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Abstract. The Tropospheric Monitoring Instrument
(TROPOMI) spectrometer is the single payload of the
Copernicus Sentinel 5 Precursor (S5P) mission. It measures
Earth radiance spectra in the shortwave infrared spectral
range around 2.3 µm with a dedicated instrument module.
These measurements provide carbon monoxide (CO) total
column densities over land, which for clear sky conditions
are highly sensitive to the tropospheric boundary layer.
For cloudy atmospheres over land and ocean, the column
sensitivity changes according to the light path through the
atmosphere. In this study, we present the physics-based
operational S5P algorithm to infer atmospheric CO columns
satisfying the envisaged accuracy (< 15 %) and precision
(< 10 %) both for clear sky and cloudy observations with
low cloud height. Here, methane absorption in the 2.3 µm
range is combined with methane abundances from a global
chemical transport model to infer information on atmo-
spheric scattering. For efficient processing, we deploy a
linearized two-stream radiative transfer model as forward
model and a profile scaling approach to adjust the CO
abundance in the inversion. Based on generic measurement
ensembles, including clear sky and cloudy observations, we
estimated the CO retrieval precision to be ≤ 11 % for surface
albedo ≥ 0.03 and solar zenith angle ≤ 70◦. CO biases of
≤ 3 % are introduced by inaccuracies in the methane a priori
knowledge. For strongly enhanced CO concentrations in
the tropospheric boundary layer and for cloudy conditions,
CO errors in the order of 8 % can be introduced by the
retrieval of cloud parameters of our algorithm. Moreover,

we estimated the effect of a distorted spectral instrument
response due to the inhomogeneous illumination of the in-
strument entrance slit in the flight direction to be < 2 % with
pseudo-random characteristics when averaging over space
and time. Finally, the CO data exploitation is demonstrated
for a TROPOMI orbit of simulated shortwave infrared
measurements. Overall, the study demonstrates that for an
instrument that performs in compliance with the pre-flight
specifications, the CO product will meet the required product
performance well.

1 Introduction

Measurements of the atmospheric carbon monoxide (CO)
abundance are needed with temporal continuity and global
coverage to improve our understanding of tropospheric
chemistry and long-range transport (Levy, 1971; Logan et al.,
1981; Shindell et al., 2006; Edwards et al., 2004). Verti-
cally integrated total column densities of CO can be inferred
from satellite measurements of Earth-reflected sunlight in the
2.3 µm spectral range of the shortwave infrared (SWIR) part
of the solar spectrum. The retrievals deliver sensitivity to the
tropospheric boundary layer using the first overtone 2–0 ab-
sorption band of CO between 2305 nm and 2385 nm. Under
clear sky conditions, this spectral range is subject to little at-
mospheric scattering, and most of the measured light is thus
reflected by the Earth’s surface. Therefore, SWIR measure-
ments are sensitive to the vertically integrated total amount
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of CO, including the contribution of the planetary boundary
layer. This makes the SWIR spectral range particularly suit-
able for detecting surface sources of CO from space.

With the launch of SCIAMACHY (Scanning Imaging
Absorption Spectrometer for Atmospheric Chartography,
Bovensmann et al., 1999) in the year 2002 on ESA’s Envisat
satellite, global CO SWIR measurements are available for
the years 2003–2012 (Borsdorff et al., 2016). The MOPITT
(Measurements of Pollution in the Troposphere; Drummond
and Mand, 1996) instrument, launched by NASA on board
the Terra satellite in 1999, measures atmospheric CO abun-
dance from the SWIR (Deeter et al., 2009) in addition to
thermal infrared observations in the 4.7 µm CO fundamen-
tal band. To ensure continuity of SWIR CO measurements in
the future, new space-borne instrumentation is required. In
this respect, the Sentinel 5 Precursor mission (S5P; Veefkind,
2012), to be launched at the end of 2016, will extend these
unique long-term global CO data sets using measurements
of the same spectral range, and so bridges the data gap to
the Sentinel 5 (S5) mission scheduled for launch in the year
2020.

The S5P satellite, with a designed 7-year lifetime, will fly
in a sun-synchronous orbit at 824 km altitude with an inclina-
tion of 98.7◦. It has the Tropospheric Monitoring Instrument
(TROPOMI) as a single payload, which is a push-broom
imaging spectrometer with a swath of 2600 km. TROPOMI
will provide daily global coverage with a high spatial res-
olution of 7× 7 km2 at subsatellite point. It comprises two
spectrometer modules, the first covering the ultraviolet, visi-
ble and near-infrared spectral ranges and the second covering
the shortwave infrared spectral range 2305–2385 nm with a
spectral resolution of 0.25 nm and a spectral sampling dis-
tance of 0.1 nm. A typical SWIR transmission spectrum is il-
lustrated in the top panel of Fig. 1. It shows the total transmit-
tance of solar light along its path from the sun reflected at the
surface towards the satellite. The transmittance is simulated
using the Beer’s extinction law. In this spectral range, the
relevant absorbing species are H2O its isotopologue HDO,
CO and CH4, with the optical depth of CO generally much
smaller than those of H2O and CH4. The SWIR spectrometer
is designed for a minimum signal-to-noise ratio of 100–120
in the continuum of the spectrum over land surfaces. Over
the oceans under clear sky conditions, the SWIR signal is
too low due to the dark sea surface. So CO data processing
is only possible for cloudy ocean observations. Due to these
unique mission characteristics, TROPOMI will allow for un-
precedented observations of CO total column abundances to
quantify its sources and sinks.

The Copernicus ground segment generates the CO total
column data as part of the near-real-time and offline data
stream. Near-real-time products will be delivered within 3 h
after data acquisition. The full data quality will be achieved
only for the offline data products, which are expected to be
available within a few days after acquisition. For both data
deliveries, an efficient CO retrieval algorithm is required.

Figure 1. SWIR spectral transmittance along the light path of the
solar beam reflected at the Earth surface into the instrument’s view-
ing direction. Simulations are performed for viewing zenith angle
VZA= 0◦, and a solar zenith angle SZA= 30◦, and by assuming
a US standard atmospheric profile. From top to bottom, the figure
shows the total transmittance, the individual transmittances due to
H2O (green line), HDO (purple line), CH4 and CO, respectively.
The purple region indicates the spectral range 2315–2324 nm that is
used for cloud filtering, whereas the green area highlights the adja-
cent spectral range 2324–2338 nm, which is used to infer CO total
columns from the measurements. Note the different y axis scale for
the CO transmittance.

Several fast algorithms were used to infer CO columns from
SCIAMACHY SWIR measurements, including the Weight-
ing Function Modified Differential Optical Absorption Spec-
troscopy approach (WFM-DOAS, Buchwitz et al. (2007) and
references therein), the Iterative Maximum A Posteriori ap-
proach (IMAP, Frankenberg et al., 2005), the Beer Infrared
Retrieval Algorithm (BIRRA, Gimeno García et al., 2011),
and the Iterative Maximum Likelihood Method approach
(IMLM, Gloudemans et al., 2009, and references therein).
These algorithms retrieve vertically integrated CO column
density over land and above clouds over oceans. Buchwitz
et al. (2006) and Gloudemans et al. (2009) use a priori
methane information to characterize the light path through
the atmosphere.

Based on these concepts, Vidot et al. (2012) proposed the
Shortwave Infrared Carbon Monoxide Retrieval (SICOR) al-
gorithm for the processing of CO total columns from S5P
and S5 shortwave infrared measurements. The algorithm de-
scribes the effect of clouds on the radiation field by an ele-
vated Lambertian reflector of a fixed albedo, adjusting the el-
evation height and the cloud coverage of the observed scene.
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This approach accounts well for the effect of optically thick
water clouds on the CO retrieval with biases< 3 %, but intro-
duces larger biases for an elevated aerosol layer above bright
surfaces as well as optically thin cirrus clouds in the upper
troposphere. Here the photon path length is significantly en-
hanced due to photon trapping between the aerosol or cirrus
layer and the surface, which represents a clear drawback of
the approach. The study at hand analyzes recent advance-
ments in developing the SICOR algorithm, amongst others
using a linearized two-stream radiative model to account for
atmospheric scattering. Here we give particular attention to
the TROPOMI specific instrument aspects, and we discuss
the expected algorithm performance in the context of the op-
erational data processing of the S5P mission.

The paper is structured as follows: Sect. 2 describes the
retrieval method including the basic features of the for-
ward model. More details on the linearized two-stream ra-
diative transfer model are given in Appendix A. In Sect. 3,
we present the uncertainty analysis of the CO product with
respect to atmospheric and critical instrument parameters
based on generic measurement scenarios, whereas Sect. 4
illustrates the TROPOMI CO data product for a simulated
level-1b orbit ensemble. Finally, Sect. 5 concludes the paper.

