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Abstract. In this study measurements collected during win-
ters 2013/2014 and 2014/2015 at the University of Helsinki
measurement station in Hyytiälä are used to investigate
connections between ensemble mean snow density, parti-
cle fall velocity and parameters of the particle size distri-
bution (PSD). The density of snow is derived from mea-
surements of particle fall velocity and PSD, provided by a
particle video imager, and weighing gauge measurements of
precipitation rate. Validity of the retrieved density values is
checked against snow depth measurements. A relation re-
trieved for the ensemble mean snow density and median vol-
ume diameter is in general agreement with previous stud-
ies, but it is observed to vary significantly from one winter
to the other. From these observations, characteristic mass–
dimensional relations of snow are retrieved. For snow rates
more than 0.2 mm h−1, a correlation between the intercept
parameter of normalized gamma PSD and median volume
diameter was observed.

1 Introduction

Due to a variety of ice particle types and shapes, represen-
tation of winter precipitation in models (Woods et al., 2007;
Morrison and Milbrandt, 2015) and in ground, airborne and
satellite remote sensing retrievals (Sekhon and Srivastava,
1970; Matrosov, 1997; Wood et al., 2013) is a topic of con-
tinuous interest. Both models and retrieval algorithms rely on
a prior knowledge of snowflake mass (or density), shape and
fall velocity, which are typically expressed as functions of a
characteristic particle size (Pruppacher and Klett, 1996). Fur-
thermore, information on possible particle size distributions
(PSDs) is also required. Even though some of the micro-
physical properties of ice particles are not independent, e.g.,
fall velocity can be computed from particle mass and shape
(Böhm, 1989; Khvorostyanov and Curry, 2005; Mitchell and
Heymsfield, 2005; Heymsfield and Westbrook, 2010), the re-
maining degrees of freedom are rather numerous.

Historically, measurements of snowflake properties have
been carried out on a particle-by-particle basis (e.g., Magono
and Nakamura, 1965; Locatelli and Hobbs, 1974; Mitchell,
1996). While we may still regard such measurements as the
more precise and detailed, these studies are limited to a rel-
atively small number of observed ice particles due to the
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sheer amount of time needed for such experiments and corre-
sponding data analysis. After the introduction of robust opti-
cal instruments capable of measuring particle size, shape and
in some cases fall velocity, e.g., 2-D-video disdrometer (2-
DVD; Hanesch, 1999; Schönhuber et al., 2007), particle size
velocity (Parsivel) laser-optical disdrometer (Löffler-Mang
and Joss, 2000; Löffler-Mang and Blahak, 2001), hydrom-
eteor velocity size detector (HSVD; Barthazy et al., 2004),
snow video imager (SVI; Newman et al., 2009) and multi-
angle snowflake camera (MASC; Garrett et al., 2012), con-
tinuous recording of ice particle properties became possible.
It should be noted that, in comparison to surface-based obser-
vations, aircraft measurements have a much longer history in
determining ice particle microphysical properties and were
carried out in different types of clouds and climate regimes
(Pruppacher and Klett, 1996). A typical limitation of auto-
matic observations of ice particle properties, however, is that
only a subset of needed parameters is directly measured.

By combining optical disdrometer observations with other
measurements, e.g., by radar or precipitation gauge, phys-
ical properties such as mean snow density can be derived.
Huang et al. (2010) have used a C-band weather radar obser-
vations of equivalent reflectivity factor, Ze, in combination
with a 2-DVD to derive a snow density–dimensional relation
and to infer more consistent Ze–snowfall rate relations. An-
other method for snow density retrieval is based on solving
aerodynamic equations to derive particle mass from observed
fall velocity and particle effective projected area as proposed
by Böhm (1989) and applied by Hanesch (1999) and more
recently by Szyrmer and Zawadzki (2010) and Huang et al.
(2015). Brandes et al. (2007), hereafter referred to as B07,
used a combination of a weighing gauge and a 2-DVD to
derive a relation between mean bulk density and median vol-
ume diameter and to document relations between PSD pa-
rameters for Colorado winter storms. Their approach is sim-
ilar to the one used by Heymsfield et al. (2004), who have
combined aircraft PSD and ice water content observations
to derive mean snow density and average mass–dimensional
relations for ice particles. Albeit using slightly different def-
initions, both B07 and Heymsfield et al. (2004) derive ef-
fective ice densities for ensembles of ice particles, but there
is a difference in terminology. Heymsfield et al. (2004) and
many others have used the term (particle) bulk density to re-
fer to the density of individual ice or snow particles defined
as the ratio of mass of a particle with a size D to its assumed
volume: ρ = ρ(D). In most of such cases, the word “bulk”
is used to emphasize the inclusion of hollows within parti-
cles. The term “(mean) bulk density” is sometimes used also
when referring to the mean density of an ensemble of parti-
cles representing the whole PSD, i.e., ρ = ρ(D0) (e.g., B07),
whereas Heymsfield et al. (2004) used the term “population-
mean effective density”. In this study we derive the volume
flux weighted snow density, similar to, e.g., B07, and refer to
it as ensemble mean density, ρ, to avoid possible confusion.

This paper documents the connection between ensemble
mean density and other microphysical properties of snow as
observed in Southern Finland. Using the estimated ρ, average
mass–dimensional relations characteristic to studied snow-
fall events are defined. In order to derive ensemble mean den-
sity, a method proposed by B07 was used. However, instead
of a 2-DVD, a new generation of the SVI is employed. It is
shown that, despite simpler construction compared to the 2-
DVD, this instrument’s data are suitable for such studies.

Even though this study is based on retrieval of ensemble
mean snow density and not mass–dimensional relations di-
rectly, which could be more easily applied to radar retrievals
and numerical weather prediction (NWP), there are a num-
ber of applications of such relations. Aikins et al. (2016)
used ρ(D0) to convert PSD observations to precipitation
rate. Tong and Xue (2008), Dolan and Rutledge (2009), Ma-
trosov et al. (2009), Huang et al. (2010) and Zhang et al.
(2011) used mean snow density–median volume diameter re-
lations for characterizing winter precipitation microphysics
by radar. Kneifel et al. (2015) showed a connection between
mean snow density and multi-frequency radar observations.
Thompson et al. (2008) used the density relation by B07, and
Iguchi et al. (2012) applied a similar density retrieval method
to improve parametrization of snow microphysics in NWP
models, for example.

