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Abstract. The fate of anthropogenic emissions of mercury

(Hg) to the atmosphere is influenced by the exchange of el-

emental Hg with the earth surface. This exchange holds the

key to a better understanding of Hg cycling from local to

global scales, which has been difficult to quantify. To ad-

vance research about land–atmosphere Hg interactions, we

developed a dual-inlet, single detector relaxed eddy accumu-

lation (REA) system. REA is an established technique for

measuring turbulent fluxes of trace gases and aerosol parti-

cles in the atmospheric surface layer. Accurate determination

of gaseous elemental mercury (GEM) fluxes has proven diffi-

cult due to technical challenges presented by extremely small

concentration differences (typically < 0.5 ng m−3) between

updrafts and downdrafts. We present an advanced REA de-

sign that uses two inlets and two pairs of gold cartridges

for continuous monitoring of GEM fluxes. This setup re-

duces the major uncertainty created by the sequential sam-

pling in many previous designs. Additionally, the instrument

is equipped with a GEM reference gas generator that moni-

tors drift and recovery rates. These innovations facilitate con-

tinuous, autonomous measurement of GEM flux. To demon-

strate the system performance, we present results from field

campaigns in two contrasting environments: an urban set-

ting with a heterogeneous fetch and a boreal peatland during

snowmelt. The observed average emission rates were 15 and

3 ng m−2 h−1, respectively. We believe that this dual-inlet,

single detector approach is a significant improvement of the

REA system for ultra-trace gases and can help to advance

our understanding of long-term land–atmosphere GEM ex-

change.

1 Introduction

The UN’s legally binding Minimata Convention has been

signed by 128 countries since October 2013 and aims to pro-

tect human health and welfare by reducing anthropogenic re-

lease of mercury (Hg) into the environment (UNEP, 2013a).

Current anthropogenic sources, mainly from fossil fuel com-

bustion, mining, waste incineration and industrial processes,

are responsible for about 30 % of annual Hg emissions to the

atmosphere. Additional 10 % comes from natural geological

sources and the remaining 60 % from re-emission of previ-

ously deposited Hg (UNEP, 2013b). As a result, long-range

atmospheric transport of gaseous elemental mercury (GEM

or Hg0) has led to Hg deposition and accumulation in soils

and water bodies well in excess of natural levels even in re-

mote areas, far away from anthropogenic pollution sources

(Grigal, 2002; Slemr et al., 2003).

Quantification of Hg emission and deposition is needed to

reduce the large gaps that exist in the global Hg mass balance

estimates (Mason and Sheu, 2002) and as a basis of legisla-
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tion targeting the control of Hg emissions (Lindberg et al.,

2007). Gustin et al. (2008) suggest that today a substantial

amount of Hg deposited on soils with natural background

concentrations of Hg (< 0.1 µg g−1) is re-emitted back to the

atmosphere and that over the course of a year deposition is

largely compensated for by re-emission, resulting in a net

flux close to 0.

The state of the art in field techniques to quantify Hg flux

from terrestrial surfaces has been summarized in review pa-

pers (Gustin, 2011; Gustin and Lindberg, 2005; Gustin et al.,

2008; Sommar et al., 2013b; Agnan et al., 2016). They con-

clude that environmental, physicochemical and meteorologi-

cal factors as well as surface characteristics determine the ac-

curacy and precision of GEM flux measurements. Fluxes are

commonly determined using dynamic flux chambers (DFCs)

or micrometeorological techniques (relaxed eddy accumu-

lation (REA), modified Bowen ratio (MBR) or the aerody-

namic gradient (AGM) method). DFCs are the most widely

used technique to measure in situ GEM fluxes since they

are easy to handle and inexpensive. However, DFCs alter

the enclosed environment of the volume and surface area be-

ing studied by affecting atmospheric turbulence, temperature

and humidity (Wallschläger et al., 1999; Gillis and Miller,

2000; Eckley et al., 2010). Also the concern about influenc-

ing plant physiology means that DFCs are restricted to short-

term measurements and studies comparing the relative differ-

ences between sites only, e.g., control and treatment experi-

ments (Fritsche et al., 2014).

A major advantage of micrometeorological techniques is

that they are conducted under conditions with minimal dis-

turbance. As they can be applied continuously, they pro-

vide flux data valuable to characterize ecosystems as sinks

or sources of atmospheric Hg and to interpret seasonal flux

patterns. Micrometeorological techniques are also able to

cover a much larger area than DFC techniques, although this

larger “footprint” should be relatively flat and homogeneous.

Several studies report results from GEM land–atmosphere

exchange measurements over a variety of landscapes using

MBR and AGM techniques (e.g., Kim et al., 1995; Mey-

ers et al., 1996; Gustin et al., 2000; Lindberg and Meyers,

2001; Fritsche et al., 2008b; Converse et al., 2010). Fritsche

et al. (2008a) concluded that micrometeorological techniques

are appropriate to estimate Hg exchange rates but often suf-

fered from large uncertainties due to extremely low con-

centration gradients over background soils. Eddy covariance

(EC) has the potential to detect high-frequency atmospheric

GEM concentration fluctuations and might improve flux es-

timates considerably (Bauer et al., 2002; Faïn et al., 2010).

Pierce et al. (2015) conducted the first successful EC flux

measurements of GEM over Hg-enriched soils measuring at-

mospheric GEM concentrations at high frequency (25 Hz).

However, on background soils measured fluxes were below

the detection limit.

To overcome the need for fast-response sensors, Des-

jardins (1977) has introduced the eddy accumulation method

where fast-response sampling valves are combined with slow

analysis techniques on the assumption that the turbulent co-

variance flux can be averaged separately for positive and neg-

ative vertical wind velocities. The technical breakthrough for

REA was achieved by Businger and Oncley (1990), simulat-

ing the method with vertical wind, temperature and humid-

ity time series in the surface layer. The main advantage of

REA over other micrometeorological methods is that REA

requires sampling at only one height and therefore flux di-

vergence may be measured directly (Sutton et al., 2001). Re-

active substances can be lost by chemical reaction between

two sampling heights (Olofsson et al., 2005a; Foken, 2006;

Fritsche et al., 2008a), and sensors at two heights also have

different footprints. REA eliminates these drawbacks (Bash

and Miller, 2008). There are disadvantages to be considered

as well though. The technical requirements for REA are very

stringent, increasing the demand on the precision of the sam-

pling and chemical analysis. Irregularities in offset measure-

ments and timing of the sampling valves can also not be cor-

rected for later (Sutton et al., 2001).