2 Retrieval algorithm

The TROPOMI CO retrieval algorithm infers information
on the total amount of CO from SWIR measurements, fo-
cussing on clear-sky observations over land and cloudy ob-
servations over land and ocean in the presence of low-altitude
liquid water clouds. Figure 2 summarizes the SICOR algo-
rithm. The dynamic input includes S5P level 1b data, which
comprises solar irradiance and Earth radiance spectra in the
spectral range 2315–2338 nm, forecast (FCST) data on at-
mospheric pressure p, temperature T and specific humid-
ity q, the terrain’s elevation from a digital elevation model
(DEM) and a priori information on the CO and CH4 verti-
cal distribution of the observed atmosphere coming from a
chemical transport model (CTM). These input data and their
required accuracy will be discussed in more detail in Sect. 3.
The first processing step screens the data to filter out obser-
vations with high and optically thick clouds. Subsequently,
we utilize a physics-based retrieval approach to infer CO
columns from SWIR measurements together with the atmo-
spheric H2O abundances, surface albedo and a spectral cal-
ibration of the measurement spectrum. The spectral absorp-
tion by methane is used to infer information on atmospheric
scattering by clouds and aerosols. Finally, the algorithm has
the retrieved CO total column, the corresponding column av-
eraging kernel and an estimate of the random error compo-
nent as output. The theoretical baseline of our algorithm is
described in detail in the following.

Figure 2. Flowchart of the SICOR algorithm.

2.1 Cloud filtering

To detect the presence of high, optically thick clouds, we in-
fer the vertically integrated amount of methane from mea-
surements between 2315 and 2324 nm (see Fig. 1) using a
radiative transfer model that neglects atmospheric scattering.
The difference1CH4 between the retrieved CH4 column and
a priori methane information coming from a chemical trans-
port model indicates light path modification, either short-
ening or enhancement in comparison with the direct light
path from the sun to the spectrometer via reflection at the
Earth surface, due to atmospheric scattering by clouds and
aerosols. Here the net effect depends on the scattering prop-
erties such as scattering height and optical depth, surface re-
flection and solar and observation geometry (e.g., Aben et al.,
2007). If the difference exceeds a certain threshold, observa-
tions are rejected. The non-scattering retrieval algorithm uses
a standard least squares approach to infer the total column of
CH4, CO, H2O and HDO together with a surface albedo As,
its linear dependence on wavelength and a spectral offset. It
is described in more detail by Scheepmaker et al. (2016).

Figure 3 shows the probability density function (PDF) and
its cumulative distribution (CPDF) of the difference 1CH4
between a non-scattering CH4 retrieval from observations
of Greenhouse Gases Observing Satellite (GOSAT, Kuze
et al., 2009) at the 1.6 µm band of the year 2010 over land
and ocean and collocated CH4 columns from TM5 model
simulations after optimization using surface measurements
(Houweling et al., 2014), relative to the model results. The
maximum of the ocean and land PDF is at small differences
1CH4, indicating a large number of scenes that are affected
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Figure 3. Probability density function (left panel) and cumulative
probability density function (right panel) of the difference 1CH4
of 1 year of GOSAT observations (2010) minus the corresponding
TM5 model simulations. The figure differentiates between the con-
tribution of ocean and land pixels (blue and green areas).

only little by clouds. For about 80 % of all observations, the
methane abundance is underestimated by the non-scattering
retrieval due to the presence of optically thick clouds. Here,
the ocean PDF shows a relatively high probability for 1CH4
between −20 and −5 % due to the presence of low strati-
form clouds over ocean. For land pixels, this type of cloudi-
ness occurs less frequently. Finally, 20 % of all cases show an
overestimation of methane by the non-scattering retrieval, in-
dicating an effective pathlength enhancement. Although the
effect of light path shorting and enhancement may depend on
wavelength, because of the spectral dependence of the sur-
face albedo and the optical properties of the atmosphere, the
GOSAT PDF of 1CH4 provides a first estimate of the corre-
sponding TROPOMI PDF of methane retrievals at 2.3 µm. As
a baseline for our data selection, we accept all observations
with |1CH4| ≤ 25 %.

2.2 Forward Model

The physics-based retrieval of CO requires a forward model
F that describes the measurement as a function of the atmo-
spheric state including an appropriate description of atmo-
spheric scattering,

y = F (x,b)+ ey . (1)

Here, vector y has the spectral measurements between 2324
and 2338 nm as its components (see Fig. 1), state vector x
represents the parameters to be retrieved, b describes pa-
rameters other than the state vector that influences the mea-
surement but are not adjusted by the retrieval and ey is the
measurement error. The fit window compromises about opti-
mal CO sensitivity, little interference with water vapor and
methane absorptions and small forward model errors due
to the assumed cloud model. Moreover, the forward model
is nonlinear in the state vector x. Therefore, the inversion
problem is solved iteratively employing the Gauss–Newton
method, where for each iteration step the forward model is

linearized by a Taylor expansion around the solution of the
previous iteration xo:

F (x,b)= F (x0,b)+
∂F

∂x
(x0,b){x− x0}+O((x− x0)

2) . (2)

O(x2) indicates second and higher order contributions of the
expansion.

The forward model F simulates the Earth radiance mea-
surement by a spectral convolution of the top-of-model-
atmosphere radiance ITOA with the instrument spectral re-
sponse function:

Fi = si · I
TOA
=

∫
si(λ) I

TOA(λ)dλ . (3)

Here, si describes the spectral instrument response of spec-
tral pixel i with the assigned wavelength λi , and ITOA(λ)

is simulated by a line-by-line radiative transfer model on a
fine internal spectral grid. This model requires a solar irra-
diance spectrum on the internal spectral grid as input, which
is inferred from the daily solar measurements of TROPOMI
using the deconvolution approach by van Deelen et al. (2007)
and Wassmann et al. (2015).

State-of-the-art radiative transfer models account for mul-
tiple scattering in multiple propagation directions (streams)
including the polarization of light. For our application, the
computational effort of such simulations is far too large, and
thus approximation methods are required to accelerate the
forward model simulations. For this reason, we ignore at-
mospheric Rayleigh scattering, which contributes less than
0.15 % to the total signal (Gloudemans et al., 2008), and
use a numerically efficient two-stream scalar radiative trans-
fer model to describe scattering by clouds and aerosols. The
employed two-stream solver (2S-LINTRAN) calculates the
amount of singly scattered light, whereas the diffuse radi-
ation is approximated by two propagation directions of the
radiance field, one upward and one downward. It is similar
to the model by Spurr and Natraj (2011), and the numeri-
cal implementation used for the S5P CO column retrieval is
described in more detail in Appendix A.

In the forward model, clouds and aerosols are represented
by a scattering layer with a triangular height profile in optical
depth with a center height zscat and a fixed full width at half
maximum of 2.5 km. Within the scattering layer we assume a
constant single scattering albedo and scattering phase func-
tion. In this case, we can optimize the numerical efficiency
of the two-stream solver using an aggregated vertical grid. In
a first step, we calculate absorption optical depth on a 1 km
vertical grid accounting for the pressure and temperature de-
pendence of atmospheric absorption, and subsequently we
combine the atmosphere layers above and below the scatter-
ing layer to one layer each by integrating the optical depth.
This significantly reduces the number of vertical layers in
the radiative transfer simulation (typically to less than 10),
depending on the number of internal layers that are used to
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resolve the height profile of the scattering layer. Finally, the
optical properties of the scattering layer have to be known
a priori and we chose a spectrally constant single-scattering
albedo ω = 0.9 and an asymmetry parameter of the scatter-
ing phase function g = 0.7. Moreover, we use a simplified
wavelength dependence of the extinction optical thickness of
the scattering layer:

τ(λ)= τ(λ0)

(
λ

λ0

)−α
, (4)

where the reference wavelength λ0 = 2331 nm is chosen at
the center of our fitting window and α = 1.0 is the Ångström
parameter. These a priori assumptions on the optical param-
eters of clouds and aerosols will be justified by the perfor-
mance analysis in Sect. 4, which is based on measurement
simulations of one TROPOMI orbit for a realistic variation
of cloud and aerosol properties.

In spite of the efficiency of the radiative transfer solver,
the numerical cost of the forward model has to be reduced
further for operational data processing. Therefore, we pre-
calculate the molecular absorption cross sections σ of CH4,
H2O, HDO and CO as a function of pressure, temperature
and for a spectral sampling distance of 5× 10−3 cm−1 from
spectroscopic databases (Rothman et al., 2009; Predoi-Cross
et al., 2006 for CO and CH4 respectively, and Scheepmaker
et al., 2013 for water vapor and its isotopologues). From this
data set, we derive cross sections by bilinear interpolation
of the pressure and temperature for each individual retrieval
layer followed by the calculation of effective cross sections
σeff per species on a coarser spectral sampling ki by the gen-
eralized mean

σeff(ki)=
m

√∫
Ti(k)σ

m(k)dk∫
Ti(k)dk

, (5)

with a spectral sampling of 3× 10−2 cm−1. Here, k repre-
sents wavenumber and Ti(k) is a normalized symmetric tri-
angular weighting function between spectral samplings ki−1
and ki+1 with a peak at ki . For m= 1, Eq. (5) describes the
arithmetic mean, which introduces significant forward model
errors in the retrieval for the envisaged spectral sampling.
We performed retrieval experiments for different values of
m, where we achieved most accurate radiance simulations
with CO retrieval biases < 1 % under clear sky conditions
for m= 0.85. Overall, the use of the effective cross sections
speeds up the forward model simulations by a factor of 6
compared to line-by-line calculations on the spectral grid of
the original spectroscopic database.