2 Measurements

2.1 Measurement setup

Measurements were made at the University of Helsinki
Hyytiälä Forestry Field Station, Finland (61◦50′37′′ N,
24◦17′16′′ E), during the Biogenic Aerosols Effects on
clouds and Climate (BAECC) field campaign (Petäjä et al.,
2016) and during the consecutive winter of 2014/15. BAECC
was a joint experiment between the University of Helsinki,
the Finnish Meteorological Institute (FMI) and the United
States Department of Energy Atmospheric Radiation Mea-
surement (ARM) program. From 1 February through 12
September 2014 the second ARM Mobile Facility (AMF2)
was deployed to the measurement site. The measurement
setup was designed for snowfall intensive observation period
of BAECC, called BAECC Snowfall Experiment (SNEX),
which was undertaken from 1 February though 30 April 2014
and focused on measurements of snow microphysics. How-
ever, in order to extend the dataset, the measurements were
continued upon completion of BAECC. In total, 23 snow-
fall cases from winters 2013/14 and 2014/15 were used in
this study as summarized in Table 1. The snowfall cases
were selected based on measurements of liquid water equiva-
lent (LWE) precipitation accumulation by a weighing gauge,
snow depth using a laser sensor and temperature measured by
the automatic weather station of the FMI located 500 m dis-
tance from the measurement site. Only precipitation cases,
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Table 1. Liquid water equivalent precipitation accumulation measured with Pluvio2 200 and 400, change in snow depth and maximum and
minimum temperature, maximum and minimum relative humidity, mean and maximum wind speed and mean wind direction of the studied
snow events. Events before the horizontal line are recorded during the BAECC campaign.

LWE (mm) 1SD Temp (◦C) RH (%) Wind (m s−1, ◦)

Event 200 400 (cm) min max min max mean max mean dir.

2014 Jan 31 21:00–Feb 01 06:00 7.4 7.3 5.1 −9.8 −8.9 84 91 1.6 2.9 138
2014 Feb 12 04:00–1:00 1.0 0.9 1.8 −1 0 96 98 0.6 2.0 170
2014 Feb 15 21:00–Feb 16 03:00 2.6 2.6 2.5 −2.1 −1 86 97 1.9 2.7 140
2014 Feb 21 16:00–Feb 22 05:00 5.5 5.2 3.6 −2.7 0 88 98 2.1 3.4 138
2014 Mar 18 08:00–19:00 4.4 4.0 7.3 −3.8 −1.8 76 96 1.2 2.7 155
2014 Mar 20 16:00–23:00 6.1 5.9 4.8 −4.3 −1.3 89 97 2.0 3.4 146

2014 Nov 06 19:00–Nov 07 14:30 10.5 – 10.3 −2.44 −1.6 95 97 0.8 1.9 238
2014 Dec 18 14:00–19:00 2.6 2.2 3.9 −2.3 −0.8 97 98 1.0 1.8 134
2014 Dec 24 08:30–13:00 1.3 1.2 1.2 −9.2 −8.9 90 91 0.7 1.5 204
2014 Dec 30 00:30–14:00 6.3 5.3 4.9 −10.4 −0.6 91 98 – – –
2015 Jan 3 09:00–23:50 7.3 7.3 11.9 −3.9 0 96 98 2.6 5.2 318
2015 Jan 7 01:00–20:10 5.4 4.8 2.2 −6.5 −0.8 92 97 1.3 2.8 181
2015 Jan 8 06:00–13:30 2.6 2.7 1.6 −1.9 0 97 99 1.0 2.2 155
2015 Jan 9 18:00–Jan 10 06:00 3.1 3.1 4.6 −3.7 −0.2 95 98 1.0 3.0 286
2015 Jan 10 22:00–Jan 11 09:00 0.7 0.6 0.7 −12.6 −4.4 88 95 1.6 3.4 207
2015 Jan 12 21:00–Jan 13 08:30 12.8 10.9 9.6 −15.7 −9.0 88 94 1.3 3.1 181
2015 Jan 13 22:00–Jan 14 07:00 –∗ 2.2 1.9 −8.0 −0.3 94 98 0.5 1.9 134
2015 Jan 16 01:30–07:30 –∗ 5.8 5.2 −1.3 −0.6 92 98 1.9 3.4 154
2015 Jan 18 16:00–21:00 1.9 1.9 2.7 −2.4 −0.3 95 97 1.2 2.6 300
2015 Jan 22 21:00–Jan 23 04:30 2.1 2.0 2.3 −13.3 −12.5 87 90 – – –
2015 Jan 23 15:00–23:00 1.4 1.2 1.4 −10.1 −8.8 91 93 0.3 1.0 205
2015 Jan 25 09:00–16:00 2.8 2.5 1.9 −2.4 −1.7 96 97 0.7 1.7 170
2015 Jan 31 12:00–Jan 31 23:15 7.0 6.6 5.7 −1.9 −0.4 92 97 1.2 2.6 175

∗ Pluvio2 400 was used because data from Pluvio2 200 were unavailable.

where temperature was below or equal to 0 ◦C, were chosen,
and the data were omitted when occasionally the temperature
during the event rose above 0 ◦C.

The experiments in both winters were organized in col-
laboration with the National Aeronautics and Space Admin-
istration (NASA) Global Precipitation Measurement (GPM)
mission ground validation program. The surface precipitation
measurements are carried out using a number of collocated
instruments, such as NASA Particle Imaging Package (PIP),
two OTT Pluvio2 weighing gauges, two Parsivel2 laser dis-
drometers (Tokay et al., 2014), a 2-DVD and a laser snow
depth sensor by Jenoptik. To minimize effects of wind, a
Double-Fence Intercomparison Reference (DFIR) wind pro-
tection (Rasmussen et al., 2012) was build on site as shown
in Fig. 1 and discussed in more detail in Petäjä et al. (2016).
Inside of the DFIR, the 2-DVD, one of the OTT Pluvio2s
and one of the Parsivel2 disdrometers were placed. In ad-
dition to the precipitation sensors, 3-D anemometers were
deployed. The wind measurements were carried out at the
heights of precipitation instrument sampling volumes. In this
study data from the NASA PIP disdrometer and both OTT
Pluvio2 gauges are used.

2.2 Particle Imaging Package

The NASA PIP is the new generation of the SVI. The PIP,
like the SVI, consists of a halogen lamp and a charge-coupled
device full frame camera with sensor resolution of 640×480
pixels. The main differences between PIP and SVI are the
camera and improved software. The camera is now capable
of imaging with a frame rate of 380 frames per second, en-
abling measurements of particle fall velocities. The distance
between the lamp and the camera lens is approximately 2 m.
The lens focus is set at 1.3 m, where the field of view (FOV)
is 64×48 mm, and the image resolution thereby 0.1×0.1 mm.
The main advantage of PIP, as well of SVI, over other dis-
drometers is the open particle catch volume, which mini-
mizes effect of wind on quantitative precipitation measure-
ments (Newman et al., 2009).

