a particle type. However,
given that radar measurements are in fact estimates of these
parameters, these values are characterized with a certain level
of uncertainty and are the presumed polarimetric signatures
of different particles. The proposed method is actually de-
signed to adapt to these uncertainties.

The fifth parameter is introduced to better distinguish
classes in liquid and ice phase that have similar polarimet-
ric signatures, but without directly introducing the informa-
tion about temperature. It is not directly observed by radar
but can be deduced from radar measurements in stratiform
precipitation by identifying the melting layer. It is finally a
quasi-balanced ternary system indicating liquid, melting and
ice phase, obtained by applying a sigmoid transform in order
to decrease its influence on discrimination between different
hydrometeor types inside liquid or ice phase:

Ind=
2

1+ e−b1H
− 1, (4)
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Figure 2. Sigmoid transformation: centroid derivation (blue) and
pixels assignment (red).

where 1H is a relative altitude with respect to the 0◦

isotherm, and a slope parameter b is either very low (blue
curve in Fig. 2) or very large (red curve). The former one is
applied in centroid derivation, while the latter is used in the
assignment. The rationale behind the less steep slope applied
on the representative observations is preserving a sort of con-
tinuity, for the purpose of the coherent statistical testing of
five continuous distributions. Namely, the radar polarimet-
ric variables are continuous, in both the centroid derivation
and the assignment part. Therefore, given that we combine
the scores of five-dimensional KS tests (as it will be elabo-
rated in the following subsection), we decided to soften the
“blue” transformation in order to make this parameter also
continuous in the part where the KS test is used. This softer
transformation still, however, limit the influence of 1H on
the classification.

The set of representative observations at X band is the
one used in illustrating the unsupervised approach proposed
in Grazioli et al. (2015). Given the transportability of the
employed radar, these datasets were collected at two dif-
ferent locations, in two different climatic regions (Davos
in Switzerland and Ardèche in France), at elevation angles
ranging from 3.5 to 10◦.

The sizes of the derived representative datasets, along with
the most relevant information about the considered radars,
are given in Table 1.

The information concerning the altitude of the 0◦C
isotherm has been collected from the numerical weather pre-
diction model COSMO (Baldauf et al., 2011) by relying on
the 0◦C isotherm product or by applying standard atmo-
sphere lapse rate in the troposphere (6.4 ◦C km−1) on the
temperature profiles. The exceptions are stratiform events
observed with the X-band radars, for which the melting
layer is detected using a polarimetric radar-based method

(Wolfensberger et al., 2015). The idea is to do the same in
the case of stratiform events observed with the C-band radar.

The concise description of the processing of the employed
datasets is provided in Appendix B.

3.1.2 Centroids derivation

The method itself is conceived as an iteration inside an iter-
ation. In this section we intend to provide a detailed descrip-
tion, starting from the “internal loop” and going towards the
external one, the latter resulting in a final set of centroids for
the considered radar.

As can be seen in Fig. 3, the “internal loop” is the very
core of the proposed method. It starts with an initial, entirely
unsupervised clustering of the representative dataset. This is
done by means of the k-medoids clustering algorithm, which
divides the set of representative observations into N initial,
distant sets by using the standardised Euclidean distance as
a criterion. The number of initial sets is set to nine, which
corresponds to the number of hydrometeor classes we even-
tually seek (see introduction to Sect. 3.1). A different number
of initial sets does not alter the convergence of the algorithm.

Further on, each of these clusters is compared to the
reference observations (identification), issued from one-
dimensional membership functions given in Appendix A.
These observations are issued independently for each con-
sidered hydrometeor class by means of the inverse sampling
method. Inverse sampling method generates the reference
values by using the inverse version of the normalised cu-
mulative sum of the reference parametric distribution. We
supply it with a sequence of random uniformly distributed
numbers (between 0 and 1) and obtain at the output the set of
observations whose distribution is determined by the param-
eters of the membership function. The basis of these mem-
bership functions is adopted from the state of the art (Dolan
et al., 2013; Dolan and Rutledge, 2009), and further appro-
priately modified and enriched by means of scattering simu-
lations based on single- and double-layer T-matrix method
(Mishchenko et al., 1996), as elaborated in Appendix A.
The comparison itself is performed using the KS test (see
Sect. 2.2) by comparing separately each of the five consid-
ered parameters. Then, the five obtained test statistics are
combined using a weighted arithmetic sum:

DKS
=

w1D
KS
ZH
+w2D

KS
ZDR
+w3D

KS
Kdp
+w4D

KS
ρhv
+w5D

KS
Ind∑5

i=1wi
, (5)

withwi = 1 for i = 1. . .4 andw5 ≤ 0.75, the latter being part
of the endeavour to decrease the impact of non-radar vari-
ables. The resultant test statistic is finally compared with
the critical value defined by a chosen test significance (α)
and a number of samples (β), following Pearson and Hartley
(1972).

Clusters which satisfy theH0 hypothesis (distribution sim-
ilar enough to one of the reference classes) exit the iteration
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Table 1. Basic information about the four observations datasets.