2.3 Inversion

The SWIR measurements are sensitive to the total amount
of CO along the path of the measured light. For clear sky
atmospheres and within the bounds of the measurement er-
ror, only the total column of CO can be inferred from the

measurement (Borsdorff et al., 2016), and no information is
obtained about the relative vertical distribution of CO. In the
presence of clouds, the measurement loses sensitivity to the
amount of CO below the cloud. To properly account for this,
a regularized CO profile retrieval is required that accounts for
the different sensitivity of the measurement to CO at differ-
ent altitudes. For this purpose, we employ the Tikhonov reg-
ularization technique of first order (Phillips, 1962; Tikhonov,
1963) embedded in the Gauss–Newton iteration scheme. For
each iteration step, the least square solution x̂ is given by

x̂ =min
x

{
||S−1/2

y (F (x)− y)||2+ γ 2
||L1x||

2
}
. (6)

Here, || · || describes the Euclidean norm and Sy is the error
covariance matrix of the measurement y, where we assume
uncorrelated measurement errors. γ is the regularization pa-
rameter and

L1 =


−1 1 0 · · · 0 0
0 −1 1 0 · · · 0
...

...
...

...
...

...

0 0 · · · −1 1 0
0 0 · · · 0 −1 1

 (7)

is the first-difference operator, and so the regularization fa-
vors constant solutions and penalizes the “roughness” of x.
The state vector x contains the CO profile xCO, which is ex-
pressed relative to a reference profile ρref, namely

xCO = ρ/ρ
ref. (8)

For the operational implementation, TM5 model fields are
used to extract an adequate CO reference profile. Besides
the relative profile of CO, the state vector includes the wa-
ter vapor column density for two isotopologues, cH2O and
cHDO, the surface albedo As and its linear dependence on
wavelength 1As, the effective cloud center height zcld and
the effective cloud optical depth τcld. Furthermore, a spectral
shift 1λ is fitted to account for spectral calibration errors of
the measurement. To keep all elements of the state vector di-
mensionless, in addition, these entries of the state vector are
normalized to a reference value. We regularize the solution
in Eq. (6) such that 1 degree of freedom for signal of the
retrieved CO profile is inferred from the measurement, bear-
ing in mind that because of the noise the TROPOMI SWIR
measurements are only sensitive to the total amount of CO
along the path of the observed light through the atmosphere.
For Eq. (6), this corresponds to a regularization parameter
γ →∞.

Borsdorff et al. (2014) showed that the solution of this
minimization problem is identical to an unregularized least
squares approach:

x̂ =min
x
||S−1/2

y (F (x)− y)||2 , (9)
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where the state vector contains the total CO column instead
of the CO profile:

c = Cρ =

∫
ρ(z)dz , (10)

with the corresponding altitude integral operator C. All other
elements of the state vector remain the same.

The solution of this least-squares problem is

x̂ =Gỹ (11)

with

ỹ = y−F (x0)+Kx0 (12)

and

G=
(

KT S−1
y K

)−1
KT S−1

y . (13)

Two important diagnostic tools can be calculated during
the retrieval (Borsdorff et al., 2014), the error covariance ma-
trix Sx =GSyGT , which describes the effect of the measure-
ment noise on the retrieved parameters including their corre-
lations, and the column averaging kernel

Acol
=

dĉ
dρtrue , (14)

which indicates the sensitivity of the retrieved column ĉ to
changes in the atmospheric CO profile. Here, we provide the
column averaging kernel for the CO profile given by its par-
tial columns of each model layer. In the linear approximation,
the column averaging kernel relates the retrieved CO column
to the true CO profile by

ĉ =Acolρtrue
+ ex , (15)

with an error contribution ex . Therefore, generally ĉ does not
represent an estimate of the true column and the difference

enull = (C−A
col)ρtrue (16)

is called the null-space error of the inversion. This error can
be interpreted as the effect of the chosen reference profile
on the retrieved CO column density (Borsdorff et al., 2014;
Wassmann et al., 2015). If the reference profile to be scaled
by the inversion has the correct shape, the null space error
vanishes and the retrieved column represents an estimate of
the true column.

Referring to Eq. (15), we characterize the retrieval accu-
racy for simulated measurements by the retrieval bias bCO,
which is defined as the difference between the retrieved col-
umn and Acolρtrue corrected for the retrieval noise gCOey :

bCO =
ĉ−Acol ρtrue−g

COey

Acol ρtrue
. (17)

Here gCO is the CO row vector of the gain matrix in Eq. (13),
and ey represents the measurement noise.

The inversion described so far focused on the regulariza-
tion of the ill-posed retrieval of a CO profile from SWIR
measurements. The inversion remains vulnerable to other el-
ements of the state vector to which the measurements are
insensitive for certain atmospheric circumstances. For exam-
ple for a scene overcast by a optically thick cloud, the mea-
surement is insensitive to the surface albedo. On the other
hand, for a clear sky observation the adjustment of the sur-
face albedo is required but the measurement is insensitive to
the height of a possible cloud layer. Hence for these circum-
stances, certain eigenvalues of the normal matrix

(
KT S−1

y K
)

approach zero, leading to singularities in the inversion. To
overcome this, we apply Tikhonov regularization of zeroth
order to the relevant elements of the state vector, namely

x̂ =min
x

{
||S−1/2

y (F (x)− y)||2+ γ 2
||Wx||2

}
, (18)

where W is a diagonal weighting matrix, of which diagonal
elements are one for all elements of the state vector related
to the scattering layer and the surface albedo, i.e., As, 1As,
zcld and τcld, and zero otherwise.

The implementation of the SICOR inversion algorithm is
based on the minimization problem (Eq. 18). It comprises
the CO profile scaling approach as a particular regulariza-
tion of the CO profile retrieval in Eq. (6). For the software
implementation, we make use of the fact that its solution is
identical to the least squares problem (Eq. 9), where the at-
mospheric abundance of CO abundance is adjusted through
scaling of a reference profile. Finally to prevent numerical in-
stabilities, we introduce a second regularization in Eq. (18),
which mainly affects the inversion of cloud and surface pa-
rameters, and its effect on the retrieved CO column can be ne-
glected. In this study, we have determined the regularization
parameter γ by numerical experiments (Vidot et al., 2012),
which requires verification during the instrument commis-
sion phase.

Finally, the nonlinearity of the inversion is accounted by
the Gauss–Newton iteration, where the degree of conver-
gence is defined as the difference in the reduced chi-squared
χ2 between two consecutive iteration steps, and convergence
is achieved when |χ2

n −χ
2
n−1|< ε. The threshold value of

ε can only be determined in a reliable manner using real
measurements during the commissioning phase of the S5P
mission. In this study, we used ε = 0.5. For clear sky ob-
servations ignoring the retrieval of a scattering layer, the
Gauss–Newton scheme shows satisfying convergence prop-
erties. However, inferring cloud properties introduces signifi-
cant nonlinearity issues to the retrieval. Therefore to mitigate
the risk of an unstable inversion, we reduce the step sizes of
the inversion during the first few iterations as described by
Butz et al. (2012).

In summary, the operational S5P CO data product consists
of (1) the CO vertically integrated column density c, (2) the
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standard deviation σ of the CO retrieval noise characterized
by the retrieval error covariance matrix Sx and (3) the column
averaging kernel Ac.

3 Sensitivity analysis

For individual CO observations, the Sentinel 5 Precursor
mission envisages a product accuracy of ≤ 15 % and a pre-
cision of ≤ 10 % (Veefkind, 2012). In this section, we dis-
cuss the CO retrieval sensitivity of our algorithm to forward
model errors and a set of key atmospheric and instrument pa-
rameters, and compare these errors to the envisaged product
uncertainties. To estimate the retrieval accuracy of our algo-
rithm, we have generated synthetic measurements for generic
test cases using the S-LINTRAN radiative transfer model
(Schepers et al., 2015). The model is a scalar plane-parallel
radiative transfer model that fully accounts for multiple elas-
tic light scattering by clouds and air molecules and the re-
flection of light at the Earth surface. The optical properties
of clouds are calculated using Mie theory. For ice clouds, the
ray tracing model by Hess and Wiegner (1994) and Hess et al.
(1998) is used. Finally, we describe cirrus and clouds by their
top and base heights, and cloud optical thickness at 2315 nm.
We assume that cirrus fully overcasts the observed scene,
whereas broken cloud coverage is addressed by the indepen-
dent pixel approximation (Marshak et al., 1995). Moreover,
we assume the US Standard Atmosphere (NOAA, 1976) for
the profiles of dry air density, pressure, water and CO. The
CH4 profile is taken from the European background scenario
of Levelt et al. (2009).