The instrument records shadows of particles as they fall
through the observation volume. Given the camera frame
rate, multiple images of a particle are recorded and used to
estimate its fall velocity. The depth of field (DOF) is deter-
mined by the processing software either rejecting or not de-
tecting particles that are out of focus. Thus, the observation
volume is defined by the FOV and the DOF. The expected
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Figure 1. Snow precipitation instruments on the measurement field in Hyytiälä. The Pluvio2 200 is inside the wind protection on a platform
and the PIP lamp can be seen at right on the ground. The view of the picture is to southwest and the distance from the platform to the treeline
behind is approximately 20 m.

particle size error due to the blurring effect is 18 % (Newman
et al., 2009). From the recorded particle images a number
of parameters describing particle geometrical properties are
calculated with National Instruments IMAQ software. The
measured diameter is given as the equivalent area diameter,
which is the diameter of a circle with the same area as the
area of a particle shadow. Other parameters, such as parti-
cle orientation, and bounding box width and height are also
recorded. The aspect ratio of a particle is derived by fitting
an ellipse to the bounding box utilizing the orientation of the
particle. The aspect ratio is the minor axis in respect to ma-
jor maxis of the fitted ellipse. The major axis also defines the
minimum circumscribing disk, and the area ratio is defined
as total area of shadowed pixels in respect to area of the cir-
cumscribing disk.

2.3 Weighing gauges and anemometers

The measurement setup includes two OTT Pluvio2 weighing
gauges, one inside and one outside the DFIR, with orifices
of 200 and 400 cm2, respectively. There are differences in
wind shielding as well. The Pluvio2 200 is equipped with a
Tretyakov wind shield and the Pluvio2 400 with a combi-
nation of Tretyakov and Alter wind shields, as seen in the
forefront in Fig. 1.

The gauges output several products of precipitation rate
and accumulation. In this study, a non-real-time accumula-
tion product is used as it is filtered for various sources of er-
rors such as changes in the bucket mass due to evaporation,
and as such should yield the most precise precipitation rate
estimate among the output products. Because of the filtering,
there is a 5 min delay in the recorded time series, which needs
to be taken into account when comparing to other instru-
ments. The precipitation accumulation values are recorded

with a resolution of 0.001 mm, but non-real-time accumula-
tion is output with a resolution of 0.05 mm.

The 3-D anemometer manufactured by Gill is located ap-
proximately at the height of the PIP on the field, respectively.
The wind parameters, horizontal and vertical speed and hori-
zontal direction, of Gill anemometer are measured every 10 s
and averaged over 60 s. The mean and maximum of the 60 s
wind speed averages and the mean wind direction for each
event are given in the Table 1.

2.4 Snow depth sensor

The laser snow depth sensor, Jenoptik SHM30, is located on
the measurement field, next to Pluvio2 400. It is an optical
sensor, which measures the snow depth by comparing signal
phase information of the modulated visible laser light. It is a
point measurement, and hence the piling of wind driven snow
or random branches and leaves drifting on the snow pack can
cause misreadings. To reduce this we have sheltered the mea-
surement spot with a small wind fence and the instrument
structure excluding the measurement pole is buried under the
ground to prevent the piling of snow. The data are recorded
every minute.

3 Retrievals of ensemble mean density,
velocity–dimensional relations and PSD

Observations from the PIP and one of the weighing gauges
are combined to retrieve snow ensemble mean density. Typi-
cally the gauge located inside of the DFIR, the Pluvio2 200,
is used for this retrieval. On a couple of days this gauge was
not operational and data from the Pluvio2 400 located out-
side of the DFIR were used instead. These dates are marked
in Table 1 with asterisks in the LWE precipitation rate col-
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Figure 2. The ratio of the diameter observed by PIP, DPIP, to vol-
ume equivalent diameter D.

umn. As seen in the Table 1 the differences in accumulated
LWE recorded by the two Pluvio2s are small, the largest be-
ing 15 %. Pluvio2 200 inside the DFIR is typically measuring
higher accumulations, which is expected because of the bet-
ter wind protection. However, the observations do not show a
clear indication that the observed precipitation accumulation
difference depends on the wind speed. However, the differ-
ence seems to increase in respect to certain wind directions.
There are two openings from the measurement field, one to
a road crossing (approx. 130◦) and the other to small field
(approx. 180◦). If the wind is blowing from these directions
the difference between the two gauges seem to increase.

The retrieval procedure is described below and is similar
to the one presented by B07, but with notable modifications.
Prior to retrieval of ρ, PSD and velocity–dimensional rela-
tions are estimated. It was found, however, that the density
retrieval is highly sensitive to the integration time. To mini-
mize this, a variable integration time determined by the pre-
cipitation accumulation is used. The same integration time
was applied to compute PSD parameters and v–D relations.

3.1 Particle size distribution

The PSDs are calculated from the PIP records of particles
that fell through the observation volume. The observed dis-
tributions are defined with respect to equivalent area diameter
DPIP, which is different from the apparent diameter of the 2-
DVD and maximum particle dimensions used in other stud-
ies (e.g., Heymsfield et al., 2004). Wood et al. (2013) stud-
ied differences between diameter definitions and found that
the diameter recorded by SVI is approximately 0.82 of max-
imum particle dimension. We performed a similar study by
examining mean dimensions of rotated ellipsoids on a single
projection, as shown in Fig. 2. The ellipsoids were defined by
a long dimension a and a short dimension b lying nominally
in the horizontal plane along the x and y-axes, respectively,
and a short vertical dimension c lying nominally along the z-
axis. The particle orientation was defined by Gaussian distri-

bution of canting angles with a standard deviation of 9◦ (Ma-
trosov et al., 2005a) and a uniform distribution of azimuth
angles. The equivalent area diametersDPIP of simulated par-
ticles were estimated from their projected areas onto the x–z
plane and the resulting values were averaged over all orienta-
tions. The ratios of mean DPIP to the particle volume equiv-
alent diameter, i.e., the diameter for which the particle vol-
ume V (D)= π

6D
3, for a number of combinations of vertical

and horizontal aspect ratios are shown in Fig. 2. Assuming
spheroids (Matrosov, 2007) and taking the typical vertical
aspect ratio c/a = 0.6 (Korolev and Isaac, 2003; Matrosov
et al., 2005b), we found that DPIP is roughly equal to 0.92 of
a volume equivalent diameter. As can be seen, the conversion
factor varies between 0.8 and 1. For ice particles with axis
ratios smaller than 0.4, i.e., pristine ice crystals, this factor
could approach 1.2. From this analysis we can conclude that
the largest expected error is associated with observations of
ice crystals. Dimensions of snowflake aggregates and grau-
pel like particles are expected to be captured with a smaller
error. In this study the same conversion factor of 0.92 is used
for all the cases. As can be seen in Fig. 3 the median area and
aspect ratios of the particles are 0.65 and 0.72, respectively.
These observations also support our choice of a mean par-
ticle shape and the corresponding diameter transformation.
Therefore, the results presented in the rest of the paper are
using this volume equivalent diameter proxy.

