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Abstract. Large variability is inherent to turbulent flux ob-
servations. We review different methods used to estimate the
flux random errors. Flux errors are calculated using mea-
sured turbulent and simulated artificial records. We recom-
mend two flux errors with clear physical meaning: the flux
error of the covariance, defining the error of the measured
flux as 1 standard deviation of the random uncertainty of tur-
bulent flux observed over an averaging period of typically
30 min to 1 h duration; and the error of the flux due to the
instrumental noise. We suggest that the numerical approxi-
mation by Finkelstein and Sims (2001) is a robust and ac-
curate method for calculation of the first error estimate. The
method appeared insensitive to the integration period and the
value 200 s sufficient to obtain the estimate without signif-
icant bias for variety of sites and wide range of observa-
tion conditions. The filtering method proposed by Salesky
et al. (2012) is an alternative to the method by Finkelstein
and Sims (2001) producing consistent, but somewhat lower,
estimates. The method proposed by Wienhold et al. (1995)
provides a good approximation to the total flux random un-
certainty provided that independent cross-covariance values
far from the maximum are used in estimation as suggested in
this study. For the error due to instrumental noise the method
by Lenschow et al. (2000) is useful in evaluation of the re-
spective uncertainty. The method was found to be reliable for
signal-to-noise ratio, defined by the ratio of the standard de-
viation of the signal to that of the noise in this study, less
than three. Finally, the random uncertainty of the error esti-
mates was determined to be in the order of 10 to 30 % for the
total flux error, depending on the conditions and method of
estimation.

1 Introduction

The eddy covariance (EC) method is the most direct and
defensible way to measure vertical turbulent fluxes of mo-
mentum, energy and gases between the atmosphere and bio-
sphere. Considering an optimal measurement setup and a
standardised scheme for post-field processing of the mea-
sured EC raw data, we can assume that the systematic er-
ror is minimised, and then the random error of the fluxes is
typically dominating the EC flux measurement uncertainty at
short timescales. The accuracy of flux random error estimates
becomes important for interpretation of measurements espe-
cially when detecting small fluxes in terms of turbulent ex-
change or signal-to-noise ratio (SNR) of the instrumentation.
Moreover, it is desirable to estimate the total random uncer-
tainty for each averaging period as well as to separate it into
the main components, e.g. one-point sampling error and in-
strumental noise (Businger et al., 1986). For the uncertainty
due to instrumental noise, the method proposed by Lenschow
et al. (2000) has been recently applied to EC measurements
not only for energy and CO2 (Mauder et al., 2013; Mam-
marella et al., 2015) but also for CH4 (Peltola et al., 2014)
and N2O fluxes (Rannik et al., 2015). Few authors (Detto et
al., 2011; Schmidt et al., 2012; Sturm et al., 2012; Peltola et
al., 2013; Deventer et al., 2015) have used the method pro-
posed by Billesbach (2011) as a means of estimating the ran-
dom instrumental noise. This approach, also called “random
shuffle method”, consists of randomly shuffling one of the
data records in time and then estimating the error as covari-
ance between the two decorrelated time series.

Recently Langford et al. (2015) analysed in detail the un-
certainties related to flux detection from the EC data with
low SNR. The authors evaluated the impact of the time-lag
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determination and called for caution since under low SNR
condition the traditional methods of maximising the cross-
covariance function can lead to a systematic bias in deter-
mined fluxes. The study also reviewed the approaches for
estimation of flux random errors. For quantifying the flux
uncertainty Langford et al. (2015) suggest using the method
by Wienhold et al. (1995) and, following Spirig et al. (2005),
suggest multiplying the flux error standard deviation by a fac-
tor of three to obtain the limit of detection at 99 % confidence
level. The method by Lenschow et al. (2000) to calculate the
effect of instrumental noise on the flux error was also vali-
dated for data with low SNR by Langford et al. (2015). They
compared the method with estimates derived from the root-
mean-square (RMS) deviation of covariance of white noise
and vertical velocity records and found that the error was not
sensitive to the type of distribution of the noise and the RMS
approach was consistent with the method by Lenschow et
al. (2000).

In the current study we review available methods for the
random error estimation of turbulent fluxes, which are widely
used by the flux community. We perform calculation and
analysis of flux errors by considering different error formu-
lations described in Sect. 2.

