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Abstract. This paper describes a numerical experiment to
test the ability of the proposed geoCARB satellite to esti-
mate emissions of trace gases (CO2, CH4 and CO) in the
polluted urban environment of Shanghai. The meteorology
over Shanghai is simulated with the Weather Research and
Forecasting (WRF) model for a 9-day period in August 2010.
The meteorology includes water and ice clouds. The chem-
istry version of WRF (WRF-Chem V3.6.1) is used to predict
the chemical composition, mass density and number density
of aerosol species. Spectra in the bands measured by geo-
CARB are calculated, including the effects of polarisation
and multiple scattering of radiation by clouds, aerosols and
molecules. Instrument noise is added, and column-averaged
trace-gas mole fractions are estimated from the noisy spec-
tra using an algorithm based on that for the Greenhouse
Gases Observing Satellite (GOSAT) and the Orbiting Car-
bon Observatory-2 (OCO-2) but adapted to geoCARB. As
expected, the high aerosol loadings are challenging. How-
ever, when the retrieval algorithm is provided with regionally
adjusted aerosol optical properties, as might be determined
from observations of dark targets within the field of regard,
the accuracies of retrieved concentrations are comparable to
those reported earlier for geoCARB. Statistics of the errors
in the retrieved column-averaged concentrations are used to
predict the reduction in uncertainty of surface emissions pos-
sible with remotely sensed data.

1 Introduction

Emissions of CO2, CH4 and CO from cities and power plants
potentially may be monitored from space, using column-
averaged concentrations of the gases inferred from high-
resolution spectra of reflected sunlight in absorption bands of
CO2, CH4, CO and O2. Bovensmann et al. (2010b) examined
CarbonSat (Bovensmann et al., 2010a), an instrument pro-
posed to the European Space Agency, that would make spa-
tially dense observations over power plants and cities from
sun-synchronous orbit, and they found that the observations
could provide valuable emission estimates, especially under
conditions of low wind speed. Polonsky et al. (2014) exam-
ined geoCARB (Sawyer et al., 2013; Mobilia et al., 2013;
Kumer et al., 2013b; Rayner et al., 2014), which would pro-
vide wall-to-wall coverage of continents with high spatial
and temporal resolution, again with encouraging results. Ger-
ilowski et al. (2011) flew an airborne CH4 and CO2 map-
per over a German power plant and successfully estimated
emissions from the plant. Kort et al. (2012) estimated emis-
sions from megacities using data from Japan’s Greenhouse
Gases Observing Satellite (GOSAT), even though GOSAT
only provides sparse spatial and temporal coverage.

The ability to measure emissions relies on many factors:

1. the concentration measurements must be precise be-
cause local sources generally will make only small per-
turbations to the column-averaged concentrations;

2. the observations must be spatially dense and highly re-
solved to capture plumes from local sources;
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Figure 1. Target area around Shanghai showing the geoCARB footprints (skewed grid) and the centres of the Weather Research and
Forecasting model cells (small red dots). The large red dots indicate power plants as listed by CARMA (Carbon Monitoring for Action,
http://carma.org), with the sizes of the dots proportional to the annual CO2 emissions from the plants. The distance from the south-western
to the south-eastern corner of the geoCARB grid is approximately 158 km, while from the south-eastern to the north-eastern corner it is
approximately 176 km.

3. the measurements must be frequent in order to track
varying winds;

4. the wind fields must be known well if plumes are to
be traced reliably back to spatially diverse sources, al-
though this requirement might be weakened if only the
integrated emissions from cities are required;

5. the fluxes of trace gases across the boundary of the city
must be known, because the boundary fluxes control the
background level upon which the contributions from lo-
cal sources are imposed.

The principal impediment to accurate concentration mea-
surements using reflected sunlight comes from scattering of
photons by aerosols and clouds, because scattered photons
travel different paths through the atmosphere and therefore
suffer varying degrees of absorption. Thus, urban complexes,
where emissions are large and observations would be most
valuable, are locations where measurements are especially
difficult because city atmospheres are polluted. This point
was recognised clearly by Bovensmann et al. (2010b) and

Polonsky et al. (2014), and they attempted to incorporate par-
ticulate emissions in their studies.

To some extent, obscuration by clouds and degraded accu-
racy caused by aerosols can be overcome if observations are
spatially dense and frequent, as is possible with an instrument
such as geoCARB observing from geostationary orbit. The
spatial density allows the instrument to peek through gaps
in clouds, while periods with cleaner air are captured by the
frequent measurements. However, quantifying the extent is a
complex task that must address all the issues listed above.

This paper is a first step, using the city of Shanghai as an
example (Fig. 1). First the urban environment and the con-
centration measurements possible with geoCARB are simu-
lated. Next the impact of those measurements is investigated
in the context of perfect meteorology using the methods de-
veloped by Rayner et al. (2014). As a measure of impact, we
use the reduction of the prior uncertainty of the surface emis-
sion fluxes gained from the (pseudo) satellite observations.
In a later paper the errors caused by imperfect knowledge of
the meteorology will be examined.
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At the outset we emphasise that the forward models used
on one hand to simulate polarised spectra at the top of the at-
mosphere and on the other hand to retrieve trace-gas concen-
trations have major differences, the chief of which are listed
below.

1. In the simulation, the distributions of aerosol mass in
space and time are derived from Weather Research and
Forecasting model (WRF-Chem), as are the particle size
distributions. The aerosol particles are assumed to be
spherical, and their optical properties are calculated us-
ing Mie’s theory. For the retrieval algorithm, the optical
properties of aerosols are both prescribed and fixed and
almost never coincide with the “truth”. It is well known
that scattering by aerosols is the most serious source of
error for OCO-like instruments.

2. Similarly, in the simulations the mass distributions of
cloud water and cloud ice and the corresponding particle
size distributions were derived from WRF-Chem. The
optical properties of water clouds were based on Mie
calculations, while those for ice clouds accounted for
nonspherical particles. In the retrieval algorithm, water
and ice clouds were assumed to consist of particles with
preassigned effective radii. Again, the assigned values
almost never coincide with the “truth” in the simula-
tions.

3. The vertical distributions of CO2, CH4 and CO in
the simulations are those predicted by WRF-Chem.
Whereas a vertical profile of CO2 is retrieved, only scal-
ing factors are retrieved for CH4 and CO. The shapes of
the profiles of CH4 and CO are preassigned and fixed in
the retrievals.

4. The surface in the simulations is represented by a po-
larised bidirectional reflectance distribution. In the re-
trievals, it is assumed to be non-polarising and Lamber-
tian.

Thus, the simulations exploit the “true” information provided
by WRF-Chem, while the retrievals, limited in the variables
that can be estimated reliably from the data, must rely on
prior guesses for the remainder, as is currently the practice
with Orbiting Carbon Observatory-2 (OCO-2) and GOSAT.

The structure of the paper is as follows. Section 2 describes
the simulation of the atmosphere over Shanghai, including
carbon fluxes, clouds and aerosols, for a 9-day period in Au-
gust 2010. Section 3 outlines the optical properties of clouds,
aerosols and the surface assumed in generating geoCARB
spectra, while Sect. 4 discusses the noise model for geo-
CARB. Section 5 describes the inversion procedure by which
column-averaged concentrations are derived from the noisy
spectra. Section 6 estimates the reduction of uncertainty in
surface fluxes gained from the relatively sparse set of obser-
vations that survive after rigorous screening for cloud and

aerosol, and the implications are discussed. Finally, Sect. 7
presents the results.

2 Simulation of the atmosphere over Shanghai

2.1 Time window

Observations of cloud and aerosol optical depth (AOD) from
MODIS were used to select a suitable period for the study
in the northern hemispheric summer of 2010, that year be-
ing chosen because greenhouse gas emissions at high spatial
resolution were readily available. This preliminary step sim-
ply ensured that Shanghai was not obscured by cloud for the
selected period. The period selected was from 1 through 9
August 2010.

2.2 Meteorology

The chemistry version of the WRF-Chem was run for a to-
tal of 10 days, allowing the extra day at the start for model
spin-up, to simulate the winds and trace-gas concentrations
over the target. The initial spin-up period allows time for
transients caused by inconsistencies between the initial and
boundary conditions to decay. A three-nested domain (18, 6
and 2 km resolution) was used with the innermost domain
covering an area 200× 200 km2 centred close to Changzhou
on the west of Shanghai. The innermost domain is entirely
over land, apart from the Yangtze River, Lake Taihu in the
south and numerous small lakes. Output files were written at
30 min intervals. The number of vertical layers was limited
to 29 to reduce the numerical cost of the simulations.

The radiative transfer requires temperature and gas profiles
to the top of the atmosphere, whereas the top of the grid used
by WRF-Chem was located at pt = 50 hPa. Therefore, one
more layer, extending from 50 hPa to the top of the atmo-
sphere, was added to the output generated by WRF-Chem.
The temperature and trace-gas concentrations for this extra
layer were set to those for the top WRF-Chem layer. The ex-
tra layer was assumed to be free of cloud and aerosol.