The REA method has been widely used since 1990 to in-

vestigate fluxes of different trace gases and aerosols (e.g.,

Brut et al., 2004; Gaman et al., 2004; Olofsson et al., 2005a;

Haapanala et al., 2006; Arnts et al., 2013). This includes a

few applications on land–atmosphere GEM exchange over

soils (Cobos et al., 2002; Olofsson et al., 2005b; Sommar et

al., 2013a; Zhu et al., 2015a) and forest canopies (Bash and

Miller, 2007, 2008, 2009). Additionally, reactive gaseous Hg

fluxes have been measured over snow surfaces in the Arctic

(Skov et al., 2006). Besides valuable data of net exchange

rates of GEM over different environments, the studies have

also identified potential for refinement in the technical im-

plementation of REA. The dual detector system presented by

Olofsson et al. (2005b) was criticized since it suffered from

inherent variability and drift of sensitivity between the two

Hg detectors (Sommar et al., 2013a). Sommar et al. (2013a)

modified the systems employed by Cobos et al. (2002) and

Bash and Miller (2008) to create a single-inlet REA system.

However, their system lacks the capability to accumulate

samples from the up- and downdraft channels synchronously.

The application of sequential measurement of the channels

impairs the accuracy with which fluxes can be gauged when

the concentration of atmospheric GEM varies on the scale of

the sampling period (Zhu et al., 2015b).

Even though there has been steady improvement in REA

systems for measuring GEM fluxes, the financial and techni-

cal challenges to accurately measure the extremely low con-

centration differences (sub-ppt range) in up- and downdrafts

have limited the number of studies (Foken, 2006). Thus, there

remains a demand for a system especially designed to con-

tinuously monitor background GEM fluxes with minimum

maintenance requirements.

To address these needs we designed a fully automated

REA system with two inlet lines for continuous air sampling.

The GEM contained in these samples is collected on a pair of
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gold cartridges: with one for updraft and the other for down-

draft. Two such pairs of gold cartridges are used, with one

pair collecting GEM while the other pair is analyzed on a

single Hg detector, one cartridge after the other. To detect

any instrument drift, contamination and changes in GEM re-

covery, the system is equipped with a GEM reference gas

generator and a Hg zero-air generator.

Our objective was to develop an advanced REA sys-

tem that reduces the major measurement uncertainty of ear-

lier systems created by sequential sampling procedures. We

achieved this goal by

1. continuous, simultaneous sampling of GEM in up- and

downdrafts using two pairs of gold cartridges;

2. regular analysis of a GEM reference gas as well as dry,

Hg-free air to monitor accurate GEM quantification;

3. fully automated air sampling and GEM analysis with an

online user interface that provides comprehensive infor-

mation about system performance.

To test the system’s performance under field conditions,

we deployed it in two contrasting environments during cam-

paigns of 2 to 3 weeks each. At the first site in the center of

Basel, Switzerland, GEM fluxes were measured 20 m above

the roof of a building, 39 m above ground level. Later on the

system was installed 1.8 m above a boreal peatland called

Degerö in northern Sweden during snowmelt.

This paper includes a description of the novelties in the

REA design and presents a time series of GEM flux mea-

surements from each of the deployments with contrasting at-

mospheric conditions and site characteristics. To analyze the

system performance we compared source–sink characteris-

tics using footprint models and analyzed turbulence regimes

to determine possible flux attenuation. We briefly discuss

several instrumental factors which might affect the accu-

racy of the flux measurements: bias in vertical wind mea-

surements, control and response time of the REA sampling

valves, measurement precision of the sample volumes as well

as the performance of analytical schemes and calibration pro-

cedures. Furthermore, we describe the evaluation of the β

constant, the method detection limit and rejection criteria for

flux measurements based on the REA validation procedure.

2 Materials and methods

2.1 GEM-REA sampling system

The concept of our advanced REA design is based on a GEM

sampling unit with two pairs of gold cartridges, a single Hg

detector as well as a GEM reference gas generator and a zero-

air generator. Figure 1 illustrates the setup of the sampling

and analysis system. Table S1 in the Supplement lists the ma-

jor components. Both study sites are equipped with continu-

ously operating EC systems that have been measuring sensi-

ble and latent heat flux and CO2 exchange at 30 min intervals
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Figure 1. Schematic of the REA system hardware. It consists of

a GEM sampling unit, a GEM reference gas generator and a Hg

zero-air generator (upper right). Capital letters refer to REA com-

ponents mentioned in the text and described in Table S1. The air

volume drawn over the gold cartridges equaled 1 L min−1 in Basel

and 1.5 L min−1 at Degerö.

(Sagerfors et al., 2008; Lietzke and Vogt, 2013) for many

years. A suite of meteorological parameters were recorded

as well: solar radiation, air and soil temperature, relative hu-

midity, precipitation, snow depth, wind speed and direction,

friction velocity and surface layer stability parameters.

Vertical wind velocity GEM flux quantification was mea-

sured with a 3-D sonic anemometer (10 Hz) (A1, A2). The

wind signal was transferred to three fast-response switching

solenoid valves (B) via LabVIEW (C) enabling sampling and

separation of air into updraft, downdraft and deadband chan-

nels. The fast-response valves were installed 0.2 m down-

stream of the sampling inlets. The inlets of the 1/4′′ PTFE

sampling lines (D) were mounted near the anemometer head

about 15 cm below the midpoint of the ultrasonic paths.
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GEM carried in the “updrafts” and “downdrafts” was

then collected on two pairs of gold cartridges. The flux

(ng m−2 h−1) was calculated from the GEM concentration

difference (ng m−3) in updraft (Cu) and downdraft (Cd) air,

multiplied by σw (m s−1), the standard deviation of vertical

wind velocity.

FGEM = βσw(Cu−Cd) (1)

β is the unitless flux proportionality coefficient and depends

on the wind velocity deadband (see Sect. 3.1.2) that is im-

plemented to increase the concentration difference. β val-

ues typically range between 0.4 and 0.6. Deadband widths

(m s−1) used in recent REA measurement studies ranged

from 0.33 to 0.6 times σw (Grönholm et al., 2008).

During the campaign in Basel larger eddies resulted in

lower valve switching frequencies relative to the situation

at Degerö. The atmospheric GEM concentration differences

between updraft and downdraft were also larger in Basel.