Radar Band: frequency Range resolution Altitude Obs. dataset size
(GHz) (m) (m) (pixels)

Albis C: 5.45 83 938 235 359
Monte Lema C: 5.46 83 1626 217 598
Plaine Morte C: 5.47 83 2937 209 404
MXPol X: 9.41 75 2133 and 605 189 675
DX50 X: 9.51 75 450 216 675

Figure 3. The schematic representation of the centroids derivation algorithm.

as labelled observations, while the rest proceeds to the addi-
tional clustering, this time divided into two sets. This clus-
tering procedure is identical to the initial one, entirely un-
supervised. The potential benefit of including the informa-
tion about dissimilarity, arising from the KS test, which is
the value of xj for which we have the maximal distanceDKS

(Eq. 3), was investigated but it turned out that a constrained
clustering would in fact not be beneficial. Namely, both the
identification rate and the credibility of the obtained classes
were in favour of an unconstrained clustering.

The obtained new sets are again undergoing identification,
separately. The loop for a cluster which fails to be identified
ends when the number of iterations exceeds imax, which is
empirically determined to at least 10, or when the size of the
cluster falls below nmin, which is identical to the number of
samples, a parameter that varies in the external loop. All the
labelled clusters are merged, according to the assigned label,
into nine classes, which are characterized by a set of nine
centroids in the five-dimensional space. However, unlabelled
clusters are assumed to be mixtures of hydrometeor types
that have more equal contributions to the polarimetric vari-
ables and therefore are not further analysed in this phase of
our research. Their proportion is minimised by considering a

relatively close range (up to 40 km) in selecting representa-
tive observations.

As it was the case with the clustering method, the se-
lected comparison method has been also investigated, by
implementing in parallel Student’s t test (Snedecor and
Cochran, 1989) and Wilcoxon’s rank sum test (Gibbons and
Chakraborti, 2011). The former is focused on the equality of
mean values under the assumption of equal variances of nor-
mally distributed samples, while the latter examines equality
of medians without any additional constraints. The identifi-
cation with both of these alternative tests is a bit faster with
respect to the KS test (Fig. 4), which can be explained by the
fact that the KS test relies on the entire probability density
function (all moments), unlike the studied alternatives which
consider only first-order statistics. However, the composition
of the obtained classes does not vary significantly, leading
us to the decision to keep the KS test due to less restraining
assumptions.

In the external loop, the previously described algorithm is
run up to 30 times, with random variations of the KS test
parameters and reference observations. Namely, in order to
keep the αβ product quasi-constant, we only slightly vary
the number of samples S ∈ [30,35,40] and therefore the β
parameter, whereas we keep the low value of the test sig-

Atmos. Meas. Tech., 9, 4425–4445, 2016 www.atmos-meas-tech.net/9/4425/2016/



N. Besic et al.: Hydrometeor classification through statistical clustering of polarimetric radar measurements 4431

Figure 4. Comparison of clusters identification rates depending on
an employed statistical test.

nificance α = 0.01. In contrast, the parameters of the pre-
sumed distributions of polarimetric variables (reference ob-
servations), m,a,b as well as x1,x2,x3 and x4, are basically
uniformly distributed in a 5 % range around the values given
in Appendix A.

The obtained classes from each of these 30 external iter-
ations are firstly used to estimate multi-dimensional proba-
bility density functions (PDFs) for each of the detected hy-
drometeor types. This is done by means of a kernel density
estimation (KDE) (Ihler and Mandel, 2003; Parzen, 1962).
The resulting polarimetric descriptors have the potential to
be further on used as a non-parametric membership function
in a fuzzy-logic classification algorithm (Wen et al., 2015,
2016). Though, in this paper their role is restricted to the
qualitative description of the obtained classes. A compara-
tive illustration of the PDFs obtained by MXPol and DX50
radars (Fig. 5) shows a fairly similar two-dimensional dis-
tributions except in what concerns ρhv, where the obtained
PDFs and consequently the representative centroid reflect the
systematic underestimation of this parameter by the DX50
radar. This sort of adaptability is the basic idea of the pro-
posed classification method.

The proposed classification requires a final set of cen-
troids, composed out of medians of centroids obtained in the
external loop (Fig. 6). However, before defining a final cen-
troid for a given hydrometeor class, we check for the dis-
persion of the 30 centroids obtained in the considered five-
dimensional space. This is done by calculating the interquar-
tile coefficient of dispersion, ranging from 0 to 1, and con-
ceived as

c
j,i
d =

Q
j,i

75 −Q
j,i

25

Q
j,i

75 +Q
j,i

25

, (6)

with j standing for a polarimetric parameter and i for a hy-
drometeor class. If the overall value of the coefficient (av-
erage over all five parameters), inversely proportional to the
share of a given hydrometeor class in the representative set of
observations, exceeds the empirically determined threshold
(0.5), then the corresponding class is not being considered.

An important remark is that the increase of the variation
range of reference parameters in the external loop, from 5
to 20 % around their initial values, results in a very small
change in the positions of centroids (e.g. average 1ZDR =

0.0924 dB) and a negligible change in their dispersion (aver-
age1c = 0.0647). This clearly indicates a limited sensitivity
of the semi-supervised method on the employed reference as-
sumptions.

As it can be deduced from Fig. 6, the differences be-
tween centroids characterising different C-band radars do not
appear to be too significant. Consequently, they do not al-
ter considerably the outcome of the classification, which is
demonstrated in Fig. 7, where Monte Lema centroids are ap-
plied on Albis and Plaine Morte radars. However, as we can
observe in the latter figure, misclassification is still possible
(e.g. AG vs. RP or WS vs. RN). Therefore, it appears that the
idea of classification criteria being adapted to the particular-
ities of a radar is relevant. This is especially justified in case
of the ρhv parameter, which is sensitive to the quality of the
antenna system of each operational radar.