We use the measured natural turbulent records for (i) quan-
titative comparison of the error estimates by Finkelstein and
Sims (2001), Salesky et al. (2012), Wienhold et al. (1995),
Lenschow et al. (2000) and Billesbach (2011) and (ii) eval-
uation of sensitivity of error estimates on numerical approx-
imations and calculation details. Based on the analysis we
provide recommendations regarding the choice of the flux
random error estimates, together with calculation guidelines
for numerical evaluation.

In addition, we generate artificial records with predefined
statistical properties characteristic to atmospheric turbulence
to (iii) evaluate the flux error estimates with high accuracy.
Numerically evaluated error estimates are compared with the
analytical predictions to validate the theoretical expressions
for different error estimates. From simulated time series the
calculated error estimates allow us also to (iv) evaluate the
uncertainty of the flux random errors.

2 Theory

Turbulent fluxes averaged over a limited time period have
random errors because of the stochastic nature of turbulence
(Lenschow et al., 1994; Rannik et al., 2006) as well as due to
noise present in measured signals (Lenschow and Kristensen,
1985).

2.1 Random error of the flux

The random error of the flux defined by F =
〈
w′s′

〉
=

〈(w−〈w〉)(s−〈s〉)〉, where the angle brackets denote en-
semble averaging, w the vertical wind speed and s the scalar,
can be evaluated as the standard deviation of the covari-

ance, hereafter in the paper denoted by δF, being the measure
of 1 standard deviation of the random uncertainty of turbu-
lent flux observed over an averaging period T . Theoretically,
there are several ways to approximate the same error esti-
mate.

For stationary time series, in the limit T →∞, the flux
random error can be expressed by using the instantaneous
flux ϕ = w′s′ = (w−w)(s− s) statistics according to Wyn-
gaard (1973) and Lenschow et al. (1994):

δF =

√
2τϕ
T

[
(w′s′)2−w′s′

2
]
, (1)

where the overbar denotes time averaging.
The integral timescale (ITS) of ϕ, τϕ , is defined according

to

τϕ =
1
σ 2
ϕ

∞∫
0

Rϕ(t
′)dt ′, (2)

where Rϕ(t
′)= (ϕ(t)−ϕ)(ϕ(t + t ′)−ϕ) is the auto-

covariance function of ϕ, t ′ the time delay and σ 2
ϕ is the

variance of ϕ. Equation (2) can be used directly to estimate
the timescale τϕ by integration of the auto-covariance
function of ϕ, calculated from the high-frequency data
records.

Rannik et al. (2009) estimated the timescale τϕ and com-
pared with simple parameterisations used in practical appli-
cations. The timescale τϕ was converted to a correspond-
ing normalised frequency nϕ by using nϕ =

fϕ(z−d)

U
and

τϕ =
1

2πfϕ
, where z is the observation height, d the displace-

ment height and U denotes the average wind speed. For un-
stable conditions the value 0.24 (for temperature fluxes) to
0.27 (aerosol particle number concentration fluxes) was ob-
tained for nϕ . It was established that normalised frequency
was not a function of stability under unstable conditions. Un-
der stable stratification the frequency nϕ was determined to
increase with stability, which was parameterised by

nϕ = 0.21

(
1+ 3.4

(
z− d

L

)0.26
)
. (3)

The flux uncertainty estimate according to the spectral or
the Fourier method is defined as (Lenschow and Kristensen,
1985; Rannik and Vesala, 1999)

δF =

T −1

∞∫
−∞

Sw(f )Ss(f )+ |Sws(f )|
2df


1/2

, (4)

where the spectrum of time series x = w,s, Sx , can be rep-
resented as the squared magnitude of the Fourier transform
(FT) of x,Sx = |FT(x)|2, with normalisation over frequen-

cies f is assumed as
∞∫
−∞

Sx(f )df = σ 2
x . The cross-spectrum
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can be represented as Sws = FT(w)FT(s)∗, where ∗ stands
for complex conjugate.

Perhaps the most frequently used method to estimate the
flux error is the method equivalent to the spectral method
proposed by Lenschow and Kristensen (1985) in the time do-
main as

δF =

T −1

T∫
−T

[
Rw(t

′)Rs(t
′)+Rws(t

′)Rws(−t
′)
]

dt ′


1/2

(5)

in the limit T →∞, where Rw(t
′)=

(w(t)−w)(w(t + t ′)−w) (and Rs for scalar s) represents
the auto-covariance and Rws(t

′)= (w(t)−w)(s(t + t ′)− s)

the cross-covariance functions.