This made the fixed deadband appropriate for Basel, while

a dynamic deadband was more favorable for Degerö. A fixed

deadband makes β dependent on atmospheric conditions

(Milne et al., 1999, 2001), with increased deadband widths

leading to lower β values (Ammann, 1999). The application

of a dynamic deadband at Degerö, with its smaller eddies,

aimed to reduce the switching frequency of the fast-response

valves. Using a dynamic deadband also ensured that large

enough air volumes for the GEM analysis were measured

that would not have been guaranteed by measuring with a

fixed deadband. A dynamic deadband is applied more often

(cf. Gaman et al., 2004; Olofsson et al., 2005b; Haapanala et

al., 2006; Ren et al., 2011) and enables the use of a constant

β (Grönholm et al., 2008).

β was calculated from the sonic temperature for each

30 min period at the same intervals used for the “up” and

“down” GEM sampling system:

β =
(w′T ′)

σw(Tu− Td)
, (2)

where Tu and Td are the “up” and “down” averages of tem-

perature and w′T ′ is the average EC sensible heat flux. In

our application a recursive high-pass filter was implemented

to reduce low-frequency bias in turbulent time series of the

vertical wind velocity (McMillen, 1988; Richardson et al.,

2012):

χi = αχi−1+ (1−α)χ, (3)

where χi is the filtered value, χi−1 is the running mean from

the previous time step and χ is the current, instantaneous

value (Meyers et al., 2006).

α = e−
1t
τ (4)

The constant α results from the sampling interval of 10 Hz

(1t) and the time constant (τ), which was set to 1000 s.

The sampling lines were 20 m long and insulated to avoid

condensation. PTFE filters (E, F) of 0.2 µ m were installed

after the inlets and before the PTFE valves, V4 and V5 (G).

The resistance through the sampling lines was checked to

be equal using thermal mass flow meters (Vögtlin Instru-

ments AG, Switzerland). Conditionally sampled GEM is sub-

sequently accumulated on two matched pairs of gold car-

tridges (Tekran Inc., Canada; difference between cartridge

sensitivity < 5 % according to manufacturing tests by the sup-

plier). Heating wires around the cartridges were kept at 50 ◦C

during the sampling phase and heated to 500 ◦C during the

desorption process (see Sect. 2.2). Downstream, a pressure

sensor (H) operating at 10 Hz was installed to monitor pres-

sure fluctuations. A high-precision thermal mass flow con-

troller (MFC) (I) with a response time of 50 ms was used to

regulate the air volume drawn over the gold cartridges. To

dampen sampling flow disturbances a reservoir of 200 mL

was installed between the pump and the MFC. Air was drawn

through the three lines by a rotary vane pump (J) at a rate

of 1 L min−1 (Basel) and 1.5 L min−1 (Degerö), respectively.

Three temperature-controlled, weatherproof boxes (K) con-

tained the GEM reference gas generator (L) and Hg detec-

tor (M), the gold cartridge unit and the control system as well

as the Hg zero-air generator to produce dry, Hg-free air. Re-

mote control of the system allowed online checks of the data

and detection of instrumental failures.

2.2 GEM analysis

Air sampling and GEM analysis was performed in parallel

in 30 min intervals (Fig. 2). GEM in air samples and injec-

tions from the GEM reference gas and Hg zero-air generator

were quantified using cold vapor atomic fluorescence spec-

trophotometry (M). The temperature-controlled GEM refer-

ence gas generator provided precise GEM concentrations in

a constant stream of dry, Hg-free air. The average recovery of

the GEM standard was determined by back calculation from

the manual calibration of the Hg detector. The average±SD

loading on cartridge pair 2–4 corresponded to 27.2±1.1 and

22.2± 1.3 pg in Basel and 32.1± 2.1 and 32.1± 2.3 pg at

Degerö. Dry, Hg-free air was generated using an air com-

pressor (N) with air dryer (O) and an activated carbon filter

(P). Additional gold mercury scrubbers were installed at the

outlet of the Hg zero-air generator.

Figure 2 illustrates the sampling and analysis sequence.

Upon startup cartridges C2 and C4 are in the air sam-

pling mode, while GEM previously collected on C1 and C3

is analyzed. During the first 5 min GEM of the idle car-

tridges is desorbed by heating the cartridges to 500 ◦C in

a stream (80 mL min−1) of high-purity Argon (Ar) carrier

gas (Q). The cartridge analysis procedure for individual sam-

ples included five steps: Ar flushing (20 s), recording baseline

(10 s), cartridge heating (28 s), peak delay (30 s) and cooling

of the cartridges (60 s). After up- and downdraft air samples

had been analyzed (Aa), the cartridges were loaded for 5 min
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Figure 2. The hourly measuring cycle of the REA system subdivided into the air sampling and GEM analysis procedures (Aa, ref/clean, Ab).

At the start of a sequence, cartridge pair C2 and C4 adsorb GEM in the up- and downdraft simultaneously while previously adsorbed GEM

from cartridges C1 and C3 is analyzed. During each cycle, eight analysis procedures which last for 2.5 min were conducted.

each with either GEM reference gas (ref) or dry, Hg-free air

(clean). The flow rate of dry, Hg-free air (carrier gas) through

the GEM reference gas generator was set to 600 mL min−1

using a MFC. The GEM reference gas was pre-mixed with

100 mL min−1 dry, Hg-free air before being supplied to the

cartridges. Dry, Hg-free air was delivered at a flow rate of

1500 mL min−1 regulated by another MFC. The cartridges

loaded with ref/clean air were analyzed (Ab phase in Fig. 2)

following the same procedure as the air samples.

The average and standard deviation of the Hg detector

baseline were calculated for periods of three seconds before

and after the Hg peak. The baseline below the peak was in-

terpolated and subtracted from the peak. The peak areas were

logged together with 30 min averages of the sampled air vol-

ume, opening times and number of switching operations of

the fast-response valves. Air temperatures within the weath-

erproof boxes, Hg detector lamp- and UV sensor voltages as

well as pressure sensor data were also recorded.

2.3 QA/QC

2.3.1 Calibration of Hg detector

The REA system was calibrated after the field campaigns us-

ing a temperature-controlled Hg vapor calibration unit (R)

together with a digital syringe (S). Different concentrations

of saturated GEM vapor were injected into the Hg-free air

stream provided by a Hg zero-air generator (T). During cali-

bration a simulated wind signal was used to supply both lines

with an equal amount of air. Calibration factors were gained

by linear regression between the injected quantity of GEM

and observed peak areas (Fig. S1).

2.3.2 Monitoring of GEM recovery

Repeated injections from the GEM reference gas and Hg

zero-air generator (Fig. 2) were performed to observe pos-

sible contamination, passivation or drift of the cartridges, as

well as to check for temperature sensitivity in the Hg de-

tector. Before and after a measurement campaign the system

was checked for leaks by measuring dry, Hg-free air from

the Hg zero-air generator and by constricting the sampling

lines temporarily to check for pressure decrease within the

lines. PTFE parts and tubing were cleaned with 5 % nitric

acid according to a standard operating procedure (adapted

from Keeler and Landis, 1994).