The comparison with the centroids derived from unpro-
cessed data (before attenuation and noise corrections) illus-
trates the rather significant influence the processing can have
on the position of centroids. Despite this, the matching anal-
ysis between the classification performed with the “uncor-
rected” centroids on unprocessed dataset and the one per-
formed with the “corrected” centroids on the same dataset
after processing indicates some skills with respect to the data
quality (65.3 % of observations on the normalised matching
matrix diagonal).

3.2 “Online” algorithm

Once we have obtained the set of centroids characterising a
particular radar, the operational implementation of hydrom-
eteor classification comes down to the calculation of Eu-
clidean distances in a five-dimensional space, formed by
four parametric radar parameters and one external parameter
(Ind). The configuration file containing centroids is supposed
to be updated at regular intervals of several months in order
to account for potentially occurring systematic errors in radar
measurements, with the prospective of making this operation
continuous.

3.2.1 Pixels assignment

Given the skewness and the leptokurticity characterising dis-
tributions of Kdp and ρhv, these parameters are transformed
into K ′dp and ρ′hv by respectively applying the following
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Figure 5. Examples of PDFs estimated by means of kernel density estimation (KDE) along with the centroids from all iterations (white) and
final centroids (red), for MXPol (1) and DX50 (2) datasets: (a) AG, (b) RN, (c) WS.

Figure 6. Centroids for Albis (◦), Monte Lema (�) and Plaine
Morte (3) radars: before (empty) and after (filled) attenuation and
noise corrections. Classes: CR is crystals, AG is aggregates, LR
is light rain, RN is rain, RP is rimed ice particles, VI is vertically
aligned ice, WS is wet snow, IH/HDG is ice hail and high density
graupel and MH is melting hail.K ′dp and ρ′hv are defined in Eqs. (7)
and (8) respectively.

transformations:

K ′dp = 10log(Kdp+ 0.6), (7)

ρ′hv = 10log(1− ρhv), (8)

with Kdp values being shifted for 0.6 to take into account
Kdp < 0.

In order to equalise their magnitudes, before proceeding
to the pixel labelling, all the data, including the centroids,
are scaled to the [−1,1] range:

xout = 2
xin− xmin

xmax− xmin
− 1, (9)

the contracting limits (xmin–xmax) being

1. ZH: −10–60 dBZ,

2. ZDR: −1.5–5 dB,

3. K ′dp: −10–7,

4. ρ′hv: −50–5.23.

The fifth parameter is scaled by means of a significantly
stricter sigmoid transformation (Eq. 4). In this way, in the
pixel assignment, the external parameter literally plays the
role of ice/liquid phase indicator (Fig. 2).

The classification itself is performed by determining the
Euclidean distance in the five-dimensional space of any ob-
served precipitation pixel with respect to the nine defined
centroids (Fig. 6). The distance of the kth observed pixel and
the j th centroid is calculated as

D
k,j
E = (10)√
w1(δZH)2+w2(δZDR)2+w3(δK

′

dp)
2+w4(δρ

′

hv)
2+w5(δInd)2,

with

δx = xk − xj , (11)
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Figure 7. Matching matrix of the classification results obtained with Monte Lema data with the Monte Lema centroids opposed to the
classifications results obtained with the same data but with the centroids of (a) Albis and (b) Plaine Morte. The results are averaged over the
entire duration of the convective event that occurred in the proximity of Monte Lema radar site on 12 June 2014.

Figure 8. Example taken from the classification illustrated in Fig. 9: (a) lower entropy is 0.2753 and (b) higher entropy is 0.4756. Centroids
are represented by points of different colour, according to the colour code from Fig. 9, with the observation being represented by a black
point. The bold line corresponds to the smallest distance, the arrow indicating the actual label.

where the weights are wi = 1 for i = 1. . .3, while w4 = 0.75
and w5 ≤ 0.5. The impact of the ρ′hv parameter is slightly de-
creased due to the highly probable residual noise in the corre-
lation between channels, whose influence is emphasized with
a logarithmic transformation. Out of the nine obtained dis-
tances for each pixel, it is the minimal one which determines
its hydrometeor label.

The choice of the employed distance was investigated
by comparative analysis with the standardised Euclidean
distance (including standard deviation) and the Maha-
lanobis distance (including covariance estimate; Maha-
lanobis, 1936). By taking into the account the simplicity and
the computational efficiency required for the operational pur-
pose, we have adopted the simplest option.

3.2.2 Entropy

The obtained classification map is accompanied by a corre-
sponding entropy estimation. The entropy indicates a level of
uncertainty with which a hydrometeor class is assigned to an
observation. Lower entropy reflects significant confidence in
the assigned hydrometeor label, while higher entropy should
be interpreted as an uncertain decision and a potential mix-
tures indicator.