The radiance spectra are perturbed by measurement noise
from the TROPOMI noise model by Tol et al. (2011) for an
instantaneous view with a footprint of 3.5×7 km2 and a tele-
scope aperture of 12 mm2. (The etendue of the SWIR channel
is 4.3×10−10 m2 sr.) The optical transmittance of the instru-
ment is adjusted such that, for a spectral sampling of 0.1 nm,
a signal-to-noise ratio of 100 is achieved in the continuum
of the spectrum for a dark reference scene (surface albedo
As = 0.05, viewing zenith angle VZA= 0◦ and solar zenith
angle SZA= 70◦). The instrument noise includes noise due
to the thermal background, the dark current of the detector,
the readout noise and the analog-to-digital converter noise.

Figure 4 shows an example of the CO retrieval perfor-
mance for simulated measurements with increasing cloud
coverage over land and a dark land surface with an albedo
As = 0.05. It depicts the retrieval bias bCO, the retrieval noise
σCO, and the column averaging kernel. The retrieval biases
increases to 2.3 % with increasing cloud fraction because
deficits of our cloud model become more relevant with in-
creasing cloud coverage. At the same time, the retrieval noise
of the CO column decreases due to the gain in the measure-
ment signal. The change of the retrieval sensitivity with cloud
coverage is clearly illustrated by the column averaging ker-
nels shown in the right panel of Fig. 4. When the cloud frac-

tion is greater than zero, the column averaging kernel starts
to increase above the cloud and at the same time decreases
below the cloud, and so reflects the effect of cloud shielding
on the retrieved column utilizing the profile scaling approach
(Borsdorff et al., 2014).

Similar results were already presented by Vidot et al.
(2012), who used a previous version of the SICOR algo-
rithm. In their study, clouds were accounted for in the re-
trieval by an elevated Lambertian reflector. This approach
appeared to be appropriate to describe the effect of optically
thick clouds, and boundary layer aerosols in the retrieval and
similar small retrieval biases are achieved with the latest ver-
sion of SICOR described here. However, in case of an opti-
cally thin scattering layer due to an elevated dust layer, opti-
cally thin clouds and cirrus above a bright surface, the previ-
ous version of SICOR (Vidot et al., 2012) could not account
for any path enhancement of the observed light due to light
trapping between the scattering layer and the surface. In the
study of Vidot et al. (2012), this shortcoming became clear
when assessing the retrieval accuracy for optically thin cirrus
above bright surfaces. This is the main reason why the two-
stream radiative transfer solver is used in the current algo-
rithm, which approximates both transmission and reflection
of a cloud and so allows for photon trapping between opti-
cally thin clouds and a bright surface. In the following, our
analysis focuses on these new aspects of our algorithm.

3.1 Forward model errors

The forward model of our retrieval introduces errors due to
the accuracy of the two-stream model, the neglect of atmo-
spheric Rayleigh scattering and the description of clouds and
aerosols by a single triangular scattering layer. To elicit the
impact of these approximations, we consider three generic
measurement ensembles for a clear sky atmosphere and for a
cloudy atmosphere with optically thin clouds and cirrus.

Figure 5 shows the CO retrieval bias and the correspond-
ing retrieval noise for simulated clear sky measurements in-
cluding atmospheric Rayleigh scattering with a variable sur-
face albedo and a variable solar zenith angle. Overall, the
retrieval bias is small with −0.5 %≤ bCO ≤ 0.5 %. The re-
trieval noise increases from values < 1 % at high sun and for
bright surfaces to ≈ 11 % for low sun (SZA= 70◦) and low
albedo (As = 0.03). This increase is governed by the signal
strength and so by the signal-to-noise ratio of the measure-
ment.

To investigate the effect of photon trapping between clouds
and the surface, Fig. 6 depicts the CO bias for a cloud be-
tween 4 and 5 km altitude with a small optical depth τscat = 2
as a function of surface albedo and cloud coverage. Here, the
CO bias reaches 1.5 % with increasing cloud coverage. For
a cirrus layer between 9 and 10 km of varying optical depth
as function of the surface albedo, the light trapping effect
at high surface albedo results in a CO biases bCO ≤ 0.5 %.
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Figure 4. Example of the S5P CO data product and its performance as a function of cloud fraction fcld. The SWIR measurements are
simulated for a scene partially covered by a cloud between 2 and 3 km with optical depth τcld = 5, a surface albedo As = 0.05, a solar zenith
angle of 50◦ and a viewing zenith angle of 40◦. Left panel: CO retrieval bias bCO. Middle panel: retrieval noise σCO. Right panel: column
averaging kernel for different cloud fractions as indicated in the legend. The gray area indicates the position of the cloud.

Figure 5. Retrieval bias bCO (left panel) and retrieval noise σCO (right panel) for the clear sky conditions (without aerosol, clouds and cirrus)
and for a viewing zenith angle (VZA) of 0◦ as a function of solar zenith angle (SZA) and surface albedo As.

Similar small biases are found for an elevated dust layer and
optically thin clouds (not shown).

Moreover, we investigated the implications of the retrieved
cloud parameters being effective cloud parameters. These pa-
rameters differ from the truth because of the limited infor-
mation available from the satellite measurements. Here, the
retrieval forward model has to describe clouds in a simpli-
fied manner with a few free parameters, and all remaining
cloud properties have to be fixed a priori (see e.g., Koelemei-
jer et al., 2002; van Diedenhoven et al., 2007). In our case,
the cloud model includes several simplifications, e.g., a hori-
zontally homogenous cloud with the triangular height distri-
bution in optical depth, and a two-stream radiative transfer
model to describe the cloud radiative properties. Consider-
ing the measured radiometric signal as a mean of a photon
ensemble with different light paths through the atmosphere,
the retrieval adjusts the cloud parameters and the simulated
light paths such that the methane absorption features can be

fitted by the forward model. This may include erroneous light
paths, of which effects average out in the simulated mea-
surement for the particular height distribution of methane.
However for another trace gas with a different vertical pro-
file, such as CO, the relevance of the individual photons for
the observed signal may differ, and so the simulated light
paths introduce spectral errors in the simulated CO absorp-
tion features. Subsequently adjusting the trace gas concen-
trations in the retrieval, CO biases are introduced for cloudy
atmospheres.

Obviously, this retrieval error depends on the particular
CO profile and the altitude at which the simulated light path
deviates from its truth. Therefore, to characterize this inher-
ent bias of our retrieval approach, we simulate SWIR mea-
surements for a cloudy atmosphere adding CO abundance in
a 1 km thick, vertically homogenous layer with varying layer
top height zper. Here, the CO enhancement increases the CO
total column by 50 %. Figure 7 shows the CO biases as a
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Figure 6. Left panel: retrieval bias in case of a cloud atmosphere. The CO bias is shown as a function of surface albedo As and cloud fraction
f for a cloud between 4 and 5 km altitude with optical depth τscat = 2 and a VZA of 0◦. Right panel: CO retrieval bias for measurements
in presence of optically thin cirrus, which overcasts the entire scene, as a function of surface albedo and cirrus optical depth that defined at
2300 nm. The gray area indicates measurement simulations, which were rejected by the cloud filter.

Figure 7. Retrieval bias bCO in cloudy atmospheres in case of
strongly enhanced CO concentrations. Measurement simulations
are performed for a surface albedo As = 0.05, SZA and VZA of
50 and 0◦ and for overcast sky with a cloud at 1–2 km altitude with
an optical depth of τcld = 2 (pink) and τcld = 5 (blue). Addition-
ally, we consider a case of partially cloud cover with cloud fraction
fcld = 0.1 at 4–5 km altitude with τcld = 2 (yellow). The CO profile
represents the US Standard Atmosphere with a perturbation at the
indicated altitude zper enhancing the total amount of CO by 50 %.

function of zper for scenes covered with low clouds at 1–2 km
altitude with optical thicknesses of 2 and 5, and a cloud at 4–
5 km covering 10 % of the scene with a cloud optical thick-
ness of 2. In each case, the simulated measurement passes
the cloud filter of Sect. 2.1. We clearly see a positive retrieval
bias up to 5 % for enhanced CO concentration at the altitude
of the optically thin cloud, whereas a negative bias of 7 %

is found for low clouds in combination with a near-surface
CO enhancements. The latter error is relevant for burning
events localized in the tropospheric boundary layer. Above
the cloud, the error sensitivity is only small, indicating that
the light path at this altitude range is well described by our
simplified radiative transfer model. Furthermore, for the op-
tically thicker clouds the error sensitivity is below 2 %, as
expected for a primarily reflecting cloud.