2.3.3 Bias of sampling lines

To assess potential systematic bias between up- and down-

draft sampling lines, GEM reference gas was supplied to both

lines. During 5 days in Basel and 28 h at Degerö, the REA

system dynamically sampled reference gas using 2 s simu-

lated wind signal to acquire identical up- and downdraft sam-

ples with respect to volume and GEM concentration. Accord-

ingly, concentration bias between the REA sampling lines

was corrected for in the GEM flux calculation.

2.4 Data processing

The analyzed air samples (Aa) for each cartridge were cor-

rected for temperature sensitivity of the Hg detector by di-

viding the average GEM reference gas concentration over

the entire campaign (Abr) through single GEM reference gas

measurements (Abr) according to

Acorr = Aa ·
Abr

Abr

. (5)

GEM concentrations (CGEM) in up- and downdraft were

computed by applying intercept (b) and slopes (s) calculated

from the manual calibration procedure (Sect. 2.3.1) and the

air volumes (V) drawn over the cartridges:

CGEM =
Acorr− b

s
·

1

V
. (6)

GEM concentration differences were corrected for the bias

between the two sampling lines (Sect. 2.3.3). Finally, the

www.atmos-meas-tech.net/9/509/2016/ Atmos. Meas. Tech., 9, 509–524, 2016
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GEM flux was derived following Eq. (1). As the sampled air

was not dried before being measured with a MFC calibrated

for dry air, GEM fluxes were corrected for variations in the

water vapor content of the air following Lee (2000):

FGEMcorr = (1+ 1.85ζ )FGEM+ 1.85
ρGEM

ρa

LEm, (7)

where FGEMcorr is the corrected and FGEM the uncorrected

GEM flux (ng m−2 h−1). ζ is the water vapor mixing ratio

(kg kg−1). LEm is the water vapor flux (ng m−2 h−1), and the

ratio of mean GEM density (ρGEM) to mean air density (ρa)

were determined from the data for each measurement inter-

val.

Criteria to identify conditions under which REA is not

valid will be presented in Sect. 3.1.4. Among them an inte-

gral turbulent characteristics test was applied to identify the

development of turbulent conditions:

σw

u∗
= 1.3 · (1− 2 ·

z

L
)

1
3 , (8)

including σw, friction velocity (u∗), measuring height (z)

and Obukhov length (L). Therein, the dependent integral

turbulence characteristic for vertical wind velocity (σw/u∗)

equates with a model dependent on stability (z/L) (Panofsky

and Dutton, 1984; Foken and Wichura, 1996; Foken, 2006).

A deviation by more than a factor of 2 from the model was

used as the threshold to reject periods of insufficient turbu-

lence as well as periods of larger than expected turbulence

(Fig. S2).

The effect of a potentially dampened GEM flux due to

high- and low-frequency losses of the turbulent eddies has

been derived by interpretation of turbulence spectra for both

sites dependent on instrumental properties (lateral sensor

separation), measuring height, wind speed and stability con-

ditions (Sect. 3.3). The applied high-pass filter (Eqs. 3, 4)

amplifies the attenuation by reducing random or systematic

noise in the flux estimates caused by low-frequency bias in

the turbulent time series. High-frequency attenuation might

be caused by an electronic delay of the valve switching and

sensor separation (Foken et al., 2012).

To predict the size of REA flux source areas dur-

ing the campaigns the footprint model of Kormann and

Meixner (2001) was applied in Basel and a Lagrangian

stochastic forward model following Rannik et al. (2000) at

Degerö. The footprint models were chosen in order to fit the

specific requirements as defined by the source areas at each

site. The actual source area was estimated for each half-hour

period based on wind direction, wind speed, stability, surface

roughness and sensor height.

2.5 Site descriptions

The climate in the city of Basel, Switzerland (47.56◦ N,

7.58◦ E; 264 m a.s.l.), is temperate with a mean annual

temperature of +9.8 ◦C and 776 mm precipitation (Me-

teoSchweiz, 2016). The REA system was deployed on the

flat roof of the University of Basel’s Meteorology, Climatol-

ogy and Remote Sensing Laboratory (MCR) 20 m above the

ground. The REA sampling inlets were mounted on the top of

the permanently installed tower at 39 m above ground level.

The average building height around the tower is 17 m and

the 90 % cumulative footprint mirrors dominant wind direc-

tions, which are W to NW (240–340◦) and ESE (100–140◦).

Results from this site reflect the situation within the urban

inertial sublayer (Lietzke and Vogt, 2013).

The second campaign was conducted at an Integrated Car-

bon Observatory System (ICOS) site in the center of a boreal

peatland in Sweden (64.18◦ N, 19.55◦ E; 270 m a.s.l.) dur-

ing snowmelt. The mixed acid mire system covers 6.5 km2

and is located in the Kulbäcksliden Research Park of the

Svartberget Long-Term Experimental Research (LTER) fa-

cility near the town of Vindeln, county of Västerbotten, Swe-

den. The site is part of the Swedish research infrastructure

(funded by the Swedish Research Council). The snow cover

normally reaches a depth up to 0.6 m and lasts for 6 months

on average (Sagerfors et al., 2008). The average total Hg

concentrations in the upper 40 cm of the peatland soil are

57.3± 6.0 ng g−1 (±SD) dry matter, which is a typical value

for soils in northern Sweden (Shanley and Bishop, 2012;

Åkerblom et al., 2013). The climate of the site is defined

as humid cold temperate with mean annual precipitation and

temperature of 523 mm and +1.2 ◦C, respectively (Alexan-

dersson et al., 1991). A measurement height of 1.8 m above

the surface was maintained by gradually decreasing of the

instrumentation boom to account for snowmelt. Dominant

wind direction during summer is NE and SE during winter.

For a more detailed site description see Granberg et al. (2001)

or Peichl et al. (2013).