Prior to calculations of PSD parameters, recorded PSD
data are filtered to remove spurious observations of large par-
ticles. Following the procedure described in Leinonen et al.
(2012), records of large particles were ignored if there was
a gap of more than three consecutive PSD diameter bins.
The bin size was set to 0.25 mm during the BAECC experi-
ment and it was reduced to 0.2 mm for the winter 2014/2015.
The PIP resolution is 0.1 mm and the minimum detectable
particle diameter is approximately 0.3 mm (Newman et al.,
2009). The smallest diameter bin used in calculations is 0.25
to 0.5 mm during BAECC and 0.2 to 0.4 mm in the following
winter.

The PSD parameters were calculated using method of mo-
ments and assuming that PSD follows gamma functional
form; see for example Ulbrich and Atlas (1998) and ci-
tations therein. The normalized gamma distribution N(D)
in mm−1 m−3 was adopted following Testud et al. (2001),
Bringi and Chandrasekar (2001) and Illingworth and Black-
man (2002):

N(D)=Nwf (µ)

(
D

D0

)µ
exp(−3D), (1)

f (µ)=
6

3.674
(3.67+µ)µ+4

0(µ+ 4)
, (2)

3=
3.67+µ
D0

, (3)

with Nw in mm−1 m−3 being the intercept parameter, D0 the
median volume diameter in mm, 3 the slope parameter in
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Figure 3. The distributions of snowflake (a) aspect ratio and (b) area ratio as observed using PIP with interquartile ranges visualized and
median values shown.

mm−1 and µ the shape parameter. Using the second, fourth
and sixth moments for the non-truncated gamma PSD, M2,
M4 and M6, the PSD parameters were estimated as follows:

η =
M2

4
M6M2

, (4)

µ=
7− 11η−

√
η2+ 14η+ 1

2(η− 1)
, (5)

3=

√
M20(µ+ 5)
M40(µ+ 3)

, (6)

D0 =
3.67+µ
3

. (7)

3.2 Ensemble mean density retrieval

The integration time, τ(t), of the ensemble mean density
retrieval is driven by precipitation measurements of the
Pluvio2. The step of the non-real-time accumulation output
is 0.05 mm, causing the output interval to be on the order
of several minutes even at moderate snow rates. With a short
fixed integration time in timescales of minutes or tens of min-
utes, the produced ensemble mean density estimation would
hence be more unstable, the lower the precipitation rate.
Therefore, variable length time intervals driven by the gauge
output are used with a selected threshold value of 0.1 mm.
This corresponds to a τ(t) of 6 min for a LWE precipita-
tion intensity of 1 mm h−1. Effectively, the temporal resolu-
tion of the ensemble mean density retrieval is increased with
increasing precipitation intensity, and in the analysis of the
snowfall events in Table 1 the median τ(t) was 5 min.

As the integration time τ(t) is effectively driven by pre-
cipitation intensity, there is less variation in number of parti-
cles between intervals compared to a fixed time interval ap-
proach. With the selected accumulation threshold there are
typically between 103 and 104 particles within a given inte-
gration time interval. However, with low precipitation inten-
sities, τ(t) increases up to 1 h and retrieved ρ becomes less
representative for the time interval in question. With LWE

precipitation rates lower than 0.2 mm h−1, the resolution of
Pluvio2 LWE measurements is insufficient and calculations
of ρ become overly sensitive to recorded number concentra-
tions. Correspondingly, similar unwanted sensitivity to LWE
precipitation accumulation occurs when the number of parti-
cles observed by PIP within τ(t) is less than 800. Therefore,
time intervals with precipitation rates or particle counts lower
than these thresholds are excluded from our analysis.

Given a population of solid precipitation particles with
volume equivalent diameters D over the integration time
τ(t), the liquid equivalent precipitation accumulation in mil-
limeters is approximately

G(t)≈ (8)

π

6
× 10−6 ρ

ρw

t+τ(t)∫
t

Dmax∫
Dmin

D3v(D,t)N(D,t)dDdt,

where ρ is the volume flux weighted population mean snow
density in g cm−3, ρw = 1 g cm−3 is the density of liquid
water, N(D,t) is mean particle number concentration over
the integration time in mm−1 m−3, v(D,t) is particle veloc-
ity relation in m s−1 and [Dmin,Dmax] is the size range of
snowflake observations from a disdrometer. From Eq. (8) we
can estimate volume flux weighted snow density for each ob-
servation time interval as

ρ(t)≈ (9)
6
π
× 106ρw

G(t)∫ t+τ(t)
t

∫ Dmax
Dmin

D3v(D,t)N(D,t)dDdt
,

using liquid equivalent precipitation accumulation G(t) as
measured by the Pluvio2 gauge, and retrieving averaged
N(D,t) and volume flux using fitted v(D,t) based on mea-
surements by the PIP as described in the following sections.
It should be noted that, unlike in the retrieval of PSD pa-
rameters where gamma PSD was assumed, ρ was retrieved
without making any assumptions on the shape of the PSD
distribution and instead measured PSDs are used in the cal-
culations.
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3.3 Comparison of derived mean density to snow depth
observations

The definition of ensemble mean density here is the same as
for mean bulk density in B07. They determine the densities
for 5 min precipitation volumes derived with a 2-DVD dis-
drometer observations together with precipitation mass mea-
sured by a weighing gauge. B07 defined the volume of a sin-
gle particle by summing coin-shaped sub-volumes together,
estimated separately for both orthogonal projections and tak-
ing geometrical mean. As the diameter used in our study
is the estimated volume-equivalent diameter, our results are
comparable to B07. In Heymsfield et al. (2004), the volume
of a single particle is defined as a function of circumscrib-
ing maximum diameter, and the population mean effective
density is determined from ice water content. The estimated
ensemble mean snow density is volume-weighted and ex-
pected to have lower values than the velocity-weighted snow
density. The difference is not generally prominent especially
with low-density aggregates, whose velocity–dimensional
dependence is weak.

It should be noted that the derived density is inversely pro-
portional to the snow ratio, Rs, assuming that issues related
to packing of snowflakes on the ground can be ignored. The
snow ratio (Power et al., 1964; Ware et al., 2006) is used
by operational weather services to estimate change in snow
depth from LWE observations and can be defined as follows:

Rs(t)=
1

P ·C

ρw

ρ(t)
, (10)

where ρ(t) is the volume flux weighted snow density derived
as shown in Eq. (9), P is the packing efficiency of snowflakes
and C is the snow compression. Assuming that the packing
and compression terms, or their product, are close to unity,
the derived density can be tested against the commonly used
assumption that 1 mm of LWE accumulation corresponds to
1 cm change in snow depth. In Fig. 4 the combined distri-
bution of estimated snow ratios on temporal scales defined
by the gauge accumulation for all the 23 events analyzed in
this study is shown. It can be seen that the mean and median
values, equal to 10 and 9, respectively, are very close to the
commonly assumed value.