3.2 Atmospheric parameters

An important element of the CO retrieval approach is the
use of methane a priori information to determine effective
cloud properties from the SWIR measurements as discussed
above. The SICOR retrieval relies on simulated CH4 fields
from the TM5 model (Krol et al., 2005), which have been
used in several studies (e.g., Meirink et al., 2008; Bergam-
aschi et al., 2005, 2009). Via the inverse modeling technique,
the sources and sinks of CH4 in the TM5 model are opti-
mized by minimizing the residual differences between model
and measurements from the NOAA-ESRL global monitoring
network and deviations from the a priori surface flux distri-
bution (Houweling et al., 2014). In the following, we refer to
these model runs as the TM5-NOAA simulations.

To test the overall accuracy of the model simulations, we
compare 1 year of CH4 model fields with collocated GOSAT
observations (Butz et al., 2009, 2010, 2011; Schepers et al.,
2012). Here, the GOSAT CH4 product is extensively vali-
dated with TCCON ground measurements with an overall
root-mean-square (rms) difference of 15 ppb and a station-
to-station bias of 3.5 ppb (Detmers and Hasekamp, 2015).
Within these boundaries, the GOSAT XCH4 retrieval can
be used to estimate the model accuracy. To this end, Fig. 8
shows the difference between GOSAT- and TM5-NOAA-
simulated XCH4. Over China, the largest biases of up to 3 %
occur because of inconsistencies in the underlying emission
scenario in combination with a limited regional coverage of
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Figure 8. Difference between CH4 total column dry air mixing ra-
tios from TM5-NOAA simulations and GOSAT retrievals for the
period June 2009 to December 2012.

the NOAA-ESRL ground-based measurements. Overall bi-
ases are smaller with an rms difference between GOSAT
and TM5-NOAA, amounting to 20 ppb and increasing to-
wards southern latitudes. This latitudinal bias in TM5, rel-
ative to GOSAT, is also found in other models (see e.g., Lo-
catelli et al., 2015) and is currently under further investiga-
tion. Comparisons of the modeled CH4 columns with col-
located TCCON measurements are largely consistent with
these findings with an rms difference between 8 and 22 ppb
depending on the TCCON site.

Inherent to this analysis is the assumption that the NOAA-
ESRL measurements are available in a timely manner to per-
form model simulation as input to the retrieval. This time-
liness of the simulation needs further consideration. Com-
monly, inverse-modeling-derived estimates lag behind real
time by approximately 1 year. This is mostly due to the avail-
ability of various types of inputs that are required, including
meteorological fields, a priori emission estimates, and mea-
surements. Due to that, we propose a modeling procedure
that uses the inversion-optimized TM5 estimates of the dry
air mole column mixing ratio of methane XCH4 of the previ-
ous year. Obviously, the largest error source is the variability
in XCH4 caused by the year-to-year variations in meteorol-
ogy and the interannual variability of the methane sources
and sinks. We estimate the size of the error from results of
a multi-year inversion for the period 2003–2010, calculating
how XCH4 on a given day of the year (15 January, April, July
and October) varied between the years. Largest variations are
found over Southeast Asia, due to large regional sources of
methane, but errors in the meteorology of the northern and
southern hemispheric storm tracks are also present. On av-
erage, the standard deviations are well within 1 % (18 ppb)
on average, regionally increasing up to 1.5 % (27 ppb). Spo-
radically, standard deviations up to 3 % are found, associated
with biomass burning events. Acknowledging these limita-
tions in our approach, an uncertainty of 3 % of our methane
a priori knowledge seems a reasonable margin that should be
achievable for most conditions encountered throughout the
global domain.

Figure 9. CO bias due to a priori errors in CH4 for the clear sky
measurement ensemble of Fig. 5. For each CH4 error, the CO bias
probability function is shown. The CO error sensitivity is estimated
by a linear regression through all data points (solid line).

For the generic clear sky measurement ensembles, Fig. 9
shows the PDF of the CO biases as a function of the methane
model error of approximately ±3 %. A linear regression
through the data points indicates a nearly one-to-one error
correspondence with 1.11 % CO bias due to 1 % error in the
methane model columns. Table 1 provides the correspond-
ing bias sensitivity for the cloudy and cirrus measurement
ensembles in Fig. 6. Aggregating these results, we conclude
that the CO retrieval bias due to the uncertainty of the TM5-
NOAA model input typically does not exceed 3 %.

Additionally to the CH4 a priori error, an erroneous sur-
face pressure affects the inferred CO column both through a
wrong conversion of the methane mixing ratio XCH4 into the
total column density of methane and via an erroneous spec-
troscopy because of the pressure broadening of individual ab-
sorption lines. For the operational retrieval, we use pressure
information from the European Centre for Medium-Range
Weather Forecasts (ECMWF) with a typical accuracy of 2–
3 hPa (Salstein et al., 2008). Subsequently, ECMWF surface
pressure is interpolated on the particular TROPOMI pixel by
means of the digital elevation map of Farr (2007) and Daniel-
son and Gesch (2011), accounting for the topography of the
terrain. For pressure uncertainties in the range ≤ 3 hPa, we
obtain an error sensitivity of 0.11–0.13 % CO column er-
ror per 1 hPa surface pressure error for the clear sky and
cloudy scenarios of our generic measurement ensemble. Fur-
thermore, we evaluated the impact of uncertainties in the at-
mospheric temperature forecast of ECMWF, which has been
estimated at a few Kelvin. Table 1 lists the CO retrieval sen-
sitivities with respect to an offset of the atmospheric temper-
ature profile in the range±3 K, which vary between 0.17 and
0.23 % CO column error per 1 K temperature offset. Thus
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Table 1. CO column retrieval sensitivity in % with respect to the
uncertain knowledge of a set of atmospheric and instrument param-
eters for the generic clear sky, cloud and cirrus ensemble: (1) CH4
a priori uncertainty of TM5-NOAA runs, (2) ECMWF surface pres-
sure uncertainty, (3) ECMWF temperature profile offset, (5) FWHM
uncertainty of the ISRF, (6) spectral calibration error δs and (7) the
radiometric offset Ioffset and a multiplicative radiometric error Iscal
of the level 1 data product.

No. Parameter Clear sky Cloud Cirrus

1 CH4 a priori (% %−1) 1.11 1.18 1.21
2 pressure (% hPa−1) 0.11 0.13 0.13
3 temperature (% K−1) 0.23 0.17 0.20
4 FWHM (% %−1) 0.51 0.40 0.43
5 δs (% 10 pm−1) 0.88 0.87 0.87
6 Ioffset (% %−1) −0.63 −0.47 −0.46
7 Iscal (% %−1) 0.01 0.01 0.02

for the CO column product, we expect the corresponding re-
trieval biases due to inaccuracies in the atmospheric parame-
ters to be well within 1 %.

3.3 Instrument effects

Finally, we studied the CO retrieval sensitivity with respect
to a set of instrument-related parameters. First, the Earth ra-
diance spectrum may be subject to a radiometric offset Ioffset,
expressed relative to the radiance level at the reference wave-
length of 2315 nm, or a spectrally constant multiplicative er-
ror δIscal. Instrumental reasons for these errors can be many-
fold, e.g., uncorrected stray light, detector and read-out elec-
tronics performance and an erroneous pre-flight instrument
calibration. For the generic ensembles, we derived an error
sensitivity of −0.47 to −0.63 % CO column error per per-
cent radiometric offset and 0.01 to 0.02 % per percent mul-
tiplicative radiometric error. The corresponding TROPOMI
observation requirement for a radiometric offset is < 0.1 %,
and for a multiplicative radiometric error on the Earth ra-
diance measurement it is < 2 % (Buscaglione, 2011). The
main reason for this robust CO retrieval performance with re-
spect to this type of radiometric errors is the selected spectral
window with relatively weak atmospheric absorption. Here,
these spectral biases can be mitigated efficiently by the re-
trieval of an effective surface albedo and cloud properties.

To study an erroneous spectral calibration of the measure-
ment, we assumed a correct instrument calibration λi of spec-
tral detector i and an erroneous calibration

λ′i = λi +
λi − λm

λr − λm
δs . (19)

Here, λr = 2385 nm indicates the longwave edge of the
SWIR band and λm = 2345 nm is the spectral center. There-
fore, δs characterizes the spectral calibration errors at the
edges of the SWIR spectral range, whereas in the center

λm the calibration error vanishes. The corresponding spec-
tral squeeze for the CO fit windows (2315–2338 nm) is about
one-third of δs. The error sensitivity of the CO column prod-
uct is about 0.9 % per δs = 10 pm. Due to the required knowl-
edge of the center of all SWIR channels of < 2 pm (Langen
et al., 2011), this CO error sensitivity is not critical for a com-
pliant instrument. Moreover, the CO retrieval has no error
sensitivity to an overall offset of the spectral calibration be-
cause this parameter is adjusted by the retrieval.