3 Results and discussion

3.1 REA performance

3.1.1 Sampling accuracy

Compared to single-inlet REA designs, systems with sepa-

rate inlets for up- and downdraft are less prone to measure-

ment uncertainty due to unsynchronized conditional sam-

pling (Baker et al., 1992) and high-frequency concentration

fluctuations in the tube flow (Moravek et al., 2013). Zhu et

al. (2015b) found that the calculation of concentration dif-

ferences based on temporally intermittent GEM measure-

ments (non-stationarity of atmospheric GEM concentrations)

introduced the largest source of uncertainty in their single-

inlet Hg0-REA system. Accurate simultaneous sampling of

GEM concentration using a two-inlet design is thus the ma-

jor technical improvement of our system compared to most

Hg-REA systems used to date, as summarized in Sommar
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et al. (2013a). However, even though the dual-inlet avoids a

major source of error, there are a number of other aspects

of a Hg-REA system that need to work as well as possible

to measure land–atmosphere GEM fluxes. One of these is

the determination of the β value, which includes sonic tem-

perature and sensible heat flux measurements (Sect. 3.1.2).

It is estimated to introduce an uncertainty similar to Zhu et

al. (2015b) of approximately 10 %. Uncertainty due to flux

dampening of sampled low- and high-frequency concentra-

tion fluctuations is small and just relevant during specific sta-

bility and wind speed conditions depending on measurement

height and quality of turbulence (Sect. 3.3). There are sev-

eral other sources of error in the measurements such as (i) the

possible bias in vertical wind velocity measurements, (ii) the

precision of the switching of the fast-response valves, (iii) the

sampled air volume, (iv) the peak integration and (v) the field

calibration procedure (cf. Zhu et al., 2015b).

i. Vertical wind velocity is used for instantaneous valve

control. Ammann (1999) ascribed the main error here

to be the possibility for misalignment between the wind

field and the sensor head due to a tilted sensor setup or

wind distortion around the sensor. However, the appli-

cation of a high-pass filter combined with a deadband

was able to alleviate averaged vertical wind velocity

bias from the wind signal.

ii. It is important to limit the electronic delay to switch the

fast-response valves caused by the digital measurements

system and signal processing. The effective response

time to actuate the fast-response valves was determined

to be 18 ms for the opening and 8 ms for the closing. The

switching of the fast-response valves allowed a maxi-

mal resolution between updraft and downdraft samples

of 5.2 Hz.

iii. A major challenge in applying a system with two in-

let tubes and no dry Hg-free air addition at the in-

lets (as applied by Sommar et al., 2013a) is to con-

trol flow pressure that builds up within the sampling

lines. Flow surges are dependent on the time the fast-

response valves remain closed. Pressure variations were

dampened by a reservoir of 200 mL volume between

the pump and mass flow controller (Fig. 1). The resis-

tance within the lines was initially checked to be equal

to minimize pressure anomalies between the three flow

paths. A simulated wind signal with fast-response valve

opening times of 2 s for the up- and downdraft and

1 s for the deadband was applied and revealed maxi-

mal pressure fluctuations of 35 mbar. The vast major-

ity of the 30 min measurements in Basel and Degerö

showed higher switching rates which are generally as-

sociated with lower pressure fluctuations. The total vol-

umes drawn over updraft, downdraft and deadband lines

averaged 30± 0.09 in Basel and 45± 0.01 L (±SD)
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Figure 3. Representative peak recovery for gold cartridge pair C2–

C4 during ambient air (Aa), GEM reference gas (Abr) and dry, Hg-

free air measurements (Abc) on 11 February 2012, between 14:00

and 15:30 in Basel. The values in squared brackets equal the areas

between the curves and the baseline. The plots show an extract of

10 s from the peak delay sequence which takes 30 seconds in total.

Y axis indicates the Hg detector baseline voltage (V).

at Degerö. The proportion of the air not analyzed ac-

counted for 10.5 L in Basel and 20.3 L at Degerö. Mea-

surements were discarded if the volume deviated more

than 2.5 % from the flow setting value of the mass flow

controller (cf. Sect. 3.1.4).

iv. An analysis of the detector peaks indicated that the sig-

nal for atmospheric and GEM reference gas samples

were statistically different from blank measurements

(99 % confidence) (Fig. 3).

v. The manual calibration procedure revealed a strong

linear relationship between peak areas and syringe-

injected GEM reference gas for the cartridge pairs

(Fig. S1). The automated injection of GEM reference

gas provided a 2-hourly quality control measure to mon-

itor any bias caused by the temperature sensitivity of

the Hg detector. The air temperature surrounding the

Hg detector showed a strong linear relationship with the

GEM reference gas measurements for up- and down-

draft in Basel and a less pronounced dependence at

Degerö (Fig. 4). The uncertainty of concentration mea-

surements for our REA system is basically introduced

by sampling-line bias, wherefrom the method detection

limit is derived (Sects. 2.3.3 and 3.1.3).
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Figure 4. Linear relationship between GEM reference gas (Abr)

measured with gold cartridge pair C2–C4 in Basel (grey, black) and

Degerö (orange, red) and air temperatures within the Hg detector

box.

3.1.2 β-factor evaluation

In this study, β is derived from EC time series of temperature

and vertical wind speed at both sites (Eq. 2) during method-

ologically favorable conditions (cf. Sect. 3.1.4) with respect

to turbulence for every 30 min GEM flux measurement aver-

aging period. Due to considerable scatter in β especially dur-

ing periods when sensible heat flux diminished to near zero,

data were omitted for kinematic heat flux within the range

of ±0.01 K m s−1 (Ammann and Meixner, 2002; Sommar et

al., 2013a). In accordance with Hensen et al. (2009) only

β factors in the range of 0.1–1 were used. During the first

study in Basel a fixed deadband of |w|< 0.2 m s−1 was ap-

plied. This was done to restrict the analysis to periods when

the discrimination between updraft and downdraft was large

enough to allow for accurate estimation and to prolong the

opening times of the fast-response valves. At Degerö a dy-

namic deadband approach with a sampling threshold±0.5σw
was used. Data analysis revealed that the effect of surface

layer stability or u∗ on β calculation was negligible. The

median±mad (median absolute deviation) of observed β

values in Basel and Degerö was 0.49± 0.21 (n= 391) and

0.45± 0.20 (n= 342), respectively. Median β values ob-

served at Basel and Degerö concurred with literature in the

range of 0.4–0.6 (Grönholm et al., 2008; Bash and Miller,

2009; Arnts et al., 2013; Sommar et al., 2013a).

The Basel measurements resulted in broad non-Gaussian

frequency distributions for the fraction of time when air was

sampled into up- and down reservoirs. The average cumu-

lated opening times for the 30 min sampling periods for the

up- and downdrafts were 9.6 and 9.8 min, respectively, which

results in maxima in up/down/deadband sampling fractions

of about 32/33/35 %. Periods of less developed turbulence

caused the fast-response valves to switch less often and in-

creased the opening times of the deadband. The correspond-

ing confined frequency distributions observed at Degerö

were 28/27/45 % and showed significantly lower variation

than for the Basel measurements.