2.1.1 Method by Finkelstein and Sims (2001)

The Eq. (5) above is numerically approximated by Finkel-
stein and Sims (2001) as

δ̂F, FS ={
1
n

[
m∑

p=−m

w′w′(p)s′s′(p)+

m∑
p=−m

w′s′(p)s′w′(p)

]}1/2

(6)

with suitably chosen value of m, where n equals the amount
of data points within the averaging period and w′w′(p)=

1
n−p

n−p∑
i=1

(w(ti)−w)
(
w(ti+p)−w

)
. Note that throughout of

this study we use the unbiased estimates of the auto- and
cross-covariance functions.

2.1.2 Method by Salesky et al. (2012)

Salesky et al. (2012) introduced filtering method for error
evaluation. By using the box filtering operation with filter
width 1t to obtain the filtered flux ϕ̃ = w̃′c′ ,

ϕ̃(t)=
1
1t

t+1t/2∫
t−1t/2

ϕ
(
t ′
)

dt ′, (7)

the authors showed that

σϕ̃ (1t )=
{

2τϕ(ϕ−ϕ)2
} 1

2
1
−

1
2

t = Cϕ1
−

1
2

t , (8)

where the variance of the filtered flux is defined as σ 2
ϕ̃ =

(ϕ̃−ϕ)2 using the identity ϕ̃ = ϕ, and Cϕ is a constant in-
troduced for convenience as

Cϕ =
{

2τϕ(ϕ−ϕ)2
} 1

2
. (9)

For practical application the authors suggested choosing a se-
ries of time filter widths 1t distributed evenly at logarithmic

scale between 1t,min and 1t,max and to estimate the coef-
ficient Cϕ by least squares according to Eq. (8), i.e. the re-

lationship σϕ̃ (1t )= Cϕ1
−

1
2

t . The values 1t,min = 10Z/U
and 1t,max = T/10 were recommended (Z = z− d denotes
the measurement height relative to displacement height d).

At the limit 1t = T Eq. (8) becomes equivalent to Eq. (1)
and the flux error by the method of Salesky et al. (2012) is
given by

δ̂F, S = ĈϕT
−

1
2 , (10)

where we denote by Ĉϕ the least square estimate of Cϕ . For
calculation of the error estimate δ̂F, S we used the Matlab code
available online by Salesky et al. (2012).

The value Ĉϕ enables to obtain also an estimate of the
ITS τϕ from Eq. (9). The same applies also to the method
by Finkelstein and Sims (2001). If calculating the flux vari-
ance σ 2

ϕ = (ϕ−ϕ)
2

in addition to the error estimate δ̂F, FS,
the ITS can be obtained from the definition of the error in
Eq. (1). Thus both methods have the advantage of not requir-
ing the calculation of the ITS for flux random error estima-
tion, which can be uncertain, and can be used for inferring
the ITS.

All the error estimates presented in Sect. 2.1 are different
methods for evaluation of the same flux error provided that
the averaging period T is much larger than the ITSτϕ .

2.2 Flux random error due to instrumental noise

Random uncertainty of the observed covariance due to pres-
ence of noise in instrumental signal, assuming the white
noise with variance independent of frequency, gives essen-
tially the lowest limit of the flux that the system is able to
measure. Such uncertainty estimate can be expressed in its
simplest form as (e.g. Mauder et al., 2013)

δF, N =

√
σ 2

n_w, fσ
2
c + σ

2
wσ

2
n_c, f

√
f T

, (11)

where σ 2
w and σ 2

c denote the variances of the vertical wind
speed and scalar concentration and σ 2

n_w, f and σ 2
n_c, f rep-

resent the instrumental noise variance of the vertical wind
speed and scalar concentration measurements as observed at
frequency f , respectively. Following the atmospheric sim-
ilarity relationships (under near-neutral conditions) σw =

1.25u∗ and σc = 1.25c∗, where u∗ denotes the friction ve-
locity and c∗ the flux concentration defining the flux via
F = u∗c∗, the relative flux error due to instrumental noise
can be expressed as

δF, N

|F |
=

1.25× 3
√(

SNR2
w
)−1
+
(
SNR2

c
)−1

√
f T

, (12)

where signal-to-noise ratios were defined by SNRx = σx
σn_x, f

.
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The noise level of the sonic anemometers is typically a
few hundredths of m s−1 (see e.g. Rannik et. al. (2015) and
the results of this study, Sect. 4.3.1 below). Typical values of
σw vary between 0.1 and 1 m s−1. This yields for the sonic
anemometers the SNR values from 1 (under very low tur-
bulence conditions) up to a few tens. The relative flux error
resulting from the sonic anemometer noise is thus estimated
to be up to 3 % for 30 min averaging period. This is small
enough to be negligible from the practical point of view.