Errors in the instrument spectral response function can be
manyfold and are hard to quantify in a general manner. In
this study, we restricted ourself to an erroneous full width at
half maximum (FWHM) of the instrument spectral response
function (ISRF), which may occur e.g., because of pre-flight
instrument calibration errors or because of fluctuations of
the instrument temperature. Table 1 shows the ISRF retrieval
sensitivity of about 0.5 % CO error for a 1 % FWHM uncer-
tainty of the ISRF, the latter representing the knowledge re-
quirement for the TROPOMI instrument calibration (Langen
et al., 2011).

Finally, we discuss the CO column error contribution orig-
inating from radiometric artifacts due to the heterogeneous
illumination of the instrument entrance slit, which in turn
arises from varying cloud coverage and surface reflection
within a spatial sample. As discussed by Noel et al. (2012)
and Caron et al. (2014) and in Appendix B, this results in
a distortion of the spectral response of the TROPOMI in-
strument. Accounting for this effect in the retrieval requires,
next to detailed characterization of the instrument, a priori
knowledge of the radiance heterogeneity across the instru-
ment slit, which is not available. For future instrument devel-
opment, e.g., for the succeeding Sentinel 5 mission of ESA,
this instrumental effect is foreseen to be mitigated by a slit
homogenizer (Caron et al., 2014). This is an optical device
scrambling the spatial information of the incoming signal in
the flight direction, and so the spectrometer is effectively ex-
posed to a spatially homogeneous entrance signal. Because
the TROPOMI instrument is not equipped with such a de-
vice, it is important to quantify potential errors on the CO
data product.

For this purpose, we considered two spatial ensembles of
simulated measurements. First, we investigated a MODIS
Aqua cloud image over Australia, shown in Fig. 10, char-
acterizing clouds by a cloud mask on a 1× 1 km2 spatial
grid box. For each of the samples at a spatial position (x,y),
we calculated a spectral radiance field I (x,y,λ) assuming a
ground albedo As = 0.1 and, depending on the cloud mask, a
vertically homogenous cloud between 2 and 3 km with an op-
tical depth of τscat = 20. Next, we simulated the TROPOMI
observations with the instrument model in Appendix B. Sub-
sequent retrievals allow us to quantify the CO bias due to
the distortion of the instrument response for the ensemble.
Results of this test (right panel of Fig. 10) show with a char-
acteristic CO bias pattern at cloud edges ranging from up
to +2 %, where the cloud edge enters the instrument field of
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view, to minimum−2 % when the field of view points mainly
at clouds and the scene heterogeneity is due to a remaining
contribution of clear sky radiances. Although this error con-
tribution is significant, it has quasi-random characteristics
when looking at larger spatial or temporal domains because
of the quasi-random occurrence of clouds on these scales.
Additionally, we investigated a measurement ensemble for
spatially varying surface albedo of a 50× 50 km2 wetland
region in Siberia. The albedo distribution is adapted from
MODIS Aqua observation at 2.1 µm with a spatial sampling
of 500×500m2, with a mean albedo of 0.037 and a standard
deviation of 0.017 (see Fig. 11). The patchy structure of the
figure is due to dark ponds of the marsh. Figure 11 also shows
a CO bias of about ±1.5 % related to the scene heterogene-
ity. The mean error of the ensemble reduces to 0.05 % with
a standard deviation of 0.44 %, supporting the quasi-random
characteristics of this error.

4 Sentinel 5 Precursor orbit ensemble

To test the algorithm performance and the data product accu-
racy for more common circumstances encountered in the op-
erational processing, we have simulated a measurement en-
semble for a typical TROPOMI orbit, employing the noise
model as described in Sect. 3. The simulations are based on
a dedicated Sentinel 5 Precursor orbit simulations for Au-
gust with 13:30 Equator crossing time providing pixel lo-
cation and size as well as the solar and viewing geometry
of the TROPOMI observation (M. Sneep, Royal Netherlands
Meteorological Institute, the Netherlands, personal commu-
nication, 2016). Here, we only considered pixels with SZA
< 80◦, for which the TROPOMI instrument performance is
constrained by the mission specifications. In the first in-
stance, we spatially projected the trail ensemble by Butz et al.
(2010) for the same month to the test orbit to collocated CO
and CH4 concentrations from TM5 (S. Houweling, SRON,
personal communication, 2016) and H2O from the ECMWF
forecasts to the individual TROPOMI pixels. Additionally,
we use the aerosol properties from the ECHAM5-HAM
model (Stier and et al., 2005) and monthly mean MODIS
observations (Remer, 2005). The cirrus optical thickness is
specified to match the CALIOP monthly median cirrus op-
tical thickness and height distribution (Winker et al., 2007).
The surface albedo is taken from the global SCIAMACHY
albedo database at 2350 nm (Butz et al., 2012). Finally, we
overlaid the ensemble with the MODIS Aqua cloud product
comprising cloud top height, cloud fraction and cloud optical
depth for the individual spatial samplings of the orbit. Hence,
the measurement ensemble includes a variety of TROPOMI
viewing and solar geometries, combined with realistic vari-
ations of atmospheric scattering and trace gas abundances.
Figure 12 shows examples of the atmospheric parameters in
the ensemble.

Table 2. Fraction of data to be processed during the successive
processor steps for the TROPOMI test orbit ensemble relative to
the 572 442 spectra of the orbit ensemble that are filtered for
SZA< 80◦.

Processor step Process R (%)

1 SZA < 80◦ 100
2 LER filtering 87
2 CH4 cloud filtering 46
4 check convergence 38
5 retrieval noise filter 36

The operational processing sequence starts with rejecting
all observations with a signal that is too low based on the
Lambert-equivalent reflectivity, defined as follows:

LER=max
i

{
ITOA(λi)π

µ0F0(λi)

}
, (20)

where F0(λi) is the solar irradiance at spectral samplings λi .
The maximum is taken over all spectral samplings within the
CO fitting window. For measurements with LER > 0.03, we
assess the cloud filter described in Sect. 2.1. Figure 12 shows
the clear correlation of 1CH4 in panel d with the cloud pa-
rameters in panels a, b and c. For our test orbit, about 46 %
of the data passed the cloud filter |1CH4|< 25 %. This is
significantly less than for the 1 year of GOSAT observa-
tions in Fig. 3, indicating a particularly cloudy test orbit. In
the next processing step, we retrieved the CO total column
together with the effective cloud properties as described in
Sect. 2.1. The final data quality of our CO product is further
enhanced by an a posteriori quality filter accepting only re-
trievals with a retrieval noise σCO < 12 %. It is important to
realize that the chosen filter thresholds give a first indication
of the data processing statistics, based on the expected in-
strument performance. However, during the commissioning
phase of TROPOMI, further adjustments will be required.
For our test orbit, about 36 % of all data successfully passed
the processing. Table 2 summarizes the relative number of
data that pass the individual steps. The corresponding CO
retrieval bias is depicted in panel f of Fig. 12, which indi-
cates an overall good quality of our algorithm. However, a
clear feature is present in central Africa with a negative bias
of about −8 %. It coincides with enhanced CO concentra-
tions from biomass burning regions as shown in panel e of
the same figure. For these observations, the CO concentration
in the atmospheric boundary layer is strongly enhanced, and
so the CO profiles differs significantly in shape from that of
CH4. As discussed in the previous section, for these circum-
stances we expect a systematic underestimation of CO for
low-cloud conditions, which is confirmed by the orbit simu-
lations.

For the observations that pass all quality filters, we ana-
lyzed the orbit simulations in more detail looking at the PDF
of the CO bias together with 1CH4. The density function
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Figure 10. Error due to heterogeneous slit illumination due to a cloudy scene over Australia, 12 February 2010. Left panel: cloud mask
derived from MODIS Aqua observations at 1×1 km2 spatial sampling (green indicates clear sky pixels; gray indicates cloud flagged pixels).
Right panel: CO retrieval bias due to heterogeneous illumination of the instrument entrance slit. The cloudy areas are indicated by the black
contour line.

Figure 11. Error due to heterogeneous slit illumination by a scene with varying surface reflection over a marsh scene in Siberia close to the
river Ob at latitude 62.8◦ N and longitude 72.1◦ E. Left panel: MODIS Lambertian albedo at 2.1 µm with a spatial sampling of 0.5×0.5 km2.
Right panel: CO retrieval error due to heterogeneous illumination of the instrument entrance slit.

of 1CH4 is depicted in Fig. 13 and has a maximum around
zero representing clear sky scenes. The tail towards negative
1CH4 values comprises cloudy observations, and positive
values indicate cases of light path enhancements due to at-
mospheric scattering. The corresponding distribution of the
CO bias shows a weak dependence on 1CH4 and therefore
on cloud coverage. This nicely demonstrates the functional
capability of our retrieval algorithm for a suite of different
atmospheric conditions. Overall for the orbit ensemble, the
mean CO bias is 0.9 % with a standard deviation of 1.1 %,
which is well within the envisaged retrieval accuracy.