2.3 Surface and boundary carbon fluxes

Surface fluxes of CO2 and CO were derived from the Fossil
Fuel Data Assimilation System (FFDAS) (Asefi-Najafabady
et al., 2014), but the temporal structure was not modelled.
Surface fluxes for CH4 came from the Emission Database
for Global Atmospheric Research (EDGAR; Olivier et al.,
2005). Boundary fluxes of CO2 were derived from the
ECMWF Monitoring Atmospheric Composition and Climate
(MACC) program (Panareda et al., 2014), while the global
Model for OZone And Related chemical Tracers (MOZART-
4; Emmons et al., 2010) provided fluxes for the other trace
gases.

Because FFDAS uses night lights to help distribute re-
gional CO2 fluxes at finer spatial resolution, it can shift emis-
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Figure 2. The red dots show the locations of power plants as listed by CARMA (Carbon Monitoring for Action, http://carma.org). The
sizes of the dots are proportional to the annual CO2 emissions of the plants. The green dots are the emissions used in the WRF simulations,
redistributed using FFDAS.

sions from point sources like power plants to users who con-
sume the electrical power. For example, the large power plant
(red dot) on the Yangtze River near the centre of Fig. 2 does
not coincide with the peaks in the surface fluxes from FFDAS
(green dots). For the purpose of the numerical experiment de-
scribed in this paper, the mislocation of the emissions is not
important, but for an analysis of real geoCARB data the lo-
cations of power plants would have to be specified correctly.

2.4 Aerosol

Primary aerosol emissions over Shanghai were derived from
EDGAR (Olivier et al., 2005), which provides fluxes of or-
ganic carbon (OC), black carbon (BC), particulates less than
2.5 µm in diameter (PM2.5) and particulates less than 10 µm
in diameter (PM10). No other primary emissions of par-
ticulates were included. In particular, sulfate and biomass-
burning aerosols were advected from the boundary and were
not generated locally. This restriction will be removed in later
work.

Because the spatial resolution of EDGAR (0.1◦× 0.1◦) is
roughly 5 times coarser than the spatial resolution of the in-
ner domain of the WRF-Chem simulations, a method to dis-
tribute the EDGAR particulate fluxes over the finer WRF-
Chem grid was required. Following Asefi-Najafabady et al.
(2014), the downscaling of particulate fluxes was based on
the Defense Meteorology Satellite Program (DMSP) night-
light product, whose native resolution is 30 arcsec. For each
emitted species the high-resolution (30 arcsec) flux Fhigh was
assumed to be

Fhigh = FlowL/L, (1)

where Flow is the low-resolution (0.1◦) flux, L the 30 arcsec
DMSP night-light field and L the same field averaged over
the 0.1◦ grid cell of the low-resolution flux. This approach
was applied to all fluxes except CO2 emissions themselves.
The low-resolution flux Flow was taken from the EDGAR
V4.2 emissions (Olivier et al., 2005). For CO2 emissions,
the high-resolution version of the fossil-fuel data assimila-
tion (FFDAS) data set was used (Asefi-Najafabady et al.,
2014). The “other” sector of Asefi-Najafabady et al. (2014)
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Table 1. Fractional assignment of EDGAR particulates to Aitken,
accumulation and coarse modes.

EDGAR flux Aitken Accumulation Coarse

Black carbon (BC) 0.25 0.75 0.0
Organic carbon (OC) 0.20 0.80 0.0
PM2.5 0.20 0.80 0.0
PM10 0.00 0.00 1.0

was downscaled according to Eq. (1), while the power plants
were located in the appropriate 30 arcsec cell. Power-plant
locations were taken from the CARMA data set, as updated
by Asefi-Najafabady et al. (2014, Supporting information),
who noted that many locations of power plants in the under-
lying data set are approximate.

EDGAR does not provide size-resolved particulate fluxes
(apart from the broad PM2.5 and PM10 categories), whereas
the MOdel for Simulating Aerosol Interactions and Chem-
istry (MOSAIC) embedded in WRF-Chem uses eight size
bins:

r0 < r1 < .. . < ri < .. .rs with

ri = 2i−s rs and s = 8.

In practice the maximum bin limit is rs = 5 µm, leading to
r0 ≈ 19 nm. 1 The ith bin represents the combined mass of
particulates with radii in the range [ri−1, ri]. Because r0, the
lower limit of the smallest bin, exceeds the upper limit for
Aitken particles (5 nm), MOSAIC accounts only for accu-
mulation and coarse mode particulates.

Particulate fluxes from EDGAR were partitioned between
Aitken, accumulation and coarse modes using the ad hoc fac-
tors listed in Table 1; real data would assist if they were avail-
able. The fraction of the EDGAR flux assigned to the Aitken
mode is lost from the subsequent calculations because Aitken
particles are smaller than the smallest MOSAIC bin. Next the
accumulation and coarse modes were partitioned between the
MOSAIC size bins with a fixed assignment for each mode,
as specified in Table 2.

Lateral boundary conditions for aerosol species were ob-
tained from MOZART-4 (Emmons et al., 2010). Boundary
values and fluxes for sea salt and dust were carried in sec-
tional size bins, while those for organic carbon, black carbon,
sulfate and ammonium nitrate were not size-resolved.

2.5 Cloud

WRF-Chem generated three-dimensional cloud fields. In
each cell of the model domain, the number density and mass
density were predicted for each cloud type (water or ice). The
effective radius was derived using conservative models for

1Whereas this paper consistently uses radius, MOSAIC mostly
uses diameter to characterise particles.

 0

10

20

30

40

50

 0 10 20 30 40 50

y
 p

ix
e
l

x pixel

AOD, O2 A-band

0.0

0.1

0.2

0.3

0.4

0.5

 0

10

20

30

40

50

 0 10 20 30 40 50

y
 p

ix
e
l

x pixel

AOD, CO2 weak band

0.0

0.1

0.2

0.3

0.4

0.5

 0

10

20

30

40

50

 0 10 20 30 40 50

y
 p

ix
e
l

x pixel

AOD, CO2 strong band

0.0

0.1

0.2

0.3

0.4

0.5

 0

10

20

30

40

50

 0 10 20 30 40 50

y
 p

ix
e
l

x pixel

AOD, CO band

0.0

0.1

0.2

0.3

0.4

0.5

Figure 3. Aerosol optical depth over Shanghai on 8 September 2010
at 08:15 UTC in the geoCARB spectral bands. The horizontal and
vertical axes are labelled by geoCARB frames and pixels.

the size distributions for water and ice clouds, as described
in Appendix C.

3 Simulation of geoCARB spectra

3.1 Scan box and sample times

GeoCARB is assumed to be in geostationary orbit at longi-
tude 110◦ E. When viewing to nadir, the east–west scan step
is 3.0 km, and the north–south spacing of pixels is 2.7 km.
These spacings increase when viewing away from nadir. For
the Shanghai simulations, the optic axis, after reflection in
the east–west and north–south scan mirrors, hits the geoid
at 31.8◦ N latitude and 120.0◦ E longitude, just to the west
of Shanghai and close to the city of Changzhou. The simu-
lated data consist of 51 frames, each with 51 pixels, covering
the scan box shown in Fig. 1. The time between frames was
taken to be 4.625 s. 2

GeoCARB observations of Shanghai were simulated three
times per day at 00:15, 04:15 and 08:15 UTC, corresponding
to 08:15, 12:15 and 16:15 local time (LT) in Shanghai.

3.2 Optical properties of aerosol and cloud

Size-resolved mass mixing ratios of nine aerosol species
were predicted by MOSAIC during the simulations. The
species and the procedures by which the optical properties of
the aerosol mixtures were computed in the geoCARB spec-
tral bands are detailed in Appendix A.

Figure 3 illustrates the AOD computed for the target re-
gion in the geoCARB spectral bands. The simulation is for

2The latest instrument model for geoCARB has 4.4625 s be-
tween frames.
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Table 2. Assignment of EDGAR particulate fluxes to MOSAIC bins.
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Table 3. Assignment of EDGAR particulate fluxes to MOSAIC bins.

EDGAR mode Accumulation Coarse

MOSAIC bin 0 1 2 3 4 5 6 7

Fraction fj 0.060 0.045 0.245 0.400 0.100 0.150 0.300 0.700︸ ︷︷ ︸∑
fj =1

︸ ︷︷ ︸∑
fj =1
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Figure 4. Histograms of aerosol optical depth over Shanghai from
the WRF-Chem simulations (grey) and from MODIS (red). The
wavelength is 770 nm.

GeoCARB observations of Shanghai were simulated three
times per day at 00:15, 04:15 and 08:15 UTC, corresponding
to 08:15, 12:15 and 16:15 local time (LT) in Shanghai.

3.2 Optical properties of aerosol and cloud

Size-resolved mass mixing ratios of nine aerosol species5

were predicted by MOSAIC during the simulations. The
species and the procedures by which the optical properties of
the aerosol mixtures were computed in the geoCARB spec-
tral bands are detailed in Appendix A.

