Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Volume 9, issue 10
Atmos. Meas. Tech., 9, 5089–5101, 2016
https://doi.org/10.5194/amt-9-5089-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 5089–5101, 2016
https://doi.org/10.5194/amt-9-5089-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Oct 2016

Research article | 18 Oct 2016

MAX-DOAS retrieval of aerosol extinction properties in Madrid, Spain

Shanshan Wang1,a, Carlos A. Cuevas1, Udo Frieß2, and Alfonso Saiz-Lopez1 Shanshan Wang et al.
  • 1Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, 28006 Madrid, Spain
  • 2Institute of Environmental Physics, University of Heidelberg, 69120 Heidelberg, Germany
  • anow at: Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Fudan University, 200433 Shanghai, China

Abstract. Multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements were performed in the urban environment of Madrid, Spain, from March to September 2015. The O4 absorption in the ultraviolet (UV) spectral region was used to retrieve the aerosol extinction profile using an inversion algorithm. The results show a good agreement between the hourly retrieved aerosol optical depth (AOD) and the correlative Aerosol Robotic Network (AERONET) product, with a correlation coefficient of R =  0.87. Higher AODs are found in the summer season due to the more frequent occurrence of Saharan dust intrusions. The surface aerosol extinction coefficient as retrieved by the MAX-DOAS measurements was also compared to in situ PM2.5 concentrations. The level of agreement between both measurements indicates that the MAX-DOAS retrieval has the ability to characterize the extinction of aerosol particles near the surface. The retrieval algorithm was also used to study a case of severe dust intrusion on 12 May 2015. The capability of the MAX-DOAS retrieval to recognize the dust event including an elevated particle layer is investigated along with air mass back-trajectory analysis.

Publications Copernicus
Download
Short summary
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements were performed in the urban environment of Madrid, Spain, where Sahara dust intrusion sometimes occurs. The study shows a high performances in the retrieval of aerosol optical depth, the surface extinction coefficient and an elevated layer during dust episodes, validated by AERONET in situ and modeling data. It is essential to capture the extinction properties of both local aerosol and Saharan dust.
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements were performed...
Citation