3.1.3 Detection limit

The instrument detection limit of the Hg detector was

< 0.1 ng m−3 and allowed discernment of GEM peaks from

the baseline noise for all measurements. The gold cartridge

pair offset criteria and the method detection limit were de-

rived in the field from sampling the same air through up-

draft and downdraft lines. For this study we defined two

strict rejection criteria for (1) maximum standard deviation

of the offset of 0.05 and (2) maximum difference in gold

cartridge response of 10 %. The assessment of the offset be-

tween the sampling lines during the Basel measurements was

0.009± 0.06 (±SD) and 0.016± 0.01 ng m−3 for gold car-

tridge pairs 1–3 and 2–4, respectively. At Degerö the offset

was 0.17± 0.06 and −0.004± 0.02 ng m−3 for 1–3 and 2–

4. If up- and downdraft lines sample the same air, the off-

set between these should be constant, independent of air Hg

content. Scaling the GEM area difference detected in the up-

and downdraft air by GEM area of the updraft air revealed an

erroneous behavior of cartridge pair 1–3. Further inspection

showed that the PTFE valves (V4–V7) seemed to restrict the

air flow when energized, thus leading to erroneous air volume

readings. In contrast, when air flows through cartridge pair

2–4, the valves are in the idle mode with free flow. There-

fore, measurements with cartridge pair 1–3 were discarded

for both campaigns due to the above threshold variability in

Basel and the large gold cartridge pair offset at Degerö. Al-

though data availability was reduced by 50 % this technical

shortcoming may be solved by use of different valves, e.g.,

three-way flipper valves. Detailed results from the sampling

line bias tests are presented in Figs. S3 and S4.

From these individual sampling lines bias measurements

for Basel and Degerö a minimum detectable GEM concen-

tration difference based on 1σ was derived. Thus, 98 % of

the available 30 min data in Basel and 83 % at Degerö were

above that limit. Zhu et al. (2015b) reported that 55 % of their

Hg-REA flux data were significantly different from zero.

Data from bias determination for cartridge pair 2–4 did not

reveal any significant diurnal pattern or trend over time for

both sites.

3.1.4 Data coverage

Based on the systematic bias when using cartridge pair 1–

3, 50 % of the data from both sites, Basel and Degerö were

discarded (Table 1). Some of the remaining flux measure-
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Table 1. Overview of rejection criteria for the evaluation of REA

field measurements. Rejected amount of data (%) and remaining

numbers of observations (n) are given.

Criterion Rejection percentage

Basel Degerö

Gold cartridge pair offset 50 % 50 %

Logging failure 4 % 7 %

Insufficient turbulence (σw/u∗) 6 % 4 %

Extreme stability (|z/L|>2) 0 % 0 %

Sampling air flow and blank irregularities 1 % 4 %

Total rejection (excl. cartridge pair offset) 12 % 16 %

Remaining observations n= 292 n= 380

ments were rejected due to logging failures including power

breakdowns. Additionally, 6 % of the data at Basel and 4 %

at Degerö were rejected due to poorly developed turbulence,

determined by applying an integral turbulent characteristics

test (Eq. 8). GEM flux measurements during extremely sta-

ble conditions were omitted (z/L>2). The data were also

screened for irregularities in the measured sampling air flow

(deviation from the flow setting value > 2.5 %). Dry Hg-free

air was used to determine possible cartridge or sampling line

contamination and to discard periods of a noisy Hg detector

baseline, due to rapid temperature changes within the detec-

tor box. GEM flux measurements were discarded when the

signal of the blank measurements exceeded 10 % of the in-

tegration peak area that was detected for atmospheric GEM.

In other Hg-REA studies, 44 % (Sommar et al., 2013a) and

28 % (Zhu et al., 2015b) of the data were flagged as mod-

erate and low data quality due to turbulence characteristics

(cf. Mauder and Foken, 2004). In our study the overall half-

hourly data loss was 62 % at Basel and 66 % at Degerö.

3.2 Meteorological conditions

During the measurements in Basel air temperatures averaged

−7.9± 3.3 ◦C (±SD). Precipitation occurred in the first 2

days and caused substantial loss of EC data, while GEM

flux determination was not affected. From 3 to 12 February

2012, measurements were done during predominantly cloud-

less conditions with daily solar radiation (Rg) peaks between

300 and 500 W m−2. Relative humidity ranged between 20

and 91 % and was on average significantly lower in Basel

than at Degerö. Wind speed in Basel averaged 2.6 m s−1 and

did not differ significantly between day (Rg > 5 W m−2) and

night (Rg < 5 W m−2). Wind direction was predominantly

from the northwest during the day and the southeast during

the night. Polar histograms of 30 min averaged wind speed

and atmospheric GEM concentration measurements at both

sites are presented in Fig. S5. Unstable atmospheric stratifi-

cation (z/L<−0.05) was predominant (92 % of time) during

the Basel campaign while less than 3 % of the measurements

were conducted during stable conditions (z/L>0.05).

The campaign on the boreal peatland commenced on

5 May 2012. The surface was covered by maximum of 33 cm

snow which melted away towards the end of the campaign

on 24 May 2012. A total precipitation amount of 19.6 mm

was recorded during the campaign including a heavy snow-

fall during the morning of 6 May. Air temperatures aver-

aged 5.4±3.5 ◦C, whereas daily averages increased from 0.0

to 9.1 ◦C over the period. Soil temperatures at 2 cm depth

likewise increased from 3.2 to 8.0 ◦C (daily averages). The

prevailing wind direction at Degerö was from the north-

east to south with an average wind speed at 2.9 m s−1 (day-

time mean: 3.1 m s−1, nighttime mean: 2.1 m s−1). Condi-

tions were stable (z/L>0.02) 22 % of the time (daytime:

15 %, nighttime: 43 %), unstable for another 38 % (daytime:

42 %, nighttime: 22 %) (z/L<−0.02) and neutral during the

remaining 40 % (daytime: 43 %, nighttime: 35 %).

3.3 Footprint and turbulence regime

In Basel the GEM flux measurements were conducted over

a rough surface showing strongly modified vertical turbulent

exchange processes. Measurements were conducted within

the inertial sublayer 39 m above ground, which overlays the

urban roughness sublayer assuming that the upper level of

the roughness sublayer is about 2 times the average build-

ing height of 17 m (Feigenwinter et al., 2012). Of the GEM

fluxes measured in Basel, 90 % originated from a source area

that covered 78 ha and reflected a blended, spatially aver-

aged signal (Fig. 5a). Within that footprint the water frac-

tion accounts for 7 %, the vegetation fraction for 19 %, the

building fraction for 36 % and impervious ground surface for

38 %. Main wind directions during the campaign mimicked

the dominant seasonal wind direction from NNW and ESE.