Figure 3 illustrates the aerosol optical depth (AOD) com-10

puted for the target region in the geoCARB spectral bands.
The simulation is for 9 August 2010 at 08:15 UTC, corre-
sponding to 16:15 LT in Shanghai. All four panels use the
same dynamic range, which makes the differences between
bands easier to see. There is a steady decrease in optical15

depth with wavelength, indicating small aerosol particles.
Histograms of AOD in the O2 A-band predicted by WRF-

Chem and observed by MODIS are compared in Fig. 4. The
MODIS data were adjusted from the measured optical thick-
ness at 550 to 770 nm using MODIS Ångström coefficients.20

The histograms present the probabilty of each optical thick-
ness bin without regard for the spatial distributions. Only
the near-noon WRF-Chem simulations are included, because
these provide an approximation to the MODIS Terra obser-

vations at 10:30 and Aqua at 13:30 LT. The peaks of the two 25

histograms coincide at approximately 0.3, but the MODIS
observations contain a longer tail extending to 1.0, whereas
the WRF-Chem tail extends only to 0.8. Generally the corre-
spondence is good, so the scenarios encountered in the sim-
ulated geoCARB are not unrealistic. 30

Three-dimensional distributions of the mass and number
of cloud liquid water and ice particles, all per unit mass of
moist air, were predicted by WRF-Chem. In order to esti-
mate the corresponding effective radii, needed to compute
the optical properties of the clouds, the particle sizes were 35

assumed to follow modified gamma distributions (Deirmend-
jian, 1969). Optical properties in the geoCARB bands were
calculated using Mie theory for spherical water drops, while
for ice cloud the extinction coefficient and phase matrix were
interpolated from data published by Baum (2007) and Baum 40

et al. (2005a, b).

3.3 Surface properties

Surface properties, such as polarized bidirectional re-
flectance distribution function (BRDF, derived from MODIS
and POLDER), were interpolated to the wavelengths of the 45

geoCARB spectral bands. The method was similar to that de-
scribed by O’Brien et al. (2009) and Polonsky et al. (2014).
In the geoCARB spectral bands at 765, 1606 and 2065 nm,
the surface BRDF was interpolated linearly from the MODIS
BRDF at 645, 859, 1240, 1640 and 2130 nm. The BRDF 50

in the geoCARB band at 2323 nm was assumed to be the
same as the MODIS BRDF at 2130 nm, because MODIS
BRDF is not available at longer wavelengths. The polarised
component of the BRDF was assumed to be independent of
wavelength. Surface heights from the WRF-Chem topogra- 55

phy were interpolated to the centres of the geoCARB pixels.

3.4 Radiative transfer calculations

Using the three-dimensional fields of CO2, CH4, CO, clouds,
aerosols and meteorology, spectra in the geoCARB bands
were simulated for all geoCARB pixels within the target area 60

for early morning, noon and late afternoon observations on
each of the non-spin-up days selected for the study. These
simulations used the correct observation geometry. However,
neither variations of trace gas concentrations nor variations
of surface properties were modelled within the geoCARB 65
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Figure 4. Histograms of aerosol optical depth over Shanghai from
the WRF-Chem simulations (grey) and from MODIS (red). The
wavelength is 770 nm.

9 August 2010 at 08:15 UTC, corresponding to 16:15 LT in
Shanghai. All four panels use the same dynamic range, which
makes the differences between bands easier to see. There is a
steady decrease in optical depth with wavelength, indicating
small aerosol particles.

Histograms of AOD in the O2 A-band predicted by WRF-
Chem and observed by MODIS are compared in Fig. 4. The
MODIS data were adjusted from the measured optical thick-
ness at 550 to 770 nm using MODIS Ångström coefficients.
The histograms present the probability of each optical thick-
ness bin without regard for the spatial distributions. Only
the near-noon WRF-Chem simulations are included, because
these provide an approximation to the MODIS Terra obser-
vations at 10:30 and Aqua at 13:30 LT. The peaks of the two
histograms coincide at approximately 0.3, but the MODIS
observations contain a longer tail extending to 1.0, whereas
the WRF-Chem tail extends only to 0.8. Generally the corre-
spondence is good, so the scenarios encountered in the sim-
ulated geoCARB are not unrealistic.

Three-dimensional distributions of the mass and number
of cloud liquid water and ice particles, all per unit mass of
moist air, were predicted by WRF-Chem. In order to esti-
mate the corresponding effective radii, needed to compute
the optical properties of the clouds, the particle sizes were
assumed to follow modified gamma distributions (Deirmend-

jian, 1969). Optical properties in the geoCARB bands were
calculated using Mie theory for spherical water drops, while
for ice cloud the extinction coefficient and phase matrix were
interpolated from data published by Baum (2007) and Baum
et al. (2005a, b).

3.3 Surface properties

Surface properties, such as polarised bidirectional reflectance
distribution function (BRDF, derived from MODIS and
POLDER), were interpolated to the wavelengths of the geo-
CARB spectral bands. The method was similar to that de-
scribed by O’Brien et al. (2009) and Polonsky et al. (2014).
In the geoCARB spectral bands at 765, 1606 and 2065 nm,
the surface BRDF was interpolated linearly from the MODIS
BRDF at 645, 859, 1240, 1640 and 2130 nm. The BRDF
in the geoCARB band at 2323 nm was assumed to be the
same as the MODIS BRDF at 2130 nm, because MODIS
BRDF is not available at longer wavelengths. The polarised
component of the BRDF was assumed to be independent of
wavelength. Surface heights from the WRF-Chem topogra-
phy were interpolated to the centres of the geoCARB pixels.

3.4 Radiative transfer calculations

Using the three-dimensional fields of CO2, CH4, CO, clouds,
aerosols and meteorology, spectra in the geoCARB bands
were simulated for all geoCARB pixels within the target area
for early morning, noon and late afternoon observations on
each of the non-spin-up days selected for the study. These
simulations used the correct observation geometry. However,
neither variations of trace-gas concentrations nor variations
of surface properties were modelled within the geoCARB
pixels. Instead, the atmosphere above each pixel was as-
sumed to consist of plane parallel layers, each uniform hor-
izontally. Thus, the concentrations and optical properties of
the atmosphere at any point along the line of sight from the
centre of a pixel to the satellite were assumed to be the same
as those at the same height vertically above the centre of the
pixel. Similarly, the surface properties were assumed to be
horizontally uniform with values set at the centre of the pixel.
These approximations are expedient, because they permit the
use of plane-parallel radiation codes, but their justification
is questionable for sensors (like geoCARB) with moderate
spatial resolution, comparable to that of WRF-Chem. Fortu-

Atmos. Meas. Tech., 9, 4633–4654, 2016 www.atmos-meas-tech.net/9/4633/2016/



D. M. O’Brien et al.: Remote sensing CO2, CH4 and CO emissions in a polluted urban environment 4639

Table 3. Noise parameters for the geoCARB bands. The units ofN0
and N1 are nW (cm2 sr cm−1)−1.

Band N0 N1
(µm)

0.765 0.1819 0.003295
1.606 0.1172 0.002107
2.065 0.0814 0.001452
2.323 0.0811 0.001303

nately, the approximation is immaterial for the numerical ex-
periments over Shanghai, because the same approximation is
employed in the forward simulation and the inverse retrieval,
but for geoCARB in flight this issue should be addressed.

An outline of the radiative transfer calculations is provided
by O’Brien et al. (2015). Polarisation by the surface and by
scattering within the atmosphere is included, but the polari-
sation effects of geoCARB’s gratings are bypassed, because
they may be corrected during analysis of the spectra using
radiometric and polarimetric calibration data acquired be-
fore launch (O’Brien et al., 2015). Thus, the Stokes vector
(I,Q,U,V ) was computed at the top of the atmosphere, and
the intensity I was assumed to be the measured signal.

4 Simulation of instrument noise

The noise model for geoCARB is based on both laboratory
characterisation and airborne trials with the Tropospheric
Mapping Imaging Spectrometer (TIMS) developed by Lock-
heed Martin (Kumer et al., 2009, 2011). TIMS was used to
demonstrate the feasibility of measuring CH4 and CO in the
2.323 µm band. Details of the noise model and further infor-
mation on the detector performance are provided by Kumer
et al. (2013a).

The noise equivalent spectral radiance N (in units
nW (cm2 sr cm−1)−1) for a representative spectral sample
consists of shot noise due to the observed signal radiance I
and a signal-independent noise floor radiance N0. It is given
by

N =
√
N2

0 +N1I , (2)

whereN0 andN1 are constants for each band.3 Their numeric
values, listed in Table 3, were derived from geoCARB instru-
mental and operational parameters by Kumer et al. (2013a).
4

3In practice N0 and N1 will vary from pixel to pixel, and their
values will be determined by pre-flight calibration. However, in this
paper average values were used for each band.

4The parameters in Table 3 differ slightly from those given by
Kumer et al. (2013a). However, the differences are small, and they
have negligible impact on the results.

For each spectrum, the root-mean-square noise was com-
puted using Eq. (2) and was provided to the inversion al-
gorithm. In addition, for each spectrum a random sample
of noise was drawn from a Gaussian distribution with zero
mean and the appropriate standard deviation at each fre-
quency within each band. The noise sample was added to
the spectrum prior to inversion.

5 Inversion of noisy spectra

The basic inversion algorithm developed by the Jet Propul-
sion Laboratory and Colorado State University for OCO,
GOSAT and OCO-2, as described by O’Dell et al. (2012),
was adapted to the spectral bands of geoCARB and applied
to the simulated spectra. The results reported in Sect. 7 were
obtained by fitting the intensity component of the Stokes vec-
tor rather than the signal that includes the polarising effects
of the gratings.