In most practical cases the instrumental noise is of impor-
tance for atmospheric compounds with low concentrations
and fluxes. Therefore, we further assume negligible contri-
bution of anemometer noise and express the flux error due to
gas analyser noise only by

δF, N =
σwσn, f
√
f T

, (13)

using σ 2
n, f instead of σ 2

n_c, f for simplicity.
For the white type of noise, which is typical for measure-

ment instrumentation, the signal noise at frequency f can be
expressed through its value at frequency 1 Hz by

σn, f =
√
f σn, f=1 Hz, (14)

assuming averaging of the signal over periods f−1 and 1 s,
respectively. This enables us to rewrite Eq. (13) as δF, N =
σwσn, f= 1 Hz
√
T

. The method to estimate noise contribution in
second- to fourth-order moments in atmospheric measure-
ments was derived rigorously by Lenschow et al. (2000) and
applied to EC fluxes by Mauder et al. (2013). Lenschow et
al. (2000) derived the method to estimate the instrumental
random noise variance σ 2

n, f from the auto-covariance func-
tion of the measured turbulent record close to zero-shift, en-
abling us to determine the respective error for each half-hour
flux averaging period under field conditions. In this study,
the auto-covariance is linearly extrapolated to lag zero using
the auto-covariance values at lags 1. . .5 (at 10 Hz frequency
sampling rate) and the difference between this extrapolation
and the observed auto-covariance value at lag zero (i.e. the
variance of the time series) is the variance related to instru-
mental noise. The lag interval from 0.1 to 0.5 s was chosen
as a compromise between accuracy and precision of the vari-
ance estimate. This method relies on the property of the noise
that it is not correlated with the true signal variation. In the
following, the noise variance estimate obtained according to
the Lenschow et al. (2000) approach is denoted by σ̂ 2

n, f and
the respective flux error according to Eq. (13) by δ̂F, N.

2.3 Other flux random error estimates

2.3.1 Method by Wienhold et al. (1995)

Wienhold et al. (1995) use a method to calculate “the error
in the flux determination, the flux detection limit”, calculat-
ing the standard deviation of the covariance function Rws be-

tween the intervals−50≤1tN ≤−40 and 40≤1tN ≤ 50 as

δ̂F, W ={
1

2p

P1+p∑
i=P1

[(
Rws(i 1t)−Rws

)2
+
(
Rws(−i 1t)−Rws

)2]}1/2

, (15)

where 1tN =
1tU
Z

is the normalised interval of
the record, P1 =

∥∥40Z
U

∥∥ and p =
∥∥10Z

U

∥∥, and

Rws =
1

2p

P1+p∑
i=P1

[Rws(i 1t)+Rws(−i 1t)]. The method

calculates several values of the covariance at lags where
correlation between the time series w and s has vanished
and, assuming these are all independent estimates, calculates
the standard deviation as the error estimate. Provided that
the variance of the covariance function is calculated from
the independent values at long enough lags, this method is
equivalent to calculating the error estimate according to

δF, W =

T −1

T∫
−T

Rw(t
′)Rs(t

′) dt ′


1/2

, (16)

which is expected to underestimate the total flux error pre-
sented by Eq. (5). However, it produces larger error values
compared to the flux error due to instrumental noise as de-
fined by Eq. (13) and compared to the error estimate by
Billesbach (2011, Eq. (18) below). We also demonstrate be-
low (Sect. 4.1) that the subsequent values of Rws are not sta-
tistically independent and the numerical estimate Eq. (15)
converges to the theoretical expression Eq. (16) only if in-
dependent values of Rws are selected for calculation of the
standard deviation as the error estimate δ̂F, W.