Out of Rényi’s entropies (Rényi, 1960), we have chosen
the min entropy as a measure of uncertainty. The distances
(arrow lines in Fig. 8) of the observation with respect to all
centroids are converted to the respective probabilities assum-
ing exponential distribution (emphasising lower distances):

pi = 3exp(−3di), i = 1, · · ·8(9), (12)
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Figure 9. MXPol RHI profile 226.8◦ azimuth, 14:25 UTC, 29 September 2013, in Ardèche, France: (a) ZH, (b) ZDR, (c) K ′dp, (d) ρ′hv.
Comparison of semi-supervised approach (g) with its supervised (e) and unsupervised counterpart (f), along with the entropy estimate of the
semi-supervised approach (h).

which are further on normalised so that
∑8(9)
i pi = 1. Finally,

min entropy is calculated as

H =−log8(9)pmax, (13)

with pmax corresponding to the distance with respect to the
nearest centroid (bold arrow line in Fig. 8).

4 Performance analysis

The algorithm with the derived sets of centroids for the con-
sidered radars has been applied on a number of characteristic
events observed by these radars. This is used to illustrate, and
to a degree validate, the prospects of the proposed classifica-
tion.

We start the illustration with a very descriptive compar-
ison, based on the MXPol X-band data. Namely, we com-
pare the proposed method with the classification based on
the set of centroids issued from the corresponding unsuper-
vised method (Grazioli et al., 2015), which was in fact de-
fined using the same dataset. Supervised classification based
on fuzzy logic was considered as well (modelled upon the

work of Dolan and Rutledge, 2009). The example of the com-
parison shown in Fig. 9 genuinely represents the ensemble of
results obtained while treating MXPol data.

The results of semi-supervised classification at X band
somewhat differ from those obtained by the supervised
method (54 % of matching after the suitable aggregation of
classes) and match to a significant degree those obtained
by employing the centroids derived from the unsupervised
method (83 % of matching). The main difference in the lat-
ter comparison can be spotted by closely observing ice phase
classes (e.g. crystals, aggregated and rimed ice particles) as
well as the wet snow (melting) layer.

However, this does not imply that aside from the automa-
tised centroid derivation a real contribution of the supervised
routine to the proposed semi-supervised one does not exist,
i.e. constraints introduced in clustering indeed do not im-
prove the decision process. Namely, the centroids derived
from the unsupervised method could in a way be taken as
reference due to the following reasons: they are derived us-
ing a fairly sophisticated clustering method (AHC); the in-
formation about the texture is explicitly introduced; the iden-
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Figure 10. Comparison of fuzzy-logic-based method (FL) and our semi-supervised method (SS) with the probability of hail (Nisi et al.,
2016) – Albis radar, 2.5◦ elevation, 12 June 2014: (a) 16:25, (b) 17:10, (c) 18:20; (d) along with the quantitative evaluation of matching
(1HSS), averaged over three elevations (1, 1.6 and 2.5◦).

tification is performed through human expertise, using com-
plementary data when possible.

Here, by using the simpler k-medoids clustering method
and without considering at all the texture information, we
obtain very similar results. Furthermore, the identification is
performed automatically, modifiable theoretical assumptions
are used at the input and more classes are derived.

The entropy estimate illustrated in (Fig. 9d) shows the po-
tential of this parameter to detect radar sampling volumes
without dominant hydrometeor type (hydrometeor mixtures),
particularly elevated values above the detected melting layer.

These initial indications about the relative performances
of the presented method are elaborated by including other
X-band and C-band datasets in the frameworks of detection
performances, spatial homogeneity and robustness.

4.1 Detection performance

The previous comparison with the unsupervised approach,
based on the same representative dataset, could be indeed
considered as a sort of validation, especially when we take
into the account the comprehensive validation of ice par-
ticles supported by a two-dimensional video disdrometer
(Grazioli et al., 2014). Nevertheless, we have analysed the
performances of the proposed semi-supervised method, us-
ing the same 2-D video disdrometer dataset (2DVD; Davos,
2010–2011). The analysis was done in the same frame-
work as the one used in Grazioli et al. (2015). The hy-
drometeor labels assigned to the sampling volumes above the
2DVD are compared to the corresponding labels of hydrom-
eteor populations, as designated by the 2DVD classification
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Figure 11. Hail continuity and vertical ice detection, 17:30, 12 June 2014. Albis reconstructed RHI profile, 187◦ azimuth: (a) ZH, (b) ZDR,
(c) K ′dp, (d) ρ′hv, (e) FL classification, (f) SS classification, (g) SS measure of entropy. (h) Lightning distribution by time (cloud to ground ±
and intra-clouds indicated with an X) ©Météorage.

Table 2. Confusion matrix (semi-supervised method vs. 2DVD).

Semi-supervised
classification

CR AG RP

2D
V

D

cl
as

si
fic

at
io

n CR 34.7 6.8 0.2

AG 7.4 16.0 0.5

RP 21.3 12.1 1.0

method (Grazioli et al., 2014). After appropriate aggregation
of classes (CR is crystals, AG is aggregates and RP is rimed
ice particle+ ice hail/high density graupel), we obtained the
confusion matrix given in Table 2.

The comparison of Cohen’s kappa and overall accuracy
with respect to the results given in Grazioli et al. (2015),
quantified in Table 3, shows a slight improvement over the
unsupervised and an important improvement over the super-
vised method. The vertical distance of 400 m between the in-

Table 3. Cohen’s kappa and overall accuracy.