5.1 Instrument

The instrument line shape (ILS) function in each band was
assumed to be Gaussian in wavelength (and therefore slightly
non-Gaussian in frequency). The band limits (λ− and λ+),
dispersion per pixel (δ) and resolution are listed in Table 4.

The number n of pixels in each band was defined to be

n= [(λ+− λ−)/δ] + 1,

where [x] denotes the integer part of x. The spectral sample
points were

λp = λ−+ (p− 1)δ, p = 1,2, . . .,n,

with corresponding frequencies

νp = 107/λp,

where λp is expressed in nanometres and νp in cm−1. Lastly,
νp was represented as a cubic dispersion polynomial:

νp =
3∑
k=0

ak(p− 1)k.

The dispersion coefficients are listed in Table 5. With these
definitions, the inversion code works entirely in frequency,
rather than wavelength.

“Observed” and calculated spectra were compared in the
reference frame of geoCARB, after allowing for the Doppler
shifts arising from the motion of the target relative to the sun.

5.2 Priors

5.2.1 Prior gas profiles

The prior gas vertical profiles were based on the simulated
profiles for the morning of the first day. Once computed, the
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Table 4. Spectral ranges and resolutions of the geoCARB bands for the baseline configuration. The bands at 1.606 and 2.065 µm are referred
to in the text as the “weak” and “strong” CO2 bands.

Band Gases Wavelength Band Band Dispersion Resolution Resolving Pixels
range centre width per pixel power per band

(µm) (nm) (nm) (nm) (nm) (nm)

λ− λ+ λc δ 1λ λc/1λ n

0.765 O2 757.9 772.0 764.95 14.1 0.0149 0.0475 16 104 947
1.606 CO2, H2O 1591.6 1621.2 1606.4 29.6 0.0314 0.1018 15 780 943
2.065 CO2, H2O 2045.0 2085.0 2065.0 40.0 0.0424 0.1361 15 173 944
2.323 CH4, H2O, CO 2300.6 2345.6 2323.1 45.0 0.0476 0.1531 15 174 946

Table 5. Dispersion coefficients ak for the geoCARB bands.

Band a0 a1 a2 a3

0.765 0.12953445× 105 0.25001014× 10+0 0.48237819× 10−5 0.95913210× 10−10

1.606 0.61683511× 104 0.11947268× 10+0 0.23132703× 10−5 0.46159484× 10−10

2.065 0.47962017× 104 0.97535260× 10−1 0.19827083× 10−5 0.41662801× 10−10

2.323 0.42633342× 104 0.86518030× 10−1 0.17550788× 10−5 0.36796186× 10−10

same prior profiles were used for all subsequent times and
days. The prior profiles are shown in Fig. 5.

The prior for the CO2 field was taken to be the average of
the background CO2 field across the target region. In calcu-
lating the average, the background values from WRF-Chem
on 29 layers firstly were interpolated to the 20 levels of the
retrieval algorithm. The background represents the CO2 ad-
vected into the domain but does not include the contributions
from local sources and sinks. To the extent that the broad
scale features of the global CO2 field can be predicted reli-
ably by transport models, this is a reasonable prior for CO2.

The prior for CO was averaged similarly over the Shang-
hai domain. However, the logic was convoluted because the
background field for CO initially was not available in the
WRF-Chem output. Instead the “true” CO field was taken to
be the field generated with the FFDAS emission sources but
evolved with chemistry disabled, while the prior was gen-
erated with FFDAS emissions and active chemistry. Thus,
the prior and the truth had the same emission sources and
differed only in the chemistry. However, it emerged that the
prior profile of CO determined at the first observation time
on the first day was on average 40 % higher than the profiles
on other days.

For CH4 the background field was not available initially,
so the average of the true CH4 field over the domain was used
for the prior.

For H2O, CH4 and CO, the retrieval algorithm optimised
scalar multiples of the prior profiles, while for CO2 a full
vertical profile was retrieved. The prior uncertainties for the
scaling factors are shown in Table 6. The uncertainties for
the scaling factors for H2O and CH4 are very large, imposing
almost no restraint. The uncertainty for CO is much tighter,
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Figure 5. Prior vertical profiles for volume mixing ratios of CO2,
CH4 and CO.

probably unrealistically so, but it was necessary because with
larger uncertainties the retrieval algorithm frequently failed
to converge. This issue is discussed later.

5.2.2 Prior meteorology

Previous studies (O’Dell et al., 2012; Polonsky et al., 2014)
suggest that the accuracy of the meteorology prior does not
have a large impact upon the retrieved trace-gas concentra-
tions. Therefore, in this preliminary study, the prior for the
meteorology was taken to be the truth, apart from the mi-
nor errors introduced by interpolating from the 29 layers of
WRF-Chem to the 20 levels of the retrieval algorithm. The
prior uncertainty assumed for surface pressure was 4 hPa, a
relatively large value, so the prior has only a secondary effect
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Table 6. Prior uncertainties σ (standard deviations) for the scaling
factors applied to the prior profiles for H2O, CH4 and CO.

Gas σ

H2O
√

0.25= 0.5
CH4

√
0.1= 0.3162

CO
√

0.001= 0.03162

upon the retrieval. Similarly, the uncertainty assumed for the
temperature offset was large (5 K).

5.2.3 Prior aerosol

The algorithm to retrieve concentration profiles is based
on that used for GOSAT and OCO-2. It assumes four par-
ticulate types, water drops with effective radius 8 µm, ice
crystals with effective radius 70 µm and two aerosol types,
Kahn 2b and Kahn 3b, as described by Kahn et al. (2001).
For each particulate, the extinction coefficient, single scatter-
ing albedo and phase matrix were precalculated and provided
to the retrieval algorithm. The underlying assumption is that
a mixture of the two aerosol types can represent the optical
properties of real aerosol with sufficient accuracy. However,
in practice this assumption frequently fails; the mixture can-
not reproduce the optical properties, the retrieval algorithm
fails to converge or produces estimates seriously in error, and
the fits to the spectra (measured by the reduced χ2) are poor.
The obvious remedy is to use more appropriate aerosol mod-
els.

Although aerosol loadings can be highly variable in space
and time, in the absence of other data it is common to assume
that the aerosol type is the same over a limited region. Of the
extinction coefficient, single scattering albedo and phase ma-
trix, the most important to capture reliably for the retrieval
algorithm is the wavelength dependence of the extinction
coefficient. Therefore, after retrieving column-averaged gas
concentrations from the simulated spectra with the standard
algorithm, the retrievals were repeated with the wavelength
dependence of the aerosol extinction coefficients adjusted to
represent the regional aerosols more accurately. The adjust-
ment was performed for each scene using the minimum and
maximum of the simulated AOD over the whole scene.

1. The minimum and maximum AOD over the scene, de-
noted τmin(λ) and τmax(λ), were computed for the geo-
CARB bands.

2. The extinction coefficient, single scattering albedo and
phase matrix of Kahn type 3b aerosol were replaced by
those for type 2b.

3. For Kahn aerosol type 2b, the extinction coefficient
γ (λ) was replaced by

γ ′(λ)= γ (λ0)τmax(λ)/τmax(λ0), (3)

where λ0 denotes the wavelength at the blue end of the
O2 A-band.

4. For Kahn aerosol type 3b (initially equal to type 2b),
γ (λ) was replaced by

γ ′(λ)= γ (λ0)τmin(λ)/τmin(λ0). (4)

Neither the single scattering albedo nor the phase matrix was
changed for two reasons. Firstly, in practice it is unlikely that
information to guide such changes would be available. Sec-
ondly, the adjustment to the extinction coefficient ensures
that aerosol contributions to the radiance are correctly pro-
portioned across the geoCARB bands.

As justification for this replacement, other sensors (or per-
haps geoCARB itself) are likely to provide independent in-
formation on aerosols. Furthermore, when there is a dark
target in the region, such as Lake Taihu near Shanghai, ro-
bust measurements of aerosol properties are possible, be-
cause photons scattered by aerosols over the dark target are
not masked by photons reflected from the surface.

Thus, two options were considered, the first with standard
aerosol and the second with regionally adjusted aerosol. In
addition, the threshold for retrieved aerosol optical thickness
in the post-processing filter (PPF) was increased from 0.1
to 0.15 for the experiment with regionally adjusted aerosol.
Details of the PPF are provided by Polonsky et al. (2014).

6 Estimation of surface fluxes

To test the capacity of the retrieved concentrations to con-
strain surface fluxes we extended the work of Rayner et al.
(2014). That paper calculated the reduction in uncertainty
for fluxes in an idealised urban box with a single isolated
power plant. Here we replaced the idealised environment
with a realistic representation of the Shanghai–Nanjing re-
gion. The emissions are the same as that used to generate
the atmospheric state used in the trace-gas retrieval calcu-
lations. Six days of observations were considered. The di-
urnal cycle of emissions was assumed to be the same for
each day and was represented in four 6 h blocks. Fluxes
were retrieved at 5× 5 km resolution. Every pixel within the
200×200 km target area was considered as a source, so there
were 4× 40× 40= 6400 unknown flux elements for CO2.
Following Rayner et al. (2014) we also solved for a con-
stant emission factor for CO for each pixel. This approach
is more difficult than the tracer correlations used by Palmer
et al. (2006) since it renders the inversion nonlinear. It better
reflects the source processes that link the two species, and
also allows future use of bottom-up emission factors to pro-
vide more information. For methane we assumed no diurnal
cycle of emissions, yielding 1600 unknown flux components.
For each trace gas we also solved for a constant bias across
the region.
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Figure 6. Histograms of the optical depths of cloud water, cloud ice and aerosol in the O2 A-band for the cloudy simulations over Shanghai.
The histogram of the optical thickness of cloud water extends to 40, but only the range [0,10] is plotted for clarity. The biases (b) and
standard deviations (SD) quoted are for the ensemble of soundings.