2.3.2 Method by Billesbach (2011)

Billesbach (2011) proposed a method to calculate the flux
error estimate, which according to the authors was “designed
to only be sensitive to random instrument noise”. The error
is calculated according to

δ̂F, B =
1
n

n∑
i=1

w′(ti)s
′(tj ), (17)

where j ∈ [1. . .n] but the values are in the random order.
We used 20 repetitions when calculating the uncertainty es-
timates with this method in order to obtain robust estimates
(Billesbach, 2011).

Random shuffling of the time series s makes it uncorre-
lated in time and decorrelates s (assumed to consist of the
sum of turbulent signal and instrumental noise) from w, re-
sulting in two independent variables. The variance of the
product of two independent variables ϕ = w′ s′ is equal to
the product of the variances σ 2

ϕ = σ
2
wσ

2
s . Therefore, the error

of the average of ϕ over period T sampled at frequency f
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becomes

δF, B =
σwσs
√
f T

, (18)

where the scalar time series variance is the sum of the vari-
ances of turbulent scalar concentration and that of the noise,
i.e. σ 2

s = σ
2
c + σ

2
n, f. Thus, the error according to the method

by Billesbach (2011) is given by Eq. (18), which becomes
equivalent to Eq. (13) when replacing σs with σn, f. Therefore
the method interprets the variance of turbulent variation as a
part of the random noise and produces an error estimate that
overestimates the flux error due to instrumental noise only.
Also, since turbulence spectrum does not follow the prop-
erty described by Eq. (14), the error estimate according to
Eq. (17) becomes dependent on the choice of the frequency
f and cannot therefore be considered as a robust method to
estimate the flux error.

Lenschow and Kristensen (1985) have shown that the
auto-covariance function for the Poisson type of noise has the

form Rs(t)= σ
2
s

{
1− |t |

1t
, |t | ≤1t

0, |t | ≥1t
with 1t = f−1. Fol-

lowing the formal presentation in Eq. (5) and considering that
w and s are independent due to shuffling, making the term
corresponding to the product of the cross-covariances van-
ish, the error estimate for the method by Billesbach (2011)
becomes

δF, B = σs

T −1

1t∫
−1t

[
Rw(t

′)

(
1−

∣∣t ′∣∣
1t

)]
dt ′


1/2

, (19)

which after integration becomes equivalent to Eq. (18).

2.4 The random error of the ensemble average flux

If an average over fluxes Fi (i = 1. . .N ) is calculated, each
of these representing a flux value observed over averaging
period T and being characterised by an error δF, i , then the
error of the average flux 〈F 〉 = 1

N

∑N
i=1Fi can be expressed

as

1<F> =

√∑N
i=1(δF, i)

2

N2 . (20)

3 Materials and methods

3.1 Sites and measurements

Measurements from three different and contrasting sites with
different surface properties and observation heights of about
23 m (forest site in Hyytiälä, SMEAR II), 2.7 m (Siikaneva
fen site) and 1.5 m (Lake Kuivajärvi) above surface were
used to evaluate the flux error estimates for June 2012 (July
2012 at Kuivajärvi) for measured temperature, carbon diox-
ide (CO2), water vapour (H2O) and methane (CH4, Siikaneva
only) fluxes.

3.1.1 SMEAR II (forest site)

The first set of measurements was done at the SMEAR
II station (Station for Measuring Forest Ecosystem-
Atmosphere Relationships), Hyytiälä, Southern Finland
(61◦51′ N, 24◦17′ E; 181 m a.s.l.). The station is surrounded
by extended areas of coniferous forests and the tower of the
EC measurements is located in a 50-year-old (in 2012) Scots
pine (Pinus sylvestris L.) forest with dominant tree height of
17 m. The EC measurements were performed at 23 m height,
approximately 6 m above the forest canopy. The wind speed
components and sonic temperature were measured by an
ultrasonic anemometer (Solent Research 1012R2, Gill Ltd,
UK), and fast response CO2 and H2O mole fraction by an
infrared gas analyser (LI-6262, LI-COR Inc., Lincoln, NE,
USA). A description of the measurement in micrometeoro-
logical context at SMEAR II station can be found in Ran-
nik (1998), and a more detailed description of the station and
the measurements is in Hari and Kulmala (2005).