This analysis assumes that packing efficiency of
snowflakes is 100 % and compression of snow on the
ground can be ignored or that snow compression counteracts
reduction in snow density due to packing. The packing
efficiency of snowflakes on the ground is not known.
Random packing of the same size spheres has density of
64 % and dense packing of such spheres uses 74 % of the
volume, corresponding to P = 0.64 and 0.74, respectively.
Packing efficiency of equal spheroids depends on axis ratios,
exceeding that of spheres, and could exceed 77 % (Donev
et al., 2004). It is not unreasonable to expect that irregular
shaped particles of variable sizes, such as snowflakes, would
pack more efficiently than equal spheroids. At least, packing

Figure 4. Distribution of snow ratios, ratio of snow depth change
to LWE, calculated from retrieved ensemble mean densities with
interquartile range, and median and mean values.

efficiency in excess of 90 % can be expected for spheres of
several radii (de Laat et al., 2014). The packing efficiency
of 70 % would mean that density of freshly fallen snow
would be 30 % lower than that of falling snowflakes. The
packing efficiency of 80 % would correspond to 20 % bias in
estimated snowflake density from snow depth measurements
or in 25 % underestimation of the snow depth change by
using ρ(t). We do not know the exact value of the snow
packing, but we could expect that in the worst case scenario
it is about 70 % and probably closer to 80 % or even higher.
It should also be noted that the snow compression would
counteract this, but we are considering only freshly fallen
snow and expect that the compression factor C is very close
to unity.

One of the major uncertainties in the density retrieval is the
assumption about particle volume. In this study we have as-
sumed that snowflakes are spheroids with axis ratios of 0.6.
Given this assumption, a conversion factor relating volume
equivalent and observed disc equivalent diameters was de-
fined. Figure 2 shows that for a reasonable range of ellip-
soid axis ratios this conversion factor can range between 0.8
and 1. This range of values implies that the uncertainty in
the density estimation can range from an overestimation by
as much as 50 % to an underestimation by about 20 %. This
range of uncertainty is much larger than what is expected
from a comparison of the retrieved volume-flux weighted
density and snow depth measurements, as was discussed pre-
viously. Therefore, by comparing the PIP derived and the di-
rectly measured snow depths, the validity of the derived val-
ues of ρ, and assumption of particle shape, can be checked.
In Fig. 5 hourly change in the snow depth measured by the
Jenoptik SHD30 is compared to the PIP derived snow depth.
It can be seen that the agreement is good, with RMSE of
0.30 cm, linear correlation coefficient of 0.88 and normalized
bias as low as −0.06. This comparison also gives confidence
about the validity of the derived ensemble mean densities.
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Figure 5. Scatterplot of the hourly change of snow depth measured
with Jenoptik SMH30 and estimated from volume flux using PSD
and fall velocities as measured by PIP. The data include all the stud-
ied cases except 10–11 January 2015.

3.4 Effect of PSD truncation on derived ensemble
mean snow density

The observed PSDs are truncated on left and right sides (Ul-
brich and Atlas, 1998). They are truncated on the right side
because of the instrument finite sampling volume and be-
cause natural sizes of hydrometeors do not extend to infin-
ity. The truncation on the left, on the small-diameter side,
is due to instrumental limitations and possible wind ef-
fects (Moisseev and Chandrasekar, 2007). Ulbrich and Atlas
(1998) have presented a comprehensive analysis on how the
right-side truncation affects the derived gamma PSD param-
eters. A similar study on the effects of the left-side truncation
and other instrumental effects was presented by Moisseev
and Chandrasekar (2007). Here we apply the method pre-
sented by Moisseev and Chandrasekar (2007) to estimate im-
pact of PSD truncation on the derived mean snow density.

To investigate the impact of the PSD truncation on retrieval
of mean snow density, a simulation study was performed. To
initiate the simulation, the PSD parameters Nw, D0 and µ,
together with parameters of m–D and v–D, are used. Dur-
ing the study it was found that the density estimation error
is most sensitive to D0 and µ and virtually independent of
the other input parameters. Therefore, the results presented
here assume thatNw is constant and equal to 104 mm−1 m−3.
Further, only one m–D relation representative of all BAECC
cases, as presented in Sect. 4.3.1, is selected, and v–D repre-
sentative of the snowfall with mean density ranging between
100 and 200 g cm−3 is utilized. The D0 values were varied
between 0.5 and 4 and µ values between −0.9 and 3.

At the first stage of the simulation, the number of ob-
served particles was computed, assuming a Poisson distri-
bution, with the expected number of particles being deter-
mined by PIP sampling volume and τ(t). Given this num-
ber of particles, their diameters were found by sampling a

gamma probability density function, parameters of which are
determined by the input PSD. To simulate the left-side trun-
cation all particles with diameters smaller or equal to 0.25
mm, the PIP sensitivity threshold, were rejected. The right-
side truncation was achieved by rejecting particles with sizes
exceeding 3D0. For each D0 and µ pair, 50 simulated PSDs
were computed. Given the simulated truncated PSD the den-
sity is estimated in the same way as was presented above.
This estimated density is compared to the one that is directly
derived from the simulation input parameters and the results
of their comparison is shown in Fig. 6. As one can see, the
derived ensemble mean snow density is biased. The bias is
largest for small D0, which is explained by the left-side PSD
truncation. For D0 larger than 1 mm, the bias decreases and
approaches 2 %. Given that the error associated with PSD
truncation is rather small for D0 > 1 mm, and that most of
the observations fall within this range, the truncation error is
not corrected in this study.

3.5 Velocity–dimensional analysis

For the retrieval of volume flux weighted snow density,
velocity–dimensional relations of falling snow need to be es-
timated. For each integration time interval, v(D)= avD

bv

is fitted for velocity–diameter data from the PIP. The v(D)
power-law fits to unfiltered data tend to be strongly biased
by outliers. To address this problem, Gaussian kernel den-
sity estimation (KDE; Silverman, 1986) is used to find the
most probable velocity for each diameter bin, and only ob-
servations with velocities within half width at half maximum
from the bin peak KDE value are included in calculating the
fit. Using the linear least squares method, a fit is performed
for the data points in log–log scale to derive a power-law
relation. It should be noted that using linear regression in
log–log space does not optimally minimize residuals in lin-
ear space, but the method is used here as it does not overly
emphasize the large end of the size spectrum. The retrieved
velocity fits are shown for selected integration time intervals
of the 18 March 2014 and the 22–23 January 2015 cases in
the bottom of Figs. 7 and 8, respectively.