Finally, we roughly estimated the computational perfor-
mance of the algorithm for a HP dc7900 SFF workstation
with Intel® Core™ 2 Duo 1390 CPU E8400 at 3.00 GHz,
with a floating point rate of 237 and 4 GB RAM. Numeri-
cal experiments showed the computational burden of a single
CO retrieval to be 0.17 s using the Intel FORTRAN compiler.
Thus, to keep up with the TROPOMI data acquisition rate,
parallel processing is required on at least 22 processor cores.

5 Summary and conclusions

In this paper, we presented the baseline algorithm for the
operational CO data processing of the Sentinel 5 Precur-
sor mission. The algorithm relies on a two-step retrieval
from TROPOMI SWIR measurements. First, we perform
a non-scattering retrieval of the total amount of CH4 in
the spectral range 2315–2324 nm for cloud filtering. In
the presence of high and optically thick clouds, the in-
ferred CH4 column differs significantly from its true value,
which is used together with modeled methane abundances
to filter TROPOMI observations accordingly. Further pro-
cessing only considers measurements with differences of
the non-scattering methane column and the model predic-
tion of |1CH4|< 25%. The CO column is inferred from
SWIR measurements in the adjacent spectral window 2324–
2338 nm. In this step, we use a priori knowledge on the atmo-
spheric methane abundance to retrieve effective cloud param-
eters simultaneously with atmospheric CO and H2O abun-
dances. The algorithm employs a profile scaling approach to
infer the CO total column amount and a two-stream radiative
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Figure 12. TROPOMI test orbit. Panel (a) cloud top height,
panel (b) cloud fraction, panel (c) cloud optical depth, panel
(d) methane error of non-scattering retrieval, which is used for cloud
filtering, panel (e) TM4 CO total column, panel (f) CO retrieval
bias.

transfer model that is linearized with respect to the parame-
ters to be retrieved. The two-stream approach is a simple ap-
proximation to account for multiple light scattering, and its
numerical implementation has a low computational cost. The
vertically integrated CO column density is provided together
with its retrieval noise and the column averaging kernel for
each individual measurement. This compact retrieval product
is designed to address the needs of the data user, while taking
optimal advantage of the SWIR measurements.

To demonstrate the robustness of our algorithm and the
expected data quality of the CO retrieval product, we per-
formed an extensive sensitivity analysis for generic mea-
surement simulations with respect to forward model errors,
instrument and calibration imperfections and uncertainties
in atmospheric input parameters. For this purpose, we have
simulated measurements with the scalar LINTRAN radiative
transfer model, which accurately accounts for multiple scat-
tering of solar light by liquid water and ice clouds, aerosols
and the interaction with a reflecting Earth surface. The mea-
surement simulations are fed through the TROPOMI instru-
ment model to estimate the measurement noise. For clear sky

Figure 13. Middle panel: two-dimensional probability density func-
tion of the methane filter (1CH4) and the CO retrieval bias
(bCO). Upper panel: one-dimensional probability density function
of 1CH4 (mean: −6.7 %, standard deviation: 8.4 %). Right panel:
one-dimensional probability density function of bCO (mean: 0.9 %,
standard deviation: 1.1 %).

scenes of low signals over dark land with 3 % surface albedo
and no aerosol loading, the random error in total column CO
does not exceed 11 % for SZA< 70◦, and in the majority of
all cases the CO data precision is expected to be much better.
Moreover, for measurement simulations employing the US
standard model atmosphere with a single cloud layer, which
passed the cloud filter, we diagnosed the retrieval accuracy
to be < 2 %. Similar good accuracy could be achieved for
boundary layer aerosols and elevated dust layers. However,
for cloudy atmospheres and strongly peaked CO vertical pro-
files, e.g., enhanced CO concentration in the tropospheric
boundary layer, this bias can reach 8 %. Concerning the at-
mospheric input parameters, the largest uncertainties are in-
troduced by model uncertainties in the methane fields. Here,
we found a nearly one-to-one correlation between the CO
column error and the CH4 a priori uncertainty, introducing
CO biases ≤ 3 %. Uncertainties in the atmospheric temper-
ature and pressure are of minor relevance. To estimate the
effect of an erroneous instrument calibration, we considered
errors in the full width at half maximum of the ISRF for
homogenous illumination of the instrument entrance slit, er-
roneous spectral calibration and additive and multiplicative
radiometric errors. For the TROPOMI instrument that satis-
fies the mission requirements, corresponding CO biases are
< 1 %. A heterogeneous illumination of the instrument en-
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trance slit due to variations in cloud coverage and surface
reflection causes a distortion of the spectral instrument re-
sponse, which we cannot account for in the retrieval. This
causes CO biases <±2 % with pseudo-random characteris-
tics on larger spatial scales. Overall, the low error sensitivity
of the CO product is also confirmed by a retrieval analysis
for a simulated orbit of TROPOMI SWIR measurements. For
this purpose, we combined a suite of different data sources to
describe the observed scene in a realistic manner. Here, the
CO biases are in agreement with the generic test cases and
confirm that the expected retrieval accuracy is well within
the envisaged accuracy of < 15 %.

Although our analysis is based on an extensive set of sim-
ulated measurements, we realize the need to further fine-tune
the settings of our algorithm during the commissioning phase
of the TROPOMI instrument, aiming to provide an optimal
data product during the operational phase of the Sentinel 5
Precursor mission. For this purpose, the validation of the data
product with independent and accurate ground-based, bal-
loon and aircraft measurements is essential until instrument
commissioning and beyond during the operational phase of
the mission to adequately assess and monitor data quality.

6 Data availability

The underlying research data for the simulated atmospheric
profiles and TROPOMI measurement simulation and re-
trievals are available upon request from Jochen Landgraf
(j.landgraf@sron.nl). HITRAN spectroscopic line parame-
ters (Rothman et al., 2009) are available through HITRA-
Nonline (http://hitran.org), and the line parameters from
Scheepmaker et al. (2013) are available in their supplemen-
tary material.
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Appendix A: TS-LINTRAN: a linearized two-stream
method

This appendix summarizes the linearized two-stream radia-
tive transfer solver TS-LINTRAN that is based on the gen-
eralized flux method (Meador and Weaver, 1998) and the
forward-adjoint perturbation theory (Marchuk, 1964; Bell
and Glasstone, 1970; Box et al., 1988; Ustinov, 1991). The
solver is part of the software suite LINTRAN, which com-
bines different linearized radiative transfer models suited
for atmospheric remote sensing (e.g., Landgraf et al., 2001;
Hasekamp and Landgraf, 2002; Landgraf et al., 2002; Walter
et al., 2004, 2006; Schepers et al., 2015). The model assumes
a vertically inhomogeneous atmosphere described by N ho-
mogeneous layers. Each layer is characterized by its optical
properties, the optical depth τn, the single-scattering albedo
ωn and the phase function Pn with layer index n= 1, . . .,N .

For an arbitrary layer n, the outgoing fluxes at the layer
interfaces n− 1 and n can be expressed as a function of the
incoming fluxes by the matrix equation (Meador and Weaver,
1998) Sn

F
↓
n

F
↑

n−1

=
 a1,n 0 0
a2,n a4,n a5,n
a3,n a5,n a4,n

 Sn−1

F
↓

n−1
F
↑
n

 . (A1)

Here, index n− 1= 0 describes the top of the model atmo-
sphere and index n=N indicates the surface level. Sn is the
direct solar irradiance, F↓n and F↑n are the diffuse downward
and upward fluxes, all defined at layer interface n. The coef-
ficients a1,n, a2,n, a3,n, a4,n and a5,n are specific for different
flux methods, where TS-LINTRAN relies on the definition
of the practical improved flux method by Zdunkowski et al.
(1979). The external boundary conditions are given as

S0 = µ0F0

F
↓

0 = 0

F
↑

N = As(F
↓

N + SN ) , (A2)

where As is the surface albedo and µ0 = cos(20) with the
solar zenith angle 20. Combining the internal and external
boundary constraints for the multi-layer system, we obtain
the matrix equation

MF = C, (A3)

with the sparse block-diagonal matrix M, the flux vector

F =
(
S0, F

↓

0 , F
↑

0 , S1, · · ·, SN , F
↓

N ,F
↑

N

)T
(A4)

and the right-hand side

C =
(
µ0F0, 0, · · · 0

)T
. (A5)

For anN -layer model atmosphere, M is a 3(N+1)×3(N+1)
matrix and F and C are both vectors of dimension 3(N+1).

Due to the block diagonal structure of matrix M, Eq. (A3)
can be solved by sequential substitution of the linear equa-
tions.