Cohen’s overall
Method kappa accuracy

Fuzzy logic (Grazioli et al., 2014) 0.08 0.38
Unsupervised (Grazioli et al., 2014) 0.23 0.49
Semi-supervised 0.25 0.52

strument and the lowest radar sampling volume could explain
the generally low score values.

The operational radars do not have a sufficient visibility
above the location at which the 2DVD was deployed, so
a comparison to the ground level reference is not possible.
Therefore, we rather concentrate on evaluating the detection
of hail and liquid precipitation using C-band data.

The results of the classification at C band have been com-
pared to the 5 min operational hail detection product – prob-
ability of hail (POH) (Nisi et al., 2016). Though also based
on radar measurements due to its entirely different concept,
this algorithm can be considered as a quasi-independent ref-
erence. Namely, the derived POH is proportional to the dif-
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Figure 12. Comparison of light rain/rain/other classes classification, with the rain-gauge measurements – Monte Lema radar, 14 June 2015:
(a) Lugano station; (b) Stabio station; (c) map of the region (©Swiss federal authorities, 2007).

ference between 45 dBZ echo top height and 0 ◦C isotherm
height (Witt et al., 1998; Foote et al., 2005). Differences be-
low 1.65 km indicate no hail, while those above 5.5 km mean
100 % hail probability.

The comparison, illustrated in Fig. 10, displays POH prod-
uct derived using the entire radar volume and the classifica-
tion results obtained with only one elevation (2.5◦, only one
horizontal cross section of the convective event). The chosen
time steps from the convective event, occurring in the prox-
imity of Albis radar, show a very good matching with the
proposed classification method, better than is the case with
the supervised fuzzy-logic approach. Quantification of the
comparison over a period of time, through Heidke skill score
(1HSSelev =HSSelev(POH,SS)−HSSelev(POH,FL)), shows
an advantage of the proposed method in terms of matching
during the span of the convective event (average value of
1HSS= 0.05). Heidke skill score is calculated between the

binarised POH product (1 if POH> 50 %, 0 otherwise) and
the binarised classification (1 in case of melting or ice hail,
0 otherwise), the latter re-gridded to Cartesian coordinates.
1HSS is averaged over 1, 1.6 and 2.5◦ elevation:

1HSS=
1
3
(1HSS1◦ +1HSS1.6◦ +1HSS2.5◦) .

The division of hail in ice hail and high-density graupel on
one hand and melting hail on the other hand (Ryzhkov et al.,
2013) allowed us to bypass the obstacle of the fifth parameter
(though lower weighted) and properly identify the convective
core of the storm, which can be observed in Fig. 11.

The increased presence of the vertically aligned ice could
be explained by the reported atmospheric lightning, although
a straightforward relation cannot be assumed (Hubbert et al.,
2014; Roberto et al., 2016). In terms of vertical ice detection,
a comparison with the conventional (fuzzy logic) approach
(Fig. 11e) could serve as an indicator of a certain robust-
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ness of the semi-supervised method with respect to the dif-
ferential attenuation; that is, despite the reported atmospheric
lightning, after analysing ZH it seems more plausible that the
observed negative ZDR (Fig. 11b) is partly a result of the dif-
ferential attenuation and therefore should not be labelled as
vertically aligned ice.

As it was the case with Fig. 9d, Fig. 11g shows an increase
in the entropy estimate with the increase in sampling volume
size, confirming the potential role of this parameter in hy-
drometeor mixtures identification. The analysis of the event
presented in Fig. 10 (with the maximal range of 120 km con-
sidered) indicates a moderate correlation (Pearson coefficient
of correlation: 0.42) between entropy and range, the latter be-
ing proportional to sampling volume size.

An interesting remark, related to the operational imple-
mentability, is that the calculation of the semi-supervised
classification of the illustrated reconstructed RHI along with
its measure of entropy (Fig. 11e and Fig. 11g) is 6 times
faster than the calculation of the corresponding fuzzy-logic
counterpart.

An additional comparison with the corresponding super-
vised routine concerns liquid precipitation (Fig. 12). Namely,
10 min rain-gauge measurements at two MeteoSwiss stations
(in the vicinity of Monte Lema radar) are compared to the
rain vs. light rain output of semi-supervised and supervised
(fuzzy logic) classification. Although drawing a border line
between light rain and rain is indeed somehow debatable,
by observing ground measurements one can perceive a very
high plausibility of the results obtained with both methods.
An advantage of the proposed method, however, remains its
computational efficiency: in this particular case, which as-
sumes classifying a 7×7 volumes around the station of inter-
est, the semi-supervised method output is obtained in average
4.6 times faster.

4.2 Spatial homogeneity

The comparison with the output of a fuzzy-logic algorithm,
which uses similar membership functions to those employed
in constraining our clustering, was quantified using the spa-
tial homogeneity feature, derived from the co-occurrence
matrix:

C(p,q)= (14)∑
i

∑
j

{
1, if I (i,j)= p and I (i± 1,j ± 1)= q,
0, otherwise,

where i,j is the position indices and p,q are pixel values (in
our case number of a label – from 1 to 9) (Haralick et al.,
1973). It is actually a measure of the co-occurrence matrix
diagonality:

SH=
∑
p,q

C(p,q)

1+ |p− q|
, (15)

Table 4. MXPol X-band radar – comparison of semi-supervised ap-
proach with its supervised and unsupervised counterpart, spatial ho-
mogeneity.