3.1.2 Kuivajärvi (lake site)

The second dataset is taken from Lake Kuivajärvi (61◦50′ N,
24◦17′ E), located close to the Hyytiälä Forestry Field Sta-
tion and SMEAR II Station. Lake Kuivajärvi is a small humic
boreal lake extending about 2.6 km in northwest to southeast
direction, and it is a few hundred metres wide (surface area is
0.63 km2). The measurement platform, firmly anchored from
all the four corners, is located approximately 1.8 and 0.8 km
from the northern end and southern end, respectively. Turbu-
lent fluxes of momentum, heat, CO2 and H2O are measured
by an EC system (located on the above mentioned platform),
which includes an ultrasonic anemometer (Metek USA-1,
GmbH, Elmshorn, Germany) to measure the three wind ve-
locity components and sonic temperature and the enclosed
path infrared gas analyser LI-7200 (LI-COR Inc., Lincoln,
NE, USA) that measures CO2 and H2O concentrations. The
data are sampled at 10 Hz, and the gas inlet is at 1.7 m above
the water surface close to the sonic anemometer. More de-
tails about the site and measurements can be found in Mam-
marella et al. (2015).

3.1.3 Siikaneva (fen site)

The third dataset was collected at Siikaneva fen site
(61◦49.961′ N, 24◦11.567′ E). The EC data used in this study
were measured with a 3-D sonic anemometer (Metek USA-
1, GmbH, Elmshorn, Germany) and one closed-path anal-
yser (LI-7000, LI-COR Inc., Lincoln, NE, USA) for CO2
and H2O. The sonic anemometer and the gas inlet was sit-
uated at 2.75 m above peat surface and the air was drawn to
the analyser through a 16.8 m long heated sampling line. CH4
mole fraction was measured with a closed-path gas analyser
(FMA, Los Gatos research, USA). Further details about the
site and measurements can be found in Peltola et al. (2013).
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3.2 Flux processing

Turbulent fluxes and other statistics reported in the study
were calculated over 30 min averaging period by block av-
eraging approach (i.e. no detrending was applied if not men-
tioned otherwise) using the EddyUH software (Mammarella
et al., 2016).

Prior to flux calculation, raw data despiking, conversion
of CO2 and H2O from wet to dry mole fraction and two-
dimensional coordinate rotation of wind vector was per-
formed (Kaimal and Finnigan, 1994). The fluxes were cor-
rected for frequency response underestimation at low and
high frequencies by using the co-spectral transfer functions
calculated according to Rannik et al. (1999) and Mammarella
et al. (2009) respectively, together with in situ parameterisa-
tion of the co-spectral model derived from ensemble mean of
measured temperature co-spectra (Mammarella et al., 2009,
2015; Peltola et al., 2013).

The measured data (wind speed and concentration records)
were quality screened for spikes (all 30 min periods with a
single data point exceeding physically meaningful value ex-
cluded) and, according to Vickers and Mahrt (1997), by ap-
plying the following statistics and selection thresholds: data
with concentration skewness outside (−2, 2), kurtosis out-
side (1, 8) or Haar mean and Haar variance exceeding 2 were
rejected. In addition, flux data were rejected if the second co-
ordinate rotation angle was outside the range (−15◦, 15◦) and
at Kuivajärvi data were rejected if the wind was not blowing
along the lake (directions 345–135◦ and 170–290◦). Addi-
tional quality screening was performed for flux stationarity
by using the threshold value 1 (Foken and Wichura, 1996).

3.3 Superimposing Gaussian noise to the measured
records

SNR is defined in the current study as SNR=

√
σ 2

s −σ
2
n, f

σn, f
.

Records with low noise level (sonic temperature at the three
sites) were used to evaluate the performance of the Lenschow
et al. (2000) and Billesbach (2011) methods (Sect. 4.3.1
and 4.3.2, respectively), superimposing the measured signal
with Gaussian noise. Natural variability of records in com-
bination with different noise levels σn, f= 10 Hz (0.025, 0.152
and 0.30 K) led to a range of SNRs from about 0.3 to 20, en-
abling us to determine the range and threshold of SNR where
the Lenschow et al. (2000) method can be used. In addition,
the temperature signal was high-pass filtered with a simple
first-order low-pass filter in order to simulate scalar measure-
ments (CO2, H2O, CH4, etc.) with a closed-path analyser
performing as the low-pass filter to measured signal. Low-
pass filtering was executed using 0.1, 0.3 and 0.6 s time con-
stants. However, since the results for different time constants
did not differ qualitatively, we present only the results for the
time constant 0.3 s (Sect. 4.3.1).