If concentrations are linearly related to source fluxes and
Gaussian statistics are assumed, then the posterior flux error
covariance A is

A−1 = B−1+HtR−1H, (5)

where B is the prior flux error covariance, H is the Jacobian
matrix mapping fluxes to observed concentrations, and R is
the error covariance of the observations. This model predicts
the reduction in flux errors brought about by the observa-
tions. In this form it does not address the impact of transport
errors. The percentage uncertainty reduction for component
j of the flux is taken to be

Ej = 100(1−√Ajj/Bjj ), (6)

where Ajj and Bjj are the corresponding diagonal elements
of the posterior and prior flux error covariances respectively.
Following Rayner et al. (2014) we use the simplified trans-
port model SatPlume to calculate H. Justification of the Sat-
Plume Jacobian depends on whether or not it overestimates
the structure of the retrieved field; the more structured the
plumes, the stronger the error reduction because sources are
less smeared together. Rayner et al. (2014) argued that the
statistics of column dilution from SatPlume are plausible.

Apart from H, the other two ingredients for the error re-
duction calculation are B and R. Prior flux uncertainties for
CO2 are set at 25 % of the fluxes themselves. For the calcu-
lation using CO measurements we also require an emission
factor for CO. Its uncertainty is set at 30 % following Rayner

et al. (2014). The posterior errors in XCO2 and XCH4 mea-
surements are taken directly from the L2 retrieval algorithm.
ForXCO the L2 retrieval algorithm underestimates the errors,
as will be discussed later in Fig. 11, so experiments were con-
ducted with values 15, 10 and 2.5 ppb.

7 Results

7.1 Trace-gas concentrations

The optical depths of cloud water, cloud ice and aerosol in
the O2 A-band are plotted in Fig. 6. These histograms in-
clude all samples over Shanghai in the 9-day period of the
simulation. Although the period selected generally had skies
that a casual observer would call clear, relatively few pixels
had optical depths sufficiently low to permit reliable retrieval
of trace gases. Thus, even an instrument like geoCARB with
its high spatial density of samples cannot provide wall-to-
wall coverage of a polluted urban environment, and retrieval
of accurate surface fluxes is challenging.

Three experiments were conducted, as indicated in the first
three columns of Table 7. In experiment 1, the aerosol over
Shanghai was simulated, but the optical thicknesses of wa-
ter and ice clouds were set to 0. The retrieval algorithm used
the ACOS aerosol scheme with water cloud, ice cloud and
two types of aerosol. The retrieval algorithm did not assume
that the atmosphere was cloud free; it retrieved optical thick-
ness profiles of aerosol, cloud water and cloud ice, layer by
layer. Experiment 2 was similar, except that the radiance sim-
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Table 7. Success rates for converged soundings and soundings that passed the PPF.

Experiment Number Fraction

Label Aerosol Cloud Total Converged Passed PPF Converged Passed PPF

1 standard disabled 70 227 55 387 10 995 78.8 % 15.6 %
2 standard enabled 70 227 36 000 666 51.2 % 0.9 %
3 adjusted enabled 70 227 34 664 3107 49.3 % 4.4 %
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Figure 7. Histograms of errors in retrieved surface pressure ps, XCO2 , XCH4 and XCO for experiment 1 with cloud-disabled and standard
aerosol. The PPF has been applied to the coloured histograms, but not to those in light grey. The biases (b) and standard deviations (SD)
quoted are for the histograms after the PPF. Of the total of 55 387 cases that converged, 10 995 passed the PPF (19.9 %).

ulations of the forward model included the contributions of
cloud water and cloud ice. Lastly, the forward simulations
for experiment 3 included both aerosol and cloud, but the re-
trieval algorithm used adjusted optical properties for aerosol
as described under Sect. 5.2.3 above.

Table 7 lists the success rate of the retrieval algorithm,
presenting the fraction of soundings for which the retrieval
algorithm converged and the fraction that passed the PPF.
The total number of soundings is the same for all the experi-
ments (70 227), being the product of the number of days (9),
the number of times per day (3), the number of geoCARB
frames (51) and the number of pixels per frame (51). The
two experiments with cloud enabled had approximately the
same numbers of converged pixels, but experiment 3 with ad-
justed aerosol properties had many more pass the PPF. There
are two reasons. First, the threshold for AOD was increased
in experiment 3 from the default of 0.10 to 0.15. Probably
more important were the superior aerosol optical properties,
which permitted better fits to the spectra.

Histograms of errors in the retrieved surface pressure ps,
XCO2 ,XCH4 andXCO are presented in Fig. 7 for experiment 1
with standard aerosol but without cloud. In each panel, the
grey histogram (partly obscured) describes the errors with
the PPF disabled; the foreground coloured histogram has the
PPF active. Generally the results are poor.

1. The histograms without the PPF are very broad, far ex-
ceeding the range thought necessary to retrieve surface
fluxes.

2. In the case of XCO, the histogram has multiple peaks,
the origin of which is unknown. They indicate that the
retrieval algorithm is failing in several distinct modes.

3. Even after the PPF, the surface pressure is biased low
by 1.7 hPa, while XCO2 is high by 2.2 ppm. This effect
of anticorrelated errors is often observed in retrievals
with simulated spectra, though the underlying cause is
poorly understood. It seems to occur in the presence
of high aerosol loadings, particularly when the optical
properties (single scattering albedo and phase matrix)

www.atmos-meas-tech.net/9/4633/2016/ Atmos. Meas. Tech., 9, 4633–4654, 2016



4644 D. M. O’Brien et al.: Remote sensing CO2, CH4 and CO emissions in a polluted urban environment

   0

 200

 400

 600

 800

1000

-10  -5   0   5

N
u
m

b
e
r

Error in ps (hPa)

ps

b =-2.9 hPa

SD = 3.3 hPa

   0

 200

 400

 600

 800

1000

1200

-5  0  5 10 15

N
u
m

b
e
r

Error in XCO2
 (ppm)

XCO2

b =  3.1 ppm

SD =  2.0 ppm

   0

 100

 200

 300

 400

-20 -10   0  10  20  30  40

N
u
m

b
e
r

Error in XCH4
 (ppb)

XCH4

b = 13.4 ppb

SD =  7.8 ppb

   0

 200

 400

 600

 800

1000

-20 -10  0 10 20 30 40 50 60 70 80

N
u
m

b
e
r

Error in XCO (ppb)

XCO

b = 10.9 ppb

SD = 14.6 ppb

Figure 8. Histograms of errors in retrieved surface pressure ps, XCO2 , XCH4 and XCO for experiment 2 with cloud-enabled and standard
aerosol. The PPF has been applied to the coloured histograms, but not to those in light grey. The biases (b) and standard deviations (SD)
quoted are for the histograms after the PPF. Of the total of 36 000 cases that converged, 666 passed the PPF (1.9 %). For clarity, the vertical
scale in the coloured histograms has been multiplied by 5.

assumed for the aerosol in the retrieval algorithm do not
match those in the simulated data.

When cloud is enabled in experiment 2 with standard
aerosol (Fig. 8), the histograms broaden, even those with the
PPF. The low bias in surface pressure and high bias in XCO2

persist, and the distributions are not bell-shaped, suggesting
that competing factors contribute to the error.

Figure 9 shows the corresponding results for experiment 3
in which the retrieval algorithm was provided with region-
ally adjusted optical properties for aerosol (but not cloud).
Although the histograms after the PPF are slightly skewed,
they are more bell-shaped, and the mean values are close to
0. These results are comparable to those found in earlier stud-
ies for less polluted environments (Polonsky et al., 2014).

CO is particularly difficult to retrieve, because the absorp-
tion lines of CO are masked by lines of H2O and CH4. Only
with spectral resolution much finer than that provided by
geoCARB is it possible to probe CO lines without interfer-
ence from H2O and CH4. Compounded with this spectro-
graphic difficulty is an algorithmic limitation. In order to es-
timate the atmospheric state, the current version of the L2
retrieval algorithm performs unconstrained optimisation of a
cost function that measures the difference between the ob-
served and computed spectra, consistent with the instrument
noise. However, in the course of the optimisation, the algo-
rithm can produce unphysical states, a common example be-
ing negative values for optical depth. In an attempt to control
this behaviour for aerosol, the optimised variable is the log-

arithm of the optical depth, which may take any value, but
which compresses the dynamic range. Consequently the re-
trieval algorithm frequently aborts because the state vector
has strayed into an unphysical region of state space. Further
soundings are lost due to lack of convergence, a problem ex-
acerbated by logarithms of optical depth. For example, sev-
eral iterations may be wasted with tiny steps in AOD, even
though the steps in the logarithm are significant. In order to
secure convergence of the algorithm, a tight prior error for the
CO scaling factor was imposed. While that probably is ac-
ceptable if the prior CO profile is close to the truth, it clearly
is not if the initial guess is poor. In that case, the profile is
clamped to the prior profile by the tight prior error, and the
final answer for XCO will be biased towards that of the prior.
This might explain the positive bias in XCO in experiment 3,
because the prior CO profile was higher than the truth for
most pixels.