An inspection of the normalized co-spectra for sensible

heat, latent heat and CO2 flux revealed the occurrence of

large eddies leading to comparably low switching intervals

of 1.4±0.3 Hz (mean±SD). The co-spectral estimates were

derived from 20 Hz data over the entire campaign during un-

stable conditions and demonstrate that high-frequency losses

for sensible heat, latent heat and CO2 fluxes were minimal.

Low-frequency losses resulted due to the applied high-pass

filter which attenuated fluctuations at periods larger than the

time constant of 16.6 min (RF in Fig. 6). Ogives were cal-

culated after Foken et al. (2012) and converged at approxi-

mately 90 % of all cases within the 30 min averaging period

(Fig. 6a). Simulated damping factors for REA fluxes revealed

that at a mean wind speed of 2.6 m s−1 less than 10 % of

the flux was dampened. We conclude that applying a 30 min

averaging interval, a high-pass filter and valve switching at

10 Hz was adequate for REA flux calculations since consid-

erable flux damping occurred just at low-frequency ranges,

unstable conditions and low wind velocities.

At Degerö, 90 % of the footprint comprised 0.6 ha

(Fig. 5b). For all contour lines calculated, the surface was

physically homogenous. The roughness length z0 present
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Figure 5. Aerial RGB and IR photographs with red contours containing 50, 80 and 90 % of the flux during the campaign in Basel (a) and

Degerö (b). The yellow and blue 80 % contours at Degerö stand for unstable and stable conditions, respectively. The light-green pentagons

indicate the location of the flux towers.

Figure 6. Normalized turbulence co-spectra (y axis, lines+ symbols) and converging ogives (secondary y axis, lines) of sensible heat (red),

latent heat (blue) and CO2 flux (black) during unstable conditions for Basel (a) and Degerö (b). The vertical line labeled as RF indicates the

time constant of the applied high-pass filter. At Degerö only high-resolution air temperature data were used.

during the campaign was only a few millimeters due to the

short vegetation (Sagerfors et al., 2008) and negligible when

there was snow cover. During the Degerö campaign, the nor-

malized turbulence spectra and ogives were derived for sen-

sible heat flux during unstable conditions (Fig. 6b). Due to

temporary technical problems regarding the LI-6262 closed-

path infrared gas analyzer, CO2 and latent heat flux data were

not used for spectral analysis. In comparison to Basel the co-

spectrum of the sensible heat flux was shifted significantly

towards higher frequencies. The occurrence of more smaller

eddies increased the fast-response valve switching interval

(2.9± 0.7 Hz; mean±SD) which increased with increasing

u∗ (Fig. S6). High-frequency losses at 10 Hz accounted for

less than 5 % of the sensible heat flux. The ogive converged

a constant value at RF and indicates that large eddies were

sampled completely over the averaging period (Fig. 6b). At

Degerö the integral damping factor for the REA flux was

more than 20 % at high frequencies especially during sta-

ble and strong wind conditions. Simulated integral REA flux

damping factors dependent on wind speed and stability con-

ditions and cospectral density plots for site-averaged wind

speeds are illustrated for Basel and Degerö in Figs. S7 and

S8.

3.4 Atmospheric GEM concentrations

Mean±SD atmospheric GEM concentration in Basel was

4.1± 1 ng m−3. The average concentration difference be-

tween up and downdraft was 0.26± 0.3 ng m−3 (median:

0.19 ng m−3) (Fig. 7). It might be possible that during the

exceptionally cold period in Basel gas and oil-fired ther-

mal power stations within the dense urban source area con-

tributed to enhanced atmospheric GEM concentrations. In

urban areas, total gaseous Hg concentrations were highest

during heating season (Fang et al., 2004). Highest GEM lev-
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Table 2. Summary of averaged, median and distribution of GEM fluxes, atmospheric GEM concentrations and environmental conditions

during the measurement campaigns. Pearson correlation coefficients (r) between GEM flux and environmental parameters are given when

statistically significant (p< 0.05).

Variable Basel Degerö

Unit Mean Median 10th/90th percentile r Mean Median 10th/90th percentile r

GEM flux ng m−2 h−1 15.4 34.9 −262/270 – 3.0 2.6 −71/67 –

GEM concentration ng m−3 4.1 3.9 3.3/5.6 −0.23 1.6 1.6 1.4/1.8 −0.14

Sensible heat flux (EC) W m−2 73.5 65 20/134 – 11.8 2.4 −17/58 0.23

Latent heat flux (EC) W m−2 12.3 10.6 1.8/24.5 0.26 – – – –

CO2 flux (EC) µmol m−2 s−1 0.02 0.01 0/0.04 0.36 – – – –

Friction velocity m s−1 0.41 0.39 0.2/0.7 0.2 0.19 0.18 0.07/0.34 −0.23

Wind speed m s−1 2.6 2.5 1.3/3.9 0.13 2.9 2.7 1.0/4.8 −0.26

Solar radiation W m−2 78 – 0/312 −0.22 159 – 0/455 0.14

Air temperature ◦C −7.9 −8 −12/3.4 0.23 5.3 5.4 0.1/10.2 0.26

Soil temperature ◦C – – – – 6.7 7 4.4/8.2 0.2

Relative humidity % 62 60 40/85 −0.23 76 80 47/98 −0.3
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Figure 7. Box plots display atmospheric GEM concentrations (a)

and the absolute GEM concentration differences between updraft

and downdraft (b) during the day and night at Degerö and Basel..

Number of observations is indicated. The bold line in the box rep-

resents the median GEM concentration. The horizontal border lines

indicate the 25th (Q1) and 75th (Q3) percentiles, from bottom to

top. The lower whisker marks Q1 minus 1.5 times the interquartile

range (IQR). The upper whisker marks Q3 plus 1.5 IQR. Outliers

are not displayed.

els in Basel were observed during periods of low wind ve-

locities (u∗< 0.3 m s−1) and southern wind directions. Most

likely additional GEM emissions from vehicular traffic along

a highly frequented road contributed to elevated Hg concen-

trations during southerlies. GEM concentrations in the ex-

haust of motor vehicles in driving mode are elevated and

range from 2.8 to 26.9 ng m−3 depending on fuel types (Won

et al., 2007). The road runs in a north/south direction and is

the major source of CO2 (Lietzke and Vogt, 2013).