Freq. band Method Spatial homogeneity
(SH)

X
Supervised 0.8037
Unsupervised 0.8795
Semi-supervised 0.8748

Table 5. Albis C-band radar – comparison of semi-supervised ap-
proach with its supervised counterpart, spatial homogeneity.

Freq. band Method Spatial homogeneity
(SH)

C
Supervised 0.6506
Semi-supervised 0.7179

estimated at X band for two RHIs (226.8◦ and 316.7◦), dur-
ing the event around the instant illustrated in Fig. 9 (14–16 h).
As illustrated in Table 4 there is a non-negligible increase
in averaged spatial homogeneity with respect to fuzzy logic
and very small decrease with respect to the unsupervised ap-
proach, which nevertheless contains spatial information and
has one class less (advantageous for this sort of comparison).

The spatial homogeneity analysis in an analogous frame-
work was applied in case of C-band data, as well. Namely,
the spatial homogeneity scores (Eq. 15) are derived for the
reconstructed RHIs around 187◦ azimuth angle, presented
in Fig. 11 (186–188◦), for each 5 min instant during the
event presented in Fig. 10 (15:00–18:30 UTC). To ensure a
fair comparison (equal number of classes), LDG and HDG
classes in the fuzzy-logic approach are merged to one. After
averaging, the results show an advantage of semi-supervised
method over its bin-based counterpart (Table 5).

4.3 Robustness analysis

Finally, we performed the matching analysis by applying
both our classification, based on MXPol and DX50 centroids,
and the fuzzy-logic approach, on two X-band radars pointing
toward the same volume (Fig. 13). The analysis is performed
using normalised matching matrix (otherwise called confu-
sion matrix), which provides information about the matching
of hydrometeor labels in the overlapping sampling volumes
of two radars. It is normalised with respect to the total num-
ber of observations. The peculiarity of the analysed day is
that the MXPol radar had an issue with the magnetron per-
formance, causing a significant reflectivity bias.

Before bias correction, the semi-supervised method shows
better matching performances: 55 % of observations on the
diagonal vs. 50 % in case of the fuzzy-logic approach. How-
ever, more significant is the fact that after bias correction,
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Figure 13. Intercomparison between classifications of the data acquired by MXPol and DX50 radars, over the town of Payern, CH, on
8 April 2014: (a) normalized matching matrix–semi-supervised classification; (b) normalized mixing matrix–supervised classification;
(c) configuration of two radars (©Swiss federal authorities, 2007). 1 indicates before bias correction; 2 indicates after bias correction.

the performances of the presented method improve signif-
icantly more than those of the considered fuzzy-logic ap-
proach: 61 % vs. 51 %. We deduce that this difference in-
dicates a stronger reliance of the semi-supervised method on
the polarimetric radar parameters, whereas the decision of
the supervised approach depends significantly on the exter-
nal (fifth) parameter.

5 Conclusions and future perspectives

In this paper, we propose a novel semi-supervised method
for hydrometeor classification from polarimetric radar data.
The idea is to combine the main advantages of both super-
vised and unsupervised approaches, while keeping the po-
tential operational implementation reasonably simple. This
is achieved through the statistical clustering of representative
observations of the considered polarimetric radar. It includes
implicitly introduced constraints provided by the state-of-
the-art assumptions, which are appropriately modified using
scattering simulations, and enforced by the KS statistical test.
The obtained clusters are afterwards merged into nine dis-
tinct sets of observations, representing different hydrometeor
classes. Each of these classes is characterized by a centroid
in the five-dimensional space formed by four polarimetric pa-
rameters and liquid/melting/ice phase indicator. The obtained
set of centroids is adapted to the considered radar. Their co-
ordinates result from both the distinctive properties of the
radar and the microphysical assumptions reflected through
the employed parametric distributions of polarimetric vari-

ables for different hydrometeor types. The real-time classifi-
cation itself is performed by examining all the measurements
of interest in the evoked five-dimensional space and associ-
ating them to the closest centroid in the framework of Eu-
clidean metric. The method is applied on three operational
C-band MeteoSwiss radars and two research X-band radars.
The comparative analysis with the standard supervised and
unsupervised approach was done in order to properly posi-
tion the proposed method, stating the benefits and the limi-
tations. A meaningfulness of the hydrometeor identification
was evaluated using ground truth measurements and well-
established MeteoSwiss operational products. We illustrated
some noteworthy properties of the proposed classification,
which concern discrimination between different solid phase
particles, hail detection performance and spatial homogene-
ity of the classification output. Simultaneously, we demon-
strated a very low dependency on non-radar inputs and a sig-
nificantly enhanced computational efficiency.

The presented method is already running in real time on
a mobile X-band radar (DX50), while the operational im-
plementation in the processing chain of Rad4Alp network is
under progress. This constitutes the foundation for the envis-
aged long-term statistical evaluation of the method.