The reason why a tight prior uncertainty for the CO pro-
file assists convergence is not clear, but we offer the follow-
ing conjecture. In response to an amplitude shift that varies
slowly with frequency, such as that produced by aerosol, the
retrieval algorithm mistakenly attempts to compensate by ad-
justing the gas concentrations. However, because the effect
of CO on the spectrum is much smaller than that of CH4
and H2O in geoCARB’s 2323 nm band, the adjustment to
CO concentrations made by the algorithm is too large and
results in negative XCO, which in turn causes the radiative
transfer code to fail. With a tight prior uncertainty, the CO
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Figure 9. Histograms of errors in retrieved surface pressure ps, XCO2 , XCH4 and XCO for experiment 3 with cloud-enabled and regionally
adjusted aerosol. The PPF has been applied to the coloured histograms, but not to those in light grey. The biases (b) and standard deviations
(SD) quoted are for the histograms after the PPF. Of the total of 34 664 cases that converged, 3107 passed the PPF (9.0 %). For clarity, the
vertical scale in the coloured histograms has been multiplied by 2.

profile cannot deviate far from the prior profile, resulting in
fewer unphysical values.

If this conjecture is correct the problem can be amelio-
rated by preconditioning the optimisation so that steps in
XCO are smaller. We note also that the masking of CO lines
by CH4 and H2O lines will be reflected in the linear error
analysis. It is reasonable to hope, then, that once numerical
problems with the optimisation algorithm are overcome, the
error statistics for XCO will improve, perhaps considerably.

These problems might be alleviated by constraining state
variables to ensure that all internally generated variables have
physically reasonable values. For example, optical depth
should be positive. When the state vector encounters a con-
straint boundary, the optimisation algorithm should require
the state to move along the constraint boundary as it contin-
ues its search rather than crossing the boundary and aborting.
At each iteration, the optimisation algorithm should check
whether a better reduction in the cost function could be
achieved by releasing the state from the boundary or by re-
taining it there. Robust code to implement constrained opti-
misation is available.

Of particular interest are the histograms of errors for re-
trieved AOD, shown in Fig. 10 for experiments 1, 2 and 3.
In each case the mean error is negative, so the retrieval algo-
rithm underestimates the true AOD. Furthermore, the stan-
dard deviation is close to the magnitude of the mean, sug-
gesting that the prior value for the AOD is too low and that
the prior uncertainty is too tight.

7.2 Errors vs. S/N

Statistics of the errors as functions of the signal-to-noise ra-
tio (S/N ) are needed to conduct observational system sim-
ulation experiments (OSSEs) for geoCARB. They allow the
measurement error to be predicted from the surface albedo,
which is known by the OSSE, because to a good approxi-
mation the albedo and the solar zenith angle determine the
S/N . The small dots in Fig. 11 are the posterior errors in
the column-averaged mole fractions of CO2, CH4 and CO
estimated by the L2 retrieval algorithm for the ensemble
of soundings over Shanghai that passed the PPF in exper-
iment 3. They were derived from the posterior covariance,
given by

Ŝ = (KT S−1
ε K + S−1

a )−1, (7)

where Sε is the covariance of instrument noise, Sa is the co-
variance of the distribution about the prior state and K is the
Jacobian of the transformation from states to measurements
(Rodgers, 2000, Eq. 3.31). Thus, the posterior errors include
both retrieval noise and smoothing errors. The range of S/N
is wide (although not as wide as that expected by geoCARB),
because the ensemble includes morning and afternoon obser-
vations when the solar zenith angle is large and the incident
solar flux density is low. The solid curves have the form

σ = a/(1+ bxc), (8)

where σ denotes the uncertainty (in ppm for CO2 and ppb for
CH4 and CO) and x denotes the S/N . Over the range of S/N
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Figure 10. Histograms of the errors in retrieved aerosol optical
depth in the O2 A-band for experiments 1, 2 and 3 (top, middle
and bottom). The PPF has been applied to the dark grey histograms,
but not to those in light grey. The bias (b) and standard deviation
(SD) quoted are for the histogram after the PPF.

for Shanghai, many functional forms could have been chosen
to fit the data. However, it was decided to choose a func-
tional form that would be conservative should it be abused
by applying it to S/N outside the range over Shanghai. The
form in Eq. (8) decreases monotonically from a, its value
when x is 0, so parameter a should represent the prior un-
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Figure 11. Posterior errors estimated by the retrieval algorithm
(small dots) and actual errors (points with error bars, retrieved mi-
nus the truth weighted by the averaging kernel) plotted as functions
of signal-to-noise ratio for the ensemble of soundings in the Shang-
hai data set that passed the PPF in experiment 3.

certainty. For large x the function decays to 0 at a rate de-
termined by the exponent c. Conservative values of 10 ppm,
100 and 100 ppb for XCO2 , XCH4 and XCO were assigned
to a, and parameters b and c were determined by fitting the
model to the posterior errors from the L2 algorithm. Table 8
lists the parameters so determined.

The points in Fig. 11 with error bars represent the actual
error, defined to be the retrieved value minus the truth, with
the latter weighted by the averaging kernel. The error bars
in Fig. 11 were derived using a bootstrap algorithm. In this
procedure, bootstrap data sets were generated by randomly
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Figure 12. Spatial distribution of E, the reduction in uncertainty
in the CO2 flux, at 00:00 UTC as determined using both XCO2 and
XCO data.

Table 8. Parameters for the model of posterior error in terms of
signal-to-noise ratio.

Gas Parameters

a b c

CO2 10 ppm 0.068 0.915
CH4 100 ppb 0.360 0.852
CO 100 ppb 2.321 0.537

sampling with replacement from the set of actual errors in-
curred in the retrievals over Shanghai. The variance of the
distribution of actual errors was estimated from the ensem-
ble of bootstrap data sets. This technique is common in the
statistics literature; one reference is Horowitz (2001).

The actual errors are larger than the estimates of posterior
error from the retrieval algorithm; for XCO2 and XCH4 the
actual errors are about 1.5 times larger than the estimated er-
rors, but for XCO the factor is closer to 8, although most of
the XCO difference is due to bias rather than a serious under-
estimation of the random error by the L2 algorithm. Possible
causes of the bias are the differences between the forward
models used for simulation and retrieval, nonlinearities in the
retrieval (Kulawik et al., 2008) and the interplay of a consis-
tently low prior for CO with an unrealistically small prior
error. In future work we will investigate these issues using
atmospheres that can be described perfectly by the retrieval
forward model.

7.3 Reduction of uncertainty in surface fluxes

Of the 3107 soundings that converged and passed the PPF
in the full 9-day simulation for experiment 3, only 2751 fell
within the selected 6-day window and also had rays from the
target to the sun and satellite passing through the top rather
than the sides of the model domain. With only 2751 obser-
vations for 6401 flux components, any attempt to determine
the posterior fluxes is under-constrained. However, the ob-
servations will not be uniformly distributed through the day,
so fluxes at some times may be determined well.

Figure 12 shows the reduction of error in the 00:00 UTC
time period for the case using both XCO2 and XCO mea-
surements, the latter with uncertainty 10 ppb. The spatial
structure is quite similar to that of the prior fluxes. This
is a common result following from Eq. (5) in which larger
prior uncertainties are preferentially reduced. This relation-
ship weakens towards the east of the domain. Here the sun–
earth ray is likely to pass through the eastern wall of the do-
main and hence be excluded (observation time is 08:15 LT).
The maximum error reduction is 30 %, corresponding to one
of the strongest prior sources.

Two other periods of the day are quite well constrained.
This is not surprising for the local afternoon (14:00–
20:00 LT) since there is an observation made during that
period. The block from 02:00 to 08:00 LT is also reason-
ably constrained by the observation made at 08:15 LT. As in
Rayner et al. (2014), the block corresponding to the unob-
served night is completely unconstrained by observations.

We conducted four experiments, the first without XCO ob-
servations and the remainder including XCO with errors of
15, 10 and 2.5 ppb. The largest value (15 ppb) is approxi-
mately the mean of the true error, defined to be the differ-
ence between XCO retrieved and XCO simulated. The middle
value (10 ppb) is a slightly optimistic estimate, while the low-
est (2.5 ppb) is included to explore benefits that might accrue
from improved spectral resolution in the CO band. For each
experiment we performed four variations:

1. σ(XCO2) reduced by a factor of 5

2. σ(XCO2) inflated by a factor of 5

3. observations thinned by a factor of 2

4. observations thinned by a factor of 4.

Spatial patterns of error reduction are similar, so we sum-
marise the statistics of the results in Table 9. The row la-
belled “Base” describes the four experiments; the following
four rows cover the variations on the experiments.