The average air concentration during snowmelt at Degerö

was 1.6± 0.2 ng m−3, comparable to observations made in

2009 by static chambers (Fritsche et al., 2014). Concen-

tration difference in REA conditional samples collected at

Degerö averaged 0.13± 0.2 ng m−3 (median: 0.09 ng m−2)

which is about a factor of 2 lower than the magnitude ob-

served in Basel (Fig. 7). No significant concentration rela-

tionships were found with either wind direction or atmo-

spheric stability.

3.5 GEM flux estimation in contrasting environments

Urban areas are of particular concern with respect to the

global Hg cycle. Industrial sectors and anthropogenic com-

bustion processes emit large quantities of Hg to the atmo-

sphere (Walcek et al., 2003) where mostly gaseous oxidized

Hg and particulate bound Hg deposit locally. Highly vari-

able Hg air concentrations, the physically and chemically

diverse nature of urban surface covers and urban meteorol-

ogy (e.g., heat island effect) are suggested to create complex

Hg flux patterns above cities (Gabriel et al., 2005). Up to

now, just a handful of studies have described GEM emis-

sions from urban environments (Kim and Kim, 1999; Feng

et al., 2005; Gabriel et al., 2006; Obrist et al., 2006; Eck-

ley and Branfireun, 2008). GEM fluxes measured in Basel

showed a diurnal trend with a maximum deposition around

noon and highest emissions around 7 PM (Fig. 8a). The mean

flux±SE of 15.4± 13.3 ng m−2 h−1 indicated that this ur-

ban area was a net source of atmospheric Hg during the

study period. Similarly, for the same site in spring and fall,

Obrist et al. (2006) observed average GEM emissions of

6.5±0.9 ng m−2 h−1 (±SD) in the stable nocturnal boundary

layer using the 222Rn/Hg0 method. Environmental variables,

e.g., solar radiation, air and soil temperatures, are known to

be major drivers of natural GEM emission (e.g., Schröder et
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Figure 8. Diurnal patterns of GEM flux during the campaign in Basel (a) and Degerö (b) using the 6-hourly smoothed GEM flux time series.

Red and gray colored box plots indicate median Hg emission and Hg deposition at different times of the day, respectively. Hourly averages of

air temperatures are given (orange). Horizontal dashed line indicates the zero line of GEM flux and/or air temperature. Box plot description

in caption of Fig. 7.

al., 1989; Steffen et al., 2002; Choi and Holsen, 2009). Corre-

lations between GEM flux and its controlling factors for this

study can be reviewed in Table 2. Northwesterly wind direc-

tions were associated with GEM deposition between 02:00

and 13:00. In contrast, emission events were linked to wind

directions from the southeast.

Determination of GEM snow–air exchange has been a sub-

ject of interest since the first atmospheric mercury deple-

tion events were observed (Schröder et al., 1998). Non-arctic

GEM flux studies from snowpack report deposition as well

as emission events with near zero net fluxes (Faïn et al.,

2007; mean: 0.4 ng m−2 h−1; Fritsche et al., 2008b; mean:

0.3 ng m−2 h−1).

The mean GEM snow–air transfer observed at Degerö was

3.0± 3.8 ng m−2 h−1 (±SE). It is the result of a balance be-

tween deposition prevailing from midnight to noon and vice

versa during the rest of the day when emission predomi-

nates (Fig. 8b). REA fluxes varied strongly during both the

day and night but revealed a significant difference between

GEM fluxes during unstable (median: 8.7 ng m−2 h−1), sta-

ble (median: −0.1 ng m−2 h−1) and neutral conditions (me-

dian: −4 ng m−2 h−1) (Mann–Whitney U test, p< 0.05).

GEM concentrations in the surface snow layers were not

determined in this study but in accordance with Faïn et

al. (2013), GEM is likely enhanced during the course of day-

time compared to ambient air due to sunlight-mediated pro-

cesses. An impact of fresh snowfall and possible wet Hg de-

position on GEM fluxes could not be observed with REA but

precipitation events occurred regularly in the afternoon and

might have contributed to GEM volatilized in the evenings

together with GEM produced during dusk and night (Faïn et

al., 2013).

GEM flux quantification is improved, compared to previ-

ous systems, by the synchronous sampling, as well the regu-

lar monitoring of GEM reference gas concentration and dry,

Hg-free air. As demonstrated here, these improvements make

REA feasible for measurements over tall buildings but also

short vegetation and snow cover. At Degerö, however, higher

abundance of smaller eddies increased the GEM flux vari-

ability. However, the REA technique remains better suited to

assessing magnitudes and variability of fluxes rather deter-

mining the effects of short-term variability in environmental

parameters on GEM fluxes (cf. Gustin et al., 1999).

For future long-term REA applications we have three sug-

gestions: (i) a more regular determination of the bias between

both sampling lines, either by a weekly check of the bias or

by implementing an additional valve to switch up- and down-

draft lines every hour (each cartridge would measure up- and

downdraft); (ii) although Hg detector sensitivity due to rapid

air temperature changes is corrected for, it could be avoided

to a large extent by using a more effective temperature con-

trol unit; (iii) improvement of the accuracy in the air volumes

sampled by installing mass flow meters for up- and down-

draft lines.

4 Conclusions

The need to precisely determine GEM land–atmosphere ex-

change over long continuous periods is widely recognized.

REA has the potential to do this more effectively than other

methods. Therefore, several REA systems have been de-

ployed, but their accuracy has been impaired by several de-

sign features such as the use of multiple detectors and non-

synchronous sample collection. We developed a dual-inlet,

single analyzer system that has overcome these shortcom-

Atmos. Meas. Tech., 9, 509–524, 2016 www.atmos-meas-tech.net/9/509/2016/



S. Osterwalder et al.: A dual-inlet, single detector relaxed eddy accumulation system 521

ings and included new features such as the integrated GEM

reference gas and Hg zero-air generator for continuous mon-

itoring of GEM recovery, as well as blank measurements.

The data acquisition and control system is fully automated

and could be remotely controlled, which reduces the work-

load compared to other REA systems. We have demonstrated

the system in contrasting environments to measure turbu-

lent transport of GEM 39 m above ground level in Basel,

Switzerland, and 1.8 m above a boreal peatland in Sweden

during snowmelt. While the demonstration identified room

for further improvements, we believe this novel design has

the potential to facilitate the use of REA for measuring land–

atmosphere Hg exchange for sustained periods in a variety of

environments.

The Supplement related to this article is available online

at doi:10.5194/amt-9-509-2016-supplement.
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