For the moment, the reference observations are mostly
generated using appropriately adjusted state-of-the-art mem-
bership functions. The idea is to replace this input in the
future with potentially statistically richer information such
as are the EM properties of hydrometeors which have been
recently appearing in the literature, determined by employ-
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ing the method of moments (MOM) (Mirkovic et al., 2015)
or the invariant imbedding T-matrix method (Pelissier et al.,
2015). This way, we would entirely exploit the potential of
the KS test, limited in the current implementation by the
imposed parametric probability density distributions of the
reference observations. Due to the non-availability of recent
ground-truth data for the ice phase particles, we had to rely
on the framework employed in the validation the unsuper-
vised method from Grazioli et al. (2015). However, with
the envisaged campaigns involving a multi-angle snowflake
camera (MASC; Garrett et al., 2012), data acquired at the
ground level above 0◦ isotherm will be used to improve the
discrimination between aggregates and rimed particles. Fi-
nally, the biggest challenge in front of us would be dealing
with the pixels suspected to be hydrometeor mixtures. There-
fore, the plan is to deal with the sampling volumes charac-
terized with high entropy (potential hydrometeor mixtures),
either through their decomposition or through defining a new
set of mixed classes, dominantly for far ranges.

6 Data availability

Datasets acquired by MXPol X-band radar can be made pub-
licly available upon request to the authors. Datasets acquired
by Rad4Alps C-band operational network can be made pub-
licly available in the re-sampled range resolution (500 m
rather than 83 m) upon request to the authors. Datasets ac-
quired by DX50 X-band radar cannot be made publicly avail-
able due to the constraints imposed by a project partner of
MeteoSwiss.
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Appendix A: Employed clustering constraints

The basis of the membership functions employed to gener-
ate reference polarimetric observations by means of an in-
verse transform sampling is been adopted from Dolan et al.
(2013) and Dolan and Rutledge (2009) respectively for C and
X bands. They have the form of a bell-shaped function:

f (x)=
1

1+
(
x−m
a

)2b , (A1)

with x being a polarimetric parameter and m, a and b being
respectively mean, width and slope of a function, provided in
Tables A1 and A2. Less rigorous slope criteria were used at X
band for the identification rate comparative analysis (Fig. 4).

Wet snow class for X band, not defined in Dolan and Rut-
ledge (2009), was adopted from Grazioli et al. (2015).

Ice and melting hail classes for both considered fre-
quency bands were defined using scattering simulations with
a single- and a double-layer T-matrix method (Mishchenko
et al., 1996), as indicated in Sect. 3. The same simulator was
used for modifications introduced in crystals and vertically
aligned ice classes. The modified parameters are emphasized
using bold font in Tables A1 and A2. The rationales behind
the modifications are the following.

Table A1. C-band membership function parameterisation. The modified parameters are emphasized using bold font.

HT
ZH (dBZ) ZDR (dB) Kdp (deg km−1) ρhv
m a b m a b m a b m a b

CR −2.8 12 5 2.9 2.7 10 0.08 0.08 6 0.98 0.025 3
AG 17 18.1 10 1 1.1 7 −0.008 0.3 1 0.93 0.07 3
LR 1.75 29 10 0.46 0.46 5 0.03 0.03 2 1 0.018 3
RN 39 19 10 2.3 2.2 9 5.5 5.5 10 1 0.025 3
RP 37 9.2 0.8 0.9 0.9 6 0.1 0.08 3 1 0.025 1
VI −1 11 5 −0.9 0.9 10 −0.75 0.75 30 0.975 0.022 3
WS 24 21.3 10 1.3 0.9 10 0.25 0.43 6 0.8 0.10 10
MH 58.18 8 10 2.19 1.5 10 1.08 2 6 0.95 0.05 3
IH 48.8 8 10 0.36 0.5 10 0.07 0.15 6 0.99 0.05 3

Table A2. X-band membership function parameterisation. The modified parameters are emphasized using bold font.

HT
ZH (dBZ) ZDR (dB) Kdp (deg km−1) ρhv
m a b m a b m a b m a b

CR −3 12 5 3.2 2.6 10 0.15 0.15 6 0.985 0.015 3
AG 16 17 10 0.7 0.7 7 0.2 0.2 1 0.989 0.011 3
LR 2 29 10 0.5 0.5 5 0.18 0.18 2 0.992 0.007 3
RN 42 17 10 2.7 2.8 9 12.6 12.9 10 0.99 0.01 3
RP 34 10 0.8 0.3 1 6 0.7 2.1 3 0.993 0.007 1
VI 3.5 14 5 −0.8 1.3 10 −0.1 0.08 30 0.965 0.035 3
WS 30 20 10 2.2 1.4 10 1 1 6 0.835 0.135 10
MH 53.37 8 10 2.6 1.5 10 1.37 2 6 0.96 0.05 3
IH 45.5 8 10 −0.03 0.5 10 0.1 0.15 6 0.97 0.05 3

– CR and VI: the very broad ZH distributions of these two
classes (e.g. reflectivity of vertically aligned ice in C-
band ranges roughly from−26 to 24 dBZ) are in discor-
dance with our scattering simulations (indicating signif-
icantly more contracted ranges). This could be a conse-
quence of the considered particle size distributions. Ba-
sically, in order to avoid an important impact of such
broad assumptions on the convergence behaviour of the
centroids derivation algorithm, we decided not to ac-
count for very small and very big crystals (D > 30 mm
– converging towards aggregates).

– IH and MH: given the specific nature of the IH class,
which is directed by the fifth parameter to the high al-
titudes, this class has more specific properties with re-
spect to the conventional hail class (insignificant liquid
water content). Consequently, there is a need for the
complementary MH class.
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In what concerns the choice of the particle size distribution
(PSD) and the aspect ratios for the simulated particles, we
opted for the following.