The base case demonstrates the importance of theXCO ob-
servations. For the XCO2 -only experiment, the maximum re-
duction of uncertainty is 17 % and occurs at 00:00 UTC (lo-
cally 08:00). The maximum rises with the addition of XCO
observations, reaching 24, 30 and 58 % for the three levels
assumed for σ(XCO).
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Table 9. Maximum error reduction (in percent). The labels 00, 06, 12 and 18 refer to the UTC time slot.

CO2 and CO

Configuration CO2 only σ(XCO)= 15 ppb σ(XCO)= 10 ppb σ(XCO)≈ 2.5 ppb

00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18

Base 16.8 15.7 0.0 10.9 24.4 22.8 0.0 16.0 30.3 28.3 0.0 20.0 58.0 53.2 0.0 43.9

0.2σ(XCO2) 51.7 47.3 0.0 37.0 52.2 47.8 0.0 37.5 52.8 48.3 0.0 38.1 61.4 56.2 0.0 47.9
5.0σ(XCO2) 3.5 3.3 0.0 2.3 19.3 18.2 0.0 12.6 27.2 25.5 0.0 17.9 57.8 53.0 0.0 43.7
Obs N/2 11.1 10.7 0.0 7.4 18.1 18.4 0.0 12.8 23.4 21.8 0.0 15.4 51.7 48.0 0.0 37.5
Obs N/4 8.2 8.5 0.0 5.7 11.7 12.9 0.0 9.1 17.7 15.0 0.0 9.9 41.1 43.9 0.0 31.7

The variations explore trade-offs among precision and data
density. For example, adding XCO observations with accu-
racy 2.5 ppb outweighs improving the XCO2 accuracy by a
factor of 5 in the XCO2 -only case. Similarly, XCO observa-
tions with 15 ppb error more than compensate for loss of half
the observations in theXCO2 -only case. Lastly,XCO observa-
tions with 15 ppb error roughly compensate for a 5-fold loss
of accuracy in the XCO2 -only case.

8 Discussion

This work is intended as part of an evolution from the no-
tional study of Rayner et al. (2014) towards a mission defini-
tion. It parallels the development from Rayner and O’Brien
(2001) to the definitions of global missions. The main step
we have made here is a more serious treatment of the concen-
tration retrieval errors that can be expected from a real instru-
ment, informed by previous experience with low-earth orbit-
ing missions OCO-2 and GOSAT. Only the random compo-
nent of the instrument error is considered; non-random er-
rors, such as those arising from imperfect radiometric cali-
bration and imperfect characterisation of the ILS function,
will be considered in future work. We caution that the es-
timates of posterior flux errors are likely to be optimistic
because the calculation assumes perfect meteorology along
with other idealisations.

The results are less dramatic than those of Rayner et al.
(2014). This is particularly clear if one notes that the flux re-
trieval uncertainties here are at a spatial resolution of 5×5 km
while those of Rayner et al. (2014) for CO2 sources were at
3× 3 km. The main reason for the weakened constraint of
fluxes is the reduction in the number of available soundings.
Detailed simulations including aerosol and cloud give a more
pessimistic picture of sampling density than the simple sta-
tistical approach of Rayner et al. (2014).

Given the sensitivity of the results to contamination by
clouds and aerosols we need to improve our confidence in
these fields. Our simulations seem to perform quite well
against available data, but there are many aspects we cannot
test. Data on the diurnal cycle of cloudiness at this resolution
are surprisingly lacking for example.

As with the study of Rayner et al. (2014), XCO measure-
ments provide much information on fluxes. It is important,
therefore, to understand their error characteristics. We noted
already that the uncertainties generated by the L2 algorithm
were a poor guide to the errors (retrieval minus truth). The
differences between experiments with 15 and 2.5 ppb for
σ(XCO in Table 9) underline the importance of the question;
if we could generate measurements with the characteristics
implied by the L2 algorithm, the flux constraint would be
far stronger. However, the mechanism we believe is causing
the largerXCO errors shows that eliminating bias will require
substantial improvements to the L2 algorithm. Because there
is interference between the CO lines and both CH4 and H2O
lines in geoCARB’s 2323 nm band, at the spectral resolution
of geoCARB the sensitivity of the spectrum to changes in
CO concentration is relatively small. In response to slowly
varying amplitude changes in the spectrum (such as those
caused by aerosol or cloud), the L2 algorithm frequently
makes large adjustments to the CO concentration, making it
negative and causing the radiative transfer algorithm to fail.
Our ad hoc remedy for this paper, tightening the prior error
on the CO profile, improved the success rate for retrievals,
but also added bias. Thus, the posterior uncertainty from the
L2 algorithm understated the actual error, because the latter
is the sum of both the bias and the random error. Future work
should ensure that variables such as optical thickness always
assume feasible values.

Higher resolving power in the 2323 nm band probably
would reduce the posterior error inXCO and thereby improve
the flux inversions, provided the associated reduction in S/N
is not too large. However, the present design for geoCARB
uses the same grating in two orders for the 2323 and 2065 nm
bands, so the resolving powers will be the same for these
bands. Furthermore, the parameters for geoCARB’s 2065 nm
band were selected to approximate the spectral performance
of the 2065 nm band of OCO-2. Consequently, to obtain
higher resolving power in geoCARB’s 2323 nm band would
require significant changes to the proposed instrument.

Because the algorithm to retrieve trace-gas concentrations
assigns fixed values to some physical variables, such as the
optical properties of aerosols, the Jacobians for the retrieved
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variables will be imperfect and a source of bias. Conse-
quently, the posterior distribution of the retrieved state will be
broader than expected. In future work we will investigate the
impact on flux inversions of larger posterior errors in XCO2

and XCH4 , based on the results of OCO-2.
Finally we must ask what the more physically based cal-

culations of this paper tell us about the value of a future mis-
sion with the characteristics described here. The weaker con-
straint on fluxes means that longer averaging periods are re-
quired before a given signal (such as an emission reduction)
can be detected. However, these times remain short com-
pared to the required timescale for policy. More important
may be the reduction in spatial resolution from 3 to 5 km.
This takes the results further from the scale of most busi-
nesses.

9 Conclusions

WRF-Chem was used to model the dynamics and com-
position of the atmosphere over Shanghai for a 9-day pe-
riod. Models were developed for the optical properties of
aerosols and clouds in the spectral bands of geoCARB, and
the predicted distributions of AOD were broadly consistent
with those from MODIS. The simulated urban environment
should provide a rigorous case on which to test retrievals of
surface fluxes.

GeoCARB observations were simulated at three times per
day for each of the 9 days. The simulated spectra were
degraded with noise expected for geoCARB, and column-
averaged concentrations of CO2, CH4 and CO were retrieved
from the spectra. Experiments were conducted to assess the
accuracy of the retrieved concentrations.

1. Even though a comparatively cloud-free period was
selected, many soundings were too contaminated by
aerosol or cloud to permit accurate determination of the
column-averaged concentrations. The experiments sug-
gest that the number of successful retrievals might be as
low as 5 %. This places a strong constraint on the com-
plexity of the surface flux model.

2. Retrievals using preassigned aerosol optical properties,
similar to those used for GOSAT and OCO-2, gave poor
results. Surface pressure was biased high, while XCO2

was low. The distributions were non-normal. Retrieval
of XCO had several unidentified modes of failure.

3. When the aerosol optical properties provided to the
retrieval algorithm were regionally adjusted, the re-
sults improved dramatically. Surface pressure andXCO2

no longer had large, anticorrelated biases; distributions
were closer to normal; the throughput of the retrieval al-
gorithm improved. As justification for the regional ad-
justment, dark targets in the vicinity of the urban com-
plex (such as Lake Taihu near Shanghai) could be used
by other sensors (or even geoCARB) to characterise
the wavelength dependence of aerosol optical thick-
ness. This complex experiment suggests the advantages
would be significant. Further examination of this idea is
a priority.

4. Despite the polluted environment over Shanghai, and
the consequent difficulty in retrieving column-averaged
concentrations accurately, the reduction in uncertainty
from 6 days of observations is comparable to that found
by Rayner et al. (2014) in an idealised scenario. As-
suming XCO measurements with accuracy 10 ppb, they
found a reduction of uncertainty for CO2 fluxes of ap-
proximately 35 %; in this work the corresponding re-
duction was 30 %. This is an encouraging result.
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Table A1. MOSAIC aerosol species.

Species name Symbol Refractive index proxy

Black carbon BC black carbon
Chloride ions Cl sea salt (NaCl)
Sodium ions Na sea salt (NaCl)
Ammonium ions NH4 NH4NO3
Nitrate ions NO3 NH4NO3
Organic carbon OC organic carbon
Other inorganic mass OIN dust
Sulfate ions SO4 NH4SO4
Water H2O water

Table A2. Real parts of the refractive indices of the proxies listed
in Table A1 at the centres of the geoCARB spectral bands.