It should be noted that the power-law model, albeit widely
used, may not necessary represent correctly velocities of ice
particles over the complete range of diameters (Mitchell and
Heymsfield, 2005). In many cases the fit can also be uncer-
tain either because of narrow PSD or in presence of multiple
particle types.
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Figure 6. Computed normalized bias and standard deviation of estimated mean snow density as a function of µ and D0. The shaded area
indicates data that are not included in the analysis because derived D0 is smaller than 0.6 mm. The increased values of bias at low D0 values
is due to left side truncation of the observed PSD, which is caused by the instrument sensitivity. At larger D0 values the bias approaches
value of 0.02.

4 Results

4.1 Case studies

4.1.1 18 March 2014

During the 18 March, Finland was covered in a continental
polar air mass. In the morning, a warm occluded front asso-
ciated with a weak low pressure center approached South-
ern Finland from the southwest, bringing light snowfall. In
the afternoon, Hyytiälä was in the warm sector of the frontal
system and the relative humidity dropped, halting the snow-
fall around 12:00 UTC. Later in the evening there was a 1 h
snowfall from a squall line, associated with a cold front pass-
ing over Southern Finland.

Time series of LWE snow rate, ensemble mean density and
PSD parameters for the 18 March case are shown in Fig. 7.
The bottom panels show measured fall velocities for selected
integration time intervals, representing observations with dif-
ferent ensemble mean densities. Between the red dotted lines
is the region where KDE is higher than half maximum for
a given particle size. The fits are applied for data points be-
tween these lines. There is considerable scatter in particle fall
velocity throughout the case and a bimodal PSD is present
momentarily in the morning as can be seen in fall velocity
panel Fig. 7a.

During the snow shower in the evening, liquid equiva-
lent precipitation rates were recorded on average roughly 3
times more intense than earlier during the day, allowing re-
trievals of ρ and PSD parameters at high time resolutions.
Strong short timescale variations of ρ and PSD parameters

are recorded during this shower. The lowest ensemble mean
density value of the case, 0.035 g cm−3, is retrieved for time
interval from 16:35 to 16:39, with concurrent D0 value of
5.5 mm and Nw of roughly 700 mm−1 m−3. The correspond-
ing fall velocity distribution visualized in Fig. 7b is charac-
terized by low values of velocity fit coefficients av and bv.
Within the following 20 min, D0 decreases down to roughly
2 mm, Nw increases to 2×104 mm−1 m−3 and retrieved val-
ues of ρ peak at over 0.2 g cm−3 between 16:54 and 16:58
and again from 17:05 to 17:08. Corresponding fall velocity
distribution between 16:54 and 16:56, shown in Fig. 7c, is
characterized by substantially higher values of av and bv than
20 min earlier, which possibly indicates the onset of riming.

4.1.2 22–23 January 2015

During 22 January 2015, similarly to the 18 March 2014
event, a warm occluded front associated with a weak low
moved northwards over the Gulf of Finland. However, due
to a blocking high over northwestern Russia, the low and the
associated front were sustained over Southern Finland for the
whole day of 23 January, causing weak continuous precipi-
tation in the area.

Time series of LWE snow rate, ρ and PSD parameters
for the 22–23 January 2015 case, with velocity–diameter fits
from selected time intervals, are shown in Fig. 8. The case is
characterized by continuous snowfall at LWE precipitation
rates lower than 1 mm h−1 throughout the case. The veloc-
ity distribution for a given time interval has substantially less
scatter compared to the 18 March 2014 case. The evolution
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Figure 7. Evolution of snowfall intensity, ensemble mean density
and particle size distribution parameters during 18 March 2015 with
associated (v, D) from three selected time intervals (highlighted in
gray). The red dashed lines mark the upper and lower velocity limits
where for a given D the KDE value is higher than half maximum.

of ρ and Nw, as shown in Fig. 8, shows considerable similar-
ities, suggesting a strong correlation.

The velocity–diameter fits shown represent a low en-
semble mean density (ρ = 0.05gcm−3) time interval of
01:03–01:16 (Fig. 8b) and two intervals of 22:30–22:52 and
02:06–02:14 (Fig. 8a, c) with higher values of ρ, 0.10 and
0.12 g cm−3, respectively. Notable is the higher modal fall
velocities and the absence of particles larger than 3 mm in
the high density time intervals compared to the distribution
in Fig. 8b.

4.2 v–D and density

In Fig. 9, particle fall velocity versus diameter data points
combined from all the cases in Table 1 are divided into three
categories according to the snow ensemble mean density of
the time interval during which particles were observed. A
least squares fit is applied to observations in each ρ range us-
ing the same procedure as for velocity–dimensional fits for
integration time intervals, as described in Sect. 3.5. The total
number of observed particles is roughly 4 440 000, and for

Figure 8. Evolution of snowfall intensity, ensemble mean density
and particle size distribution parameters during the night between
the 22 and 23 January 2015 with associated (v, D) from three se-
lected time intervals (highlighted in grey). The red dashed lines
mark the upper and lower velocity limits where for a given D, the
KDE value is higher than half maximum.

each density category numbers of particles included in the
fitting process (within the red lines in Fig. 9) are approxi-
mately 1 140 000, 1 190 000 and 360 000, respectively. The
fitted relations for ensemble mean density ranges are

v(D)= 0.834D0.217 0.0< ρ ≤ 0.1gcm−3, (11)

v(D)= 0.895D0.244 0.1< ρ ≤ 0.2gcm−3 and (12)

v(D)= 0.906D0.256 ρ ≥ 0.2gcm−3, (13)

with RMSE values of 0.30, 0.30 and 0.35 m s−1, respectively.
The coefficient is increased with density indicating higher

fall velocities with more dense particles. There is also a
clear increase in the slope of the fitted curve from the low-
est density range to the 0.1–0.2 g cm−3 range indicated by
the increase in the power term. With particles in the high-
est density range the observed size distribution is narrow and
hence the correlation between particle size and fall velocity
is weak, and it is difficult to find an unambiguous relation be-
tween them. All things considered, the results are in line with
the conclusion made by Barthazy and Schefold (2006) that
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Figure 9. Probability densities of (D,v) in three ensemble mean density ranges ([ρ] = g cm−3). Dashed lines mark the full width at half
maximum KDE in each diameter bin. Power-law functions are fitted for data between those lines.

the prefactor and power terms increase with riming degree,
which in turn are strongly connected with density (Power
et al., 1964).

Considering the definition of the volume equivalent diam-
eter, relations in the form of Eqs. (11)–(13) should be ideal
for velocity–dimensional parametrization of radar observa-
tions as the average size of hydrometeors as observed by
radar are largely defined by their volumes rather than their
shapes.