With the flux vector F , we can approximate the TOA ra-
diances ITOA in the viewing direction of the instrument. For
this purpose we start with the expression

ITOA
=

F
↑

N

π
exp(−τtot/µv)+

1
µv

τtot∫
0

dτ J (τ,µv) exp(−τ/µv) , (A6)

where µv = cos(2v) with the viewing zenith angle2v , τ in-
dicates optical depth and τtot is the total optical thickness of
the atmosphere. The scattering source function J describes
multiply and singly scattered light. We approximate the radi-
ance within a model layers by its vertical mean and assume
its directional dependence to be isotropic both in upward and
downward directions. Therefore, we obtain

F↓↑ =
F
↓↑

n−1+F
↓↑
n

2
(A7)

for τn−1 < τ < τn. Hence, we can approximate Eq. (A6) by

ITOA
= 〈R|F 〉, (A8)

where the response vector R can de derived in a
straightforward manner from Eq. (A6). It describes the lin-
ear relationship between the simulated observation and the
internal radiation field. Here, the inner product of two arbi-
trary vectors u and v of the same dimension is defined by
〈u|v〉 = uT v.

To apply the forward-adjoint perturbation theory, we solve
the adjoint equation

MTF †
=R , (A9)

where F † is the adjoint flux vector, and MT is the transpose
of matrix M. Following the methodology described by Usti-
nov (1991) and Walter et al. (2004), we can calculate the
derivative of the TOA radiance with respect to an optical pa-
rameter x by

ITOA

∂x
= 〈F †

|M′F 〉+ 〈F †
|C′〉+ 〈R′|F 〉, (A10)

with the derivatives M′ = ∂
∂x

M, C′ = ∂
∂x
C and R′ = ∂

∂x
R.

With C given in Eq. (A5), the derivative C′ vanishes, and so
Eq. (A10) simplifies to

∂ITOA

∂x
= 〈F †

|M′F 〉+ 〈R′|F 〉. (A11)

In general, x represents the optical depth 1τn, the single-
scattering albedo ωn, the scattering phase function character-
istics in the model layers n= 1, · · ·,N and the surface albedo
As. Equation (A11) can be numerically implemented in a
straightforward manner, and represents the basis of the lin-
earized TS-LINTRAN solver.
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Appendix B: The heterogeneous slit illumination: an
instrument model

TROPOMI is a push-broom grating spectrometer that mea-
sures the spatial and spectral distribution of the Earth-
reflected radiances using a two-dimensional detector de-
vice. Here, the width of the entrance slit is aligned with
the flight direction, and after dispersion by the grating, a
two-dimensional detector simultaneously collects the spectra
from the 2600 km instrument swath, sampled by 256 rows
of the detector. The spectral information is recorded by the
1024 pixel detector columns with a spectral sampling dis-
tance of 0.1 nm. The instantaneous field of view of the spec-
trometer is 3.4× 7 km2 (along× across flight direction), and
after temporal integration over 1 s, TROPOMI samples the
ground scene with about 7× 7 km2 at the subsatellite point.
Figure B1 gives an overview of the measurement principle.
For the TROPOMI data analysis, we assume that the spec-
tral and spatial dimension of the radiance field can be fully
disentangled. However, this is only true for ground scenes
that reflect spatially homogenous radiances in the flight di-
rection. If the radiances vary on spatial subsampling scales,
we obtain interferences of the scene heterogeneity with the
spectral response of the instrument. This appendix summa-
rizes an instrument model that describes the effect of the het-
erogeneous slit illumination on the recorded spectrum using
preliminary TROPOMI instrument characteristics.

The radiometric calibrated signal S measured by
TROPOMI can be simulated by

S(ρ,σ,τ )=

∫ ∫ ∫
dxdydλ U(ρ|x,λ)V (σ |y)

1
tint

tr∫
tl

dtI (x− vt,y,λ) , (B1)

where ρ and σ describe the spectral and spatial sampling
position on the two-dimensional detector plane, respectively,
and τ is the temporal sampling. The ground coordinates are
x in the along-track direction and y in the across-track direc-
tion, and λ denotes the wavelength of the light. Due to the
orientation of the instrument entrance slit, the x and y di-
rections are identical to the across- and along-slit direction
at the instrument level, respectively. In Eq. (B1), U and V
denote the instrument response of the recorded signal in the
along- and across-flight direction with respect to the radiation
I at position (x,y) and at wavelength λ. Here, our notation
separates sampling variables and physical coordinates by a
vertical bar. The temporal integration of the received signal

〈I 〉t (τ |x,y,λ)=
1
tint

tr∫
tl

dtI (x− vt,y,λ) (B2)

between tl = τ− 1
2 tint and tr = τ+ 1

2 tint corresponds to a spa-
tial integration of the radiances due to the motion of the satel-

Figure B1. Slit and detector geometry with respect to the ground
track of TROPOMI. Detector coordinate ρ describes the spectral
sampling dimension, and σ is the spatial sampling coordinate. The
scene coordinates are x in the flight direction and y in the across-
flight direction, and U and V represent the corresponding instru-
ment response in both spatial dimensions. The slit is aligned with
the TROPOMI swath, such that scene heterogeneity in the flight di-
rection interferes with the spectral response of the instrument.

lite, where tint is the total integration time and v is the satellite
velocity on ground level.

For a homogenous illumination of the instrument across
the slit direction, i.e., 〈I 〉t (τ |x,y,λ)= 〈I 〉t (τ |y,λ), Eq. (B1)
simplifies to

S(ρ,σ,τ )=

∫
dλ〈U〉x(ρ|λ)〈I 〉y,t (σ,τ |λ) . (B3)

Here, the mean intensity

〈I 〉y,t (σ,τ |λ)=

∫
dyV (σ |y)〈I 〉t (τ |x,y,λ) (B4)

includes the temporal integration and the convolution of the
radiances with the instrument response V across the flight di-
rection. Moreover, we defined the integrated instrument spec-
tral response function in the flight direction

〈U〉x(ρ|λ)=

∫
dxU(ρ|x,λ) , (B5)

which is extensively characterized during the on-ground cal-
ibration of the TROPOMI spectrometer. Equation (B3) is the
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Figure B2. Instrument response function U(x0,λ0|x,λ) as defined
in Eqs. (B7) and (B8) with 1x = 3.4 km, 1w = 0.1 nm and b =
6.47× 10−2 nm km−1.

baseline for our forward model in the retrieval, which as-
sumes an inherent homogenous illumination of the entrance
slit. Thus, the differences between the measurement simu-
lations using Eqs. (B1) and (B3) represent a potential error
source for the CO retrieval.

To simplify the further elaboration of the response func-
tions, we assign the sampling variable to spatial and spectral
coordinates: we appoint the spatial sampling variable σ to
the barycenter y0 of the instantaneous field of view V . Sim-
ilarly, the spectral sampling ρ is assigned to the barycenter
λ0 of the integrated spectral response function 〈U〉x , and fi-
nally, the barycenter x0 of U for λ= λ0 is also assigned a
sampling position ρ. Obviously, the variables x0 and λ0 are
not independent.

Based on the design of the instrument and a preliminary
analysis of the on-ground calibration, we assume that the re-
sponse function U can be factorized, i.e.,

U(x0,λ0|x,λ)= U1(x0|x)U2(x0,λ0|x,λ) , (B6)

where

U1(x0|x)=
1
1x

2

(
x− x0−

1x

2

)
2

(
x0+

1x

2
− x

)
(B7)

describes the geometric projection of the slit width on the
Earth surface with 1x = 3.4 km and

U2(x0,λ0|x,λ)= (B8)

1
√

2πσ
exp

(
−

1
2σ 2 (λ0− λ− b(x0− x))

2
)

is the Gaussian subsampling spectral response function with
σ = 1w

2
√

2ln2
, and the FWHM 1w = 0.1 nm. Parameter b =

6.47×10−2 nm km−1 gives the shift of the spectral barycen-
ter with across-slit position (x0− x). Therefore, for the ho-
mogenous slit illumination, the instrument spectral response

Figure B3. Spectral features due to the inhomogeneous slit illumi-
nation as a percentage of the continuum value. Simulations are per-
formed for a transition in the flight direction from a cloudy scene
to a clear sky scene at +1.8 km away from barycenter x0. Here, the
cloud is located between 2 and 3 km with a total optical depth of 10.
The CO fitting window is indicated by the pink shadowed region.

function 〈U〉x is a convolution of a Gaussian fit with a boxcar
function and has a FWHM of 0.25 nm, according to the in-
strument requirement. The response function U is illustrated
in Fig. B2. For the spatial response function across-flight di-
rection V , we assume a boxcar function of 7 km wide.

To analyze the error of our retrieval, we use Eq. (B3) in
the forward model of the retrieval, but simulate the measure-
ments using Eq. (B1), which introduces a spectral bias as de-
picted exemplarily in Fig. B3. Here, spectral biases are about
±7 %, with an error amplitude strongly depending on the as-
sumed scene heterogeneity.
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