Proxy Band

1 2 3 4

Black carbon 1.850 1.850 1.850 1.850
Sea salt (NaCl) 1.485 1.460 1.450 1.435
NH4NO3 1.500 1.500 1.500 1.500
Organic carbon 1.750 1.770 1.800 1.815
Dust 1.530 1.400 1.260 1.220
NH4SO4 1.520 1.490 1.470 1.450
Water 1.330 1.318 1.306 1.280

Appendix A: Optical properties of aerosols

Within the WRF-Chem model domain, MOSAIC tracked
the aerosol chemistry and predicted the spatial distributions
of size-resolved mass concentrations of the aerosol species
listed in Table A1. Because refractive indices are not known
(or are unreliable) for some of the species, proxies were nom-
inated, as indicated in the third column of Table A1. For ex-
ample, the refractive index for sulfate ions was assumed to be
the same as that for ammonium sulfate (NH4SO4), for which
laboratory data are available. The real and imaginary parts of
the refractive indices of the proxies are listed in Tables A2
and A3.

Given an ensemble of aerosols, including any water coat-
ing the aerosols, the refractive index n of the composite
was assumed to be the volume-weighted average of the con-
stituents:

n=
∑
a

vana/
∑
a

va,

where na and va denote the refractive index and volume oc-
cupied by aerosols of the species indexed by a. The volumes
va = ca/ρa were obtained from MOSAIC’s mass mixing ra-
tios ca (µg of aerosol per kg of dry air) using densities ρa
listed in Table A4. The density of black carbon is the mid-
point of the values quoted by Bond and Bergstrom (2006).

Table A3. Imaginary parts of the refractive indices of the proxies
listed in Table A1 at the centres of the geoCARB spectral bands.

Proxy Band

1 2 3 4

Black carbon 0.710 0.710 0.710 0.710
Sea salt (NaCl) 2.0× 10−6 7.0× 10−4 1.0× 10−3 5.5× 10−3

NH4NO3 0.0 0.0 0.0 0.0
Organic carbon 4.3× 10−1 4.6× 10−1 4.9× 10−1 5.0× 10−1

Dust 8.0× 10−3 8.0× 10−3 8.0× 10−3 9.0× 10−3

NH4SO4 1.0× 10−7 7.7× 10−5 1.0× 10−3 1.0× 10−3

Water 1.0× 10−7 9.0× 10−5 1.1× 10−3 1.0× 10−3

Table A4. Densities assumed for MOSAIC aerosol species.

Species name Symbol Density (kg m−3)

Black carbon BC 1.8× 103

Chloride ions Cl 2.2× 103

Sodium ions Na 2.2× 103

Ammonium ions NH4 1.8× 103

Nitrate ions NO3 1.8× 103

Organic carbon OC 1.0× 103

Other inorganic mass OIN 2.6× 103

Sulfate ions SO4 1.8× 103

Water H2O 1.0× 103

Because the advection scheme in WRF-Chem may cause
the mass and number prognostic equations to give inconsis-
tent values, usually at sharp gradients of these quantities,
MOSAIC checks internally that the predicted number den-
sity of aerosol lies between bounds determined by the limits
of the size bin. For particles in the ith size bin, whose lower
and upper radius limits are

r− = ri−1 and r+ = ri,
letN− denote the number of particles per unit mass of dry air
consistent with the computed volume vd if all the particles
have the maximum size r+:

vd = (4/3)N−πr3+ = (4/3)N+πr3−.

Similarly, let N+ denote the number if the particles have the
smallest size r−. In this calculation, vd is the total volume
occupied by all aerosol species with the exception of con-
densed water; thus, vd is the total dry volume. If N , the num-
ber of particles per unit mass of dry air, falls outside the range
[N−,N+], then it is clamped:

N ′ =


N− if N ≤N−,
N if N− <N <N+,
N+ if N+ ≤N.

In subsequent calculations of the optical properties, N is re-
placed by N ′.
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Table B1. Bin limits for the imaginary part of the refractive index.

q νq q νq q νq

0 0.0000 5 0.0100 10 0.2500
1 0.0010 6 0.0250 11 0.5000
2 0.0025 7 0.0500 12 0.7500
3 0.0050 8 0.0750 13 1.0000
4 0.0075 9 0.1000

Lastly, the wet radius rw is estimated from

vw = (4/3)N ′πr3
w,

where vw is the wet volume, given by

vw =
∑
a

va .

The calculations above were performed for each size bin,
providing a volume-averaged refractive index n and wet ra-
dius rw, henceforth denoted simply by r . The refractive in-
dex could vary from band to band, but within each band it
was assumed to be constant. Thus, the aerosol in size bin
j was characterised by one real and four complex numbers,
(r,n1,n2,n3,n4).

Appendix B: Quantisation of aerosols

In order to avoid the numerical cost of Mie calculations for
every combination of (r,n1,n2,n3,n4), the radius and refrac-
tive index were quantised as follows.

Firstly, r was assigned to one of the MOSAIC bins by find-
ing the bin index j (zero-based) such that

j =


0 if r ≤ r0,
k if rk ≤ r < rk+1,

s− 1 if rs ≤ r.
Secondly, for the purpose of the Mie calculations, r was re-
placed by r ′j , the effective radius of a uniform distribution of
radii between the bin limits rj and rj+1:

r ′j =
3
4

(
r4
j+1− r4

j

r3
j+1− r3

j

)
.

Quantisation of the real part µ of the refractive index n
used a grid:

1= µ0 < µ1 < .. . < µp.

In each band, from µ the corresponding integer p was found
such that

µp ≤ µ < µp+1,

and µ then was replaced for the purpose of Mie calculations
by the average of the bin limits:

µ′ = (µp +µp+1)/2.

In practice the grid spanned the range [1,2] in 20 equally
spaced steps.

The imaginary part ν of the refractive index n was quan-
tised similarly; a grid was defined:

0= ν1 < ν2 < .. . < νQ.

ν was located in the grid,

νq ≤ ν < νq+1,

and ν was replaced by

ν′ = (νq + νq+1)/2.

The grid for the imaginary part of the refractive index was
quasi-logarithmic, as specified in Table B1.

Thus, aerosols were characterised by a list of quantum
numbers,

(j,p1,q1,p2,q2,p3,q3,p4,q4),

and Mie calculations were performed for radii and refractive
indices

(r ′j ,µ
′
1,ν
′
1,µ
′
2,ν
′
2,µ
′
3,ν
′
3,µ
′
4,ν
′
4).

Fortunately the number of combinations of quantum num-
bers was manageable, because certain combinations kept re-
curring. Whenever a new combination arose, Mie calcula-
tions were performed and the extinction efficiency, scattering
efficiency and extinction coefficient for all bands were writ-
ten to a “Mie-file”. Similarly, a “mom-file” was written that
contained the corresponding phase matrices. These files were
used subsequently in the radiative transfer calculations.

The Mie calculations used the SPHER code from
Mishchenko and Travis. For each size bin, rather than a sin-
gle Mie calculation with the nominal radius for the bin, a
power law distribution of sizes was assumed with effective
variance fixed at 0.1, a value broadly representative of many
aerosol types. The reason for assuming a distribution was to
reduce the risk that spikes in the optical properties, associ-
ated with resonances, might distort the results.

Each quantised aerosol was considered a separate species.
If αk , βk and γk denote the volume coefficients for absorp-
tion, scattering and extinction of species k, and 8k denotes
the phase matrix, then the corresponding quantities for the
composite aerosol were computed in the usual way:

α =
∑
k

αk, β =
∑
k

βk, γ =
∑
k

γk

and

β8=
∑
k

βk8k.
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Appendix C: Optical properties of clouds

WRF-Chem predicts three-dimensional distributions of the
mass m of cloud liquid water, cloud ice and the number N
of cloud particles, all per unit mass of moist air. In order to
compute the optical properties of clouds, the effective radii
of the cloud particles are needed. If all the particles share
the same radius r (a delta distribution), then the volume v
occupied by the particles and the corresponding mass m will
be

v = 4Nπr3/3 and m= ρv,
where ρ denotes the density of water or ice. Because WRF-
Chem provides both m and N , r can be calculated.

However, because clouds contain a wide distribution of
particle sizes, the delta distribution was replaced by a modi-
fied gamma distribution, with

N(r)= arαe−brγ ,
following the notation of Deirmendjian (1969). For this dis-
tribution, the total number of particles (per unit mass of moist
air) is

N = a

γ
b−(1+α)/γF1.

The effective radius is

re = b−1/γF4/F3

and

v/N = (4/3)πb−3/γF4/F1, (C1)

where

Fn = 0[(n+α)/γ ].

Table C1. Parameters used to quantise the cloud particle radius ac-
cording to Eq. C2.

Parameter Water cloud Ice cloud Unit

α 6 6 –
γ 1 1 –
re− 1 10 µm
re+ 60 90 µm
a 1 5 µm

If parameters α and γ are specified, then b (and hence the
effective radius) may be computed from Eq. (C1) using v =
m/ρ and N . The constant a serves only to normalise the dis-
tribution, and its value is not needed.

Lastly, the effective radii derived from the mass and the
modified gamma distributions were quantised and truncated,
with r ′e below replacing re:

r ′e =


re− if re ≤ re−
a{re/a} if re− ≤ re < re+
re+ if re+ ≤ re

(C2)

where re− and re+ are the lower and upper limits set for cloud
particles, and {x} denotes the nearest integer to x. Values of
the parameters are specified in Table C1.

Optical properties in the geoCARB bands were calculated
using Mie theory for spherical water drops, while for ice
cloud the extinction coefficient and phase matrix were inter-
polated from data published by Baum (2007) and Baum et al.
(2005a, b).
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