4.3 Connection between PSD parameters and density

From the analysis of PSD parameters and their relations to
ensemble mean density we have excluded data points rep-
resenting integration time intervals where D0 < 0.6 mm, as
lower values of median volume diameter would imply that
a substantial fraction of particles are too small to be ob-
served with PIP. Applying this restriction, along with min-
imum thresholds set for particle count and LWE precipita-
tion rate in density retrievals, as described in Sect. 3.2, all in
all 101 time intervals were discarded from the total of 1141
intervals of observations, leaving 7173 min of snow observa-
tions for the analysis.

4.3.1 Density and D0

In Fig. 10, observed distributions ofD0 for the three different
density regimes are shown. For the low-density particles, the
maximum D0 value rarely exceeds 5 mm, which is in agree-
ment with observations of snow aggregates presented by Lo
and Passarelli Jr. (1982). It can also be seen that D0 distribu-
tion depends on density. Low-density particles are generally
larger and vice versa. This dependence of D0 on ensemble
mean density is not surprising, given that they are related as
was previously shown by B07 and discussed in more detail
below.

Relation between ρ and size (D0) is illustrated in Fig. 11.
The areas of individual data points are proportional to the
particle counts of the corresponding observation time inter-
vals. The overlaid black solid curve, a least squares fit applied

Figure 10. Normalized frequency (bars) and kernel density (line)
of median volume diameter D0 in three ensemble mean density
ranges, [ρ] = g cm−3.

for all cases in Table 1, is given by

ρ(D0)= 0.226D−1.004
0 , (14)

where D0 is in mm and ρ is in g cm−3. As the two examined
winters were seen to have notable differences between each
other in the snowfall type and average ρ, corresponding rela-
tions were also calculated separately for the winters and are
given by

ρ(D0)= 0.273D−0.998
0 and (15)

ρ(D0)= 0.209D−0.969
0 (16)

for BAECC events and for events of winter 2014/15, respec-
tively. A relation by B07, given by ρ(D)= 0.178D−0.922

0 ,
is plotted in Fig. 11 for comparison. As their definitions of
particle diameter and ρ are close to ours, the relations are
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Table 2. The prefactors and exponents of m= amD
bm derived for exponential PSD with different values of exponent bv of velocity relation.

The mass given in grams and the volume-equivalent diameter proxy in millimeters.

am (×10−5)

Dataset bm bv = 0.217 bv = 0.244 bv = 0.256

All cases 1.996 10.36 10.45 10.49
BAECC cases 2.002 12.54 12.64 12.69
Winter 2014–2015 cases 2.031 9.679 9.757 9.792

easy to compare. Especially Eq. (16) is in good agreement
with B07’s results. The ensemble mean density is on aver-
age higher for snow events recorded during BAECC, which
suggests more riming occurred during those events. Indica-
tion to this is that the ARM AMF2 dual-channel microwave
radiometer located on the same measurement field detected
the presence of liquid water more than 80 % of the BAECC
SNEX campaign time (Petäjä et al., 2016) and the pres-
ence of supercooled liquid layers could also be observed in
the backscatter coefficient and circular depolarization ratio
measurements of the co-located ARM HSRL (High Spec-
tral Resolution Lidar) in the majority of the BAECC cases
(Goldsmith et al., 2014). In general the BAECC winter was
milder than the next winter 2014–2015, and the case dura-
tion weighted average of maximum recorded temperatures
was almost 1 ◦C higher for BAECC events compared to the
value for winter 2014–2015 cases. The temperatures closer
to 0 ◦C could mean increased aggregation as stated in B07,
and therefore decreased density values, as well as different
snow habits compared to colder cases.

The mass–dimensional relation in power-law format m=
amD

bm can be derived from the retrieved ρ–D0 relations
(Eqs. 14–16) by assuming gamma PSD and describing the
ensemble mean density approximately as

ρ ≈

∫
∞

0 m(D)v(D)N(D)dD∫
∞

0 V (D)v(D)N(D)dD
, (17)

=

∫
∞

0 am(D)
bmavD

bvN0D
µ exp(−3D)dD∫

∞

0
π
6 (0.1D)

3avDbvN0Dµ exp(−3D)dD
, (18)

=
6
π

103am
0(bm+ bv+µ+ 1)
0(bv+µ+ 4)

(
1

3.67

)bm−3

D
bm−3
0 . (19)

The integration limits are defined from 0 to infinity for deriv-
ing the analytic solution, though the true range is narrower
because of left and right truncation of the observed size spec-
trum. As shown in Fig. 6, the ensemble mean density is over-
estimated because of the truncation. The estimation bias of
density ranges between 20 % for D0 smaller than 0.75 mm
and about 2 % for D0 larger than 2 mm. Since for the esti-
mation of the m–D relation most of the observed D0 values
are higher than approx. 1 mm as shown in Fig. 10, there is
only minor contribution of the smallerD0 values, and we as-
sume our error in ensemble mean density to be close to 2 %

W

Figure 11. (D0, ρ) for all cases listed in Table 1. Area of each dot
is proportional to the number of particles in corresponding integra-
tion time interval. Power-law fits are shown separately for BAECC
winter cases (blue) and cases from the following winter (green).

because of truncation. This corresponds to an error of 2 % in
the prefactor am as well, if it is assumed that the truncation
does not introduce significant changes in the exponents of the
ρ–D0 and m–D relations.

Taking the three velocity exponents from Eqs. (11)–(13),
and assuming exponential PSD, the derived prefactors and
exponents of mass relation are shown in Table 2, having the
volume-equivalent diameter proxy in millimeters and mass
given in grams. The factor 0.1 in Eq. (18) is derived from
unit conversion, as ρ is in g cm−3. The values of prefactor
am are not sensitive to the changes in the velocity exponent
bv (changes in bv are resulting less than 1 % deviation am
values), though there is a small increase in am with increasing
bv. The prefactor is more sensitive to shape parameter µ of
the gamma PSD; the value of am increases by 24 % as µ is
increased from 0 to 1. With value of µ= 3 the increase in the
prefactor am value is 48 %. The shape factor of snow PSD is
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Figure 12. Derived m–D relations assuming exponential PSD in
comparison relations presented in literature are shown in Table 3. A
conversion of maximum dimension to volume equivalent diameter
is done by assuming axis ratio of 0.6.

Table 3. The prefactors and exponents of m= amD
bm of literature

values for comparison plotted in Fig. 12. A conversion from maxi-
mum dimension to volume equivalent diameter is done by assuming
axis ratio of 0.6.