– CR and VI: PSD as the simplified (exponential) version
of the empirical, temperature (T )-dependent distribu-
tions found in Heymsfield et al. (2013):

N(D)=N0 exp−λD, (A2)

with N0 = 3.304exp(−0.04607T ), and λ=

15.3exp(−0.053T ) for stratiform and λ=

3.4exp(−0.083T ) for convective events.

Aspect ratio follows the empirical relation h= aDbmax,
with h being the smallest dimension and Dmax the
largest: spherical ice crystals (a = 0.9, b = 1), solid
thick plates (a = 0.23, b = 0.778) and dendrites (a =
0.0418, b = 0.377) (Matrosov et al., 1996; Pruppacher
and Klett, 1997).

– IH and MH: PSD as defined in Cheng et al. (1985):

N(D)= C34.11 exp(−3D), (A3)

with3 varying from 0.1 to 1 mm−1 and C varying from
60 to 300.

Aspect ratio as defined by Ryzhkov et al. (2011) (dh is
dry/ice hail; mh is melting hail) is

rdh =

{
1− 0.02D, D ≤ 10mm,
0.8, D ≥ 10mm. (A4)

rmh = (A5){
rdh− 5(rdh− 0.8)fmw, fmw < 0.2,
0.88− 0.40fmw, D0.2≤ fmw ≤ 0.8,
2.8− 4rw + 5(rw − 0.56)fmw, Dfmw > 0.8,

with fmw being the mass water fraction and rw the as-
pect ratio of the equivalent raindrop.

With the exception of the modifications explained above,
the microphysical properties of the classes correspond to the
definitions found in Dolan et al. (2013), Dolan and Rutledge
(2009) and Grazioli et al. (2015).

The fifth parameter – a liquid/melting/ice indicator – was
generated using the following trapezoidal function:

f (v)=



0, if v < v1,
v− v1

v2− v1
, if v1 < v ≤ v2,

1, if v2 < v ≤ v3,
v4− v

v4− v3
, if v3 < v ≤ v4,

0, if v > v4,

(A6)

where the parameters v1,v2,v3 and v4 are provided in Ta-
ble A3. An important remark would be that in the implemen-
tation of a fuzzy-logic approach, for the purpose of a coher-
ent comparison, instead of the original temperature member-
ship functions, we employed the relative altitude as provided
by Grazioli et al. (2015).

Table A3. Trapezoid membership function parameterisation for
both C and X bands.

HT
1H(m)

v1 v2 v3 v4

CR 0 1000 2200 2500
AG 0 500 2000 2500
LR −2500 −2200 −300 0
RN −2500 −2200 −300 0
RP 0 500 2000 2200
VI 0 1000 2200 2500
WS −500 −300 300 500
MH −2500 −2200 −300 0
IH 0 500 2000 2500

The employed inference is

µi =
wZDR,iβZDR,i +wKdp,iβKdp,i +wρhv,iβρhv,i

wZDR,i +wKdp,i +wρhv,i

βZH ,iT1H,i, (A7)

where three weighting coefficients have the values wZDR,i =

wKdp,i = 1 and wρhv,i = 0.75. This does not correspond to
the weighting coefficients found in the original publications
and was chosen for the purpose of the coherent comparison
with the presented method. Namely, these are the weights
used in the semi-supervised approach, except for the non-
radar (fifth) parameter, whose influence is not minimised in
the fuzzy-logic approach.
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Appendix B: Data processing

Table B1. Standard deviation of the error, with the Sun radiation as
a reference, without noise subtraction.

Radar H/V (dB) H/Sun (dB) V/Sun (dB)

Albis ±0.04 ±0.12 ±0.10
Monte Lema ±0.07 ±0.12 ±0.13
Plaine Morte ±0.21 ±0.18 ±0.07

Attenuation and differential attenuation for all datasets
were corrected in the entire volume using ZPHI method from
Testud et al. (2000), while noise in correlation was corrected
according to the standard operational procedure:

ρcorr
hv = ρhv

√√√√(1+
1

S/N lin

)(
1+

Zlin
DR

αS/N lin

)
, (B1)

with α being the noise ratio between two channels.
At C band, instead of using the specific differential phase

shift derived as a product of operational Rad4Alp radar net-
work, this parameter was estimated in the presented study by
rigorously employing a multi-step approach (Vulpiani et al.,
2012) in order to minimise the number of outliers, reinforced
by median filtering. In case of the MXPol radar, the method
proposed in Schneebeli et al. (2014) is employed, while the
specific differential phase for the DX50 radar has been de-
rived using a routine provided by the manufacturer, based on
the FIR filtering of differential propagation phase (Hubbert
and Bringi, 1995) and a linear regression in deriving Kdp.

Concerning the C-band data, due to the tremendous efforts
invested in automatic calibration and monitoring of the net-
work, we are confident that the probability of radar errors is
significantly reduced (Germann et al., 2015). This is demon-
strated in the analysis of H/V , H/Sun and V/Sun errors
elaborated in Gabella et al. (2016) and briefly summarised in
Table B1.

The same applies to the X-band radars, where careful cal-
ibration and monitoring are very important due to their very
specific research and operational tasks.
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