Study bm am (×10−5)

Matrosov (2007), 0.12 mm<D ≤ 2.4 mm 2.0 4.2172
Matrosov (2007), 2.4mm<D ≤ 24mm 2.5 3.2430
Heymsfield et al. (2004) 2.04 7.5814
Mitchell et al. (1990) 2.0 3.0926
Locatelli and Hobbs (1974) 1.9 5.1134

known to be noisy and thus often exponential distribution
is assumed. With bv = 0.217 the derived mass–dimensional
relations for all cases and for both studied winters separately
are plotted against literature values in Fig. 12. The derived
exponent bm for the studied cases is in line with literature
values, close to 2, but the prefactor am values are higher than
in the presented relations in Table 3. The highest value of
am is for the BAECC cases, indicating conditions of riming.
The high prefactor values might manifest the Finnish winter
conditions. Because of the vicinity of the Baltic Sea, the air
is more moist than, for example, in continental conditions.

4.3.2 Nw and density

Distributions of observed Nw values also exhibit depen-
dence of Nw on the ensemble mean density, as shown in
Fig. 13; i.e., Nw increases with density. The modal values of
Nw are approximately 5000, 40 000 and 80 000 mm−1 m−3

for ensemble mean density ranges 0.0–0.1, 0.1–0.2 and
> 0.2 g cm−3, respectively, with the vast majority of Nw val-
ues spanning less than 2 orders of magnitude for a given ρ
range. This dependence of Nw on density is somewhat unex-

Figure 13. Frequency of Nw in three ensemble mean density
ranges, [ρ] = g cm−3.

pected. There is no obvious reason to expect that Nw would
depend on density. However, because D0 and density are re-
lated, dependence of Nw on density potentially arises from
the dependence of Nw on D0.

To verify this, the partial correlation analysis of the rela-
tion between log values of Nw and density while controlling
for log value of D0 was carried out. It was found that there
is a moderate negative partial correlation, −0.33, between
Nw and density while controlling for D0. However, the zero-
order correlation betweenNw and density is 0.52. The analy-
sis confirms that the observed relation between Nw and den-
sity is due to their relation to D0. It is not clear, however,
what the meaning is of the found negative partial correlation
between Nw and density.

A relation between Nw and snow particle size is shown
in Fig. 14a. A linear least squares fit is applied for (D0,
log(Nw)), and the corresponding relation between Nw and
D0 is given by

Nw = 2.492× 105
× 10−0.620D0 . (20)

Bringi and Chandrasekar (2001) show that there is a weak
tendency for Nw to decrease with increasing D0 for rain
(their Fig. 7.17), but to our knowledge this is the first at-
tempt to find a climatological relation between D0 and Nw
for snow. It should be noted, however, that the observed re-
lation is partially caused by data filtering, which removes
low precipitation rate data. There is a high amount of scat-
ter when Nw < 1× 103 mm−1 m−3. The data points in this
area are more contained when D0 is multiplied with ρ

1/3 as
shown in Fig. 14b. Making a fit to the resulting data points
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Figure 14. (D0, Nw) and (D0ρ
1/3 , Nw) with fitted relations.

Figure 15. Normalized frequency (bars) and kernel density (line)
of the gamma PSD shape factor µ in three ensemble mean density
ranges, [ρ] = g cm−3.

gives

Nw = 7.072× 105
× 10−1.783D0ρ

1/3
. (21)

However, the difference in correlation coefficients for the
fits in Fig. 14a and b, given by −0.87 and −0.85, respec-
tively, is minimal. The lower scatter in Fig. 14b for Nw in
the sub 103 mm−1 m−3 range seems to be compensated by
slightly more scatter in the higher end of the distribution.

4.3.3 PSD shape parameter, µ

In Fig. 15 the normalized frequencies of the gamma PSD
shape factor µ are visualized in the three ensemble mean
density ranges. UnlikeD0 andNw, µ does not seem to have a
clear correlation with ensemble mean snow density, although
a weak tendency forµ to increase with density is possible. In-
stead, the values of µ are scattered around approximately 0,
with deviation increasing with density. In the ensemble mean
density ranges 0.0 to 0.1 and 0.1 to 0.2 g cm−3 the kernel
densities peak at −0.15 and 0.62, with standard deviations
of 0.97 and 1.58, respectively. For the integration intervals
with ρ > 0.2gcm−3, the distribution of µ is more spread,
with standard deviation of 2.0 and median of 0.76. The ob-
servations support the findings of B07 and Heymsfield et al.
(2008), who have found that low-density particles generally
have exponential or slightly super-exponential distributions.
This suggests that the exponential PSD would be most appro-
priate for describing low-density aggregated snow and less so
when strong riming occurs.

5 Conclusions

Microphysical properties of snow in Southern Finland were
documented using observations from PIP and a weighing
gauge. The data were collected during US DOE ARM funded
BAECC campaign and the consecutive winter. It is shown
that there is a detectable difference in measured snow prop-
erties between consecutive winters. Snow observed during
BAECC is denser than during the next winter. The derived
m–D relations from two winters are also different, and the
difference is namely in the prefactor of the power-law rela-
tions.

It is found that D0 and Nw parameters of gamma PSD are
correlated with ρ. While the relation between ensemble mean
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density and D0 is not surprising, since these two parame-
ters are related, the correlation between Nw and ρ is inter-
esting. This correlation arises from the observed connection
between Nw and D0. It should be noted that this observed
connection is partially due to data filtering that removes low
precipitation rate data from the analysis. However, it indi-
cates that for heavier precipitation aggregation is an impor-
tant snow growth process. During snow growth by aggrega-
tion, Nw should decrease while D0 increases, as was found
by (Lo and Passarelli Jr., 1982). The shape parameter of the
gamma PSD, µ, does not seem to depend on ensemble mean
density and its average value is close to 0, which is in line
with studies reported in literature.

Dependence of v–D relation on ensemble mean density
was also studied. It was found that the prefactor of the v–D
power law depends on density. It is higher for higher den-
sities. This result is in agreement with the conclusion made
by Barthazy and Schefold (2006): the coefficient and power
terms increase with riming degree.

The presented study uses the newly developed instrument
Particle Imaging Package, which is a new generation of SVI.
It is shown that data collected by this instrument are adequate
for such studies. While the instrument only observes particle
shapes projected to single 2-D plane, as opposed to 2-DVD
or MASC, it has a larger sampling volume and its observa-
tions are less affected by wind (Newman et al., 2009). Ad-
ditionally, the instrument itself is operationally more robust
and requires less maintenance, enabling deployment in sites
with remote locations and harsh field conditions.

6 Data availability

The data of the video distrometer (PIP), the precip-
itation gauges and the snow depth sensor used in
this study are available at http://www.arm.gov/campaigns/
amf2014baecc#data or by request from D. Moisseev
(dmitri.moisseev@helsinki.fi).
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