3.4 Simulation of artificial records

We generated artificial records with pre-defined statistical
properties characteristic to atmospheric turbulence. Gaussian
probability density functions were assumed for vertical wind
speed and concentration time series. The atmospheric sur-
face layer (ASL) similarity relationships were assumed for
the variances of the records and the timescales of the auto-
correlated processes were defined via normalised frequencies
(Appendix A).

The analysis was carried out as following. First, we cal-
culated the flux errors according to analytical expressions
Eqs. (A4), (A5) and (18) for the three flux errors δF, δF, W
and δF, B, respectively.

Second, we calculated from the repeated simulated artifi-
cial records time series (N = 10 000) the fluxes and evaluated
the error estimates according to

δF = σF =

√
〈F 2〉− 〈F 〉2, (21)

where 〈〉 denotes ensemble averaging over a large number
of records with duration T = 30 min. In order to estimate
δF, W, we retained auto-correlation of the series w and c but
assumed no cross-correlation, i.e. with αwc = 0. In order to
obtain the estimate for δF, B we assumed uncorrelated time
series w and c by taking αw = 0, αc = 0 and αwc = 0 in
Eqs. (A1) and (A2).

Third, we evaluated the error estimates δ̂F, FS, δ̂F, S, δ̂F, W

and δ̂F, B according to Eqs. (6), (10), (15) and (17), respec-
tively. These error values allow us to evaluate also the uncer-
tainty of the random flux errors via calculation of the vari-
ance of the error estimates:

σ(δ̂F)= σδ̂F
=

√
〈δ̂2

F〉− 〈δ̂F〉2. (22)

4 Results

4.1 Evaluation of error estimates based on simulated
time series

The random errors of the covariance time series as presented
in Appendix A can be derived analytically as the total er-
ror (Eq. A4) and as the error for the Wienhold et al. (1995)
method (Eq. A5). Note that the flux error estimates by Finkel-
stein and Sims (2001) and Salesky et al. (2012) represent the-
oretically the same error given in general case by Eq. (5) and
specifically for simulated time processes by Eq. (A4). As-
suming the ASL similarity forms, the relative flux errors de-
fined by δF |F |

−1 vary with wind speed and stability (Fig. 1).
The error δF, W ignores the covariance part of the error ex-
pression and is therefore slightly smaller. Nevertheless, the
method by Wienhold et al. (1995) provides good approxi-
mation of the total flux error δF. The error according to the
Billesbach (2011) method (δF, B) is much lower (estimated
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Table 1. Flux error estimates δF, δF, W and δF, B obtained from theory and simulations. Height to wind speed ratios ZU−1
= 10 s (Z denotes

the height above the displacement height i.e. Z = z− d). Number of simulated realisations N = 10 000. τw and τc denote the timescales of
simulated series w and c in Eq. (A1). The values in the parenthesis indicate the uncertainty of the error estimates (obtained from Eq. 22)
relative to the average values in percent i.e. 100 %×σ

(
δ̂F

)
〈δ̂F〉
−1.

Z
L

τw,τc 100× δF |F |−1 100× δF, W |F |
−1 100× δF, B |F |

−1

Anal.
Eq.
(A4)

Simul.
σF
Eq. (19)

Eq. (6)
〈δ̂F, FS〉±

σ(δ̂F, FS)

Eq. (10)

〈δ̂F, S〉±

σ(δ̂F, S)

Anal.
Eq. (A5)

Simul.a

σF
Eq. (21)

Eq. (15)

〈δ̂F, W〉±

σ(δ̂F, W)

Eq. (15)b

〈δ̂F, W〉±

σ(δ̂F, W)

Anal.
Eq. (18)

Simul.c

σF
Eq. (21)

Eq. (17)

〈δ̂F, B〉±

σ(δ̂F, B)

−1 0.32,
2.57

12.2 12.2 13.1±
2.9
(22 %)

11.4±
3.0
(26 %)

10.9 10.8 8.3±
2.5
(30 %)

9.9±
2.6
(26 %)

1.44 1.46 1.40±
0.27
(19 %)

0 0.32,
2.57

21.8 21.7 22.2±
4.0
(18 %)

20.4±
4.9
(24 %)

21.0 21.0 15.6±
4.2
(27 %)

19.5±
4.2
(22 %)

2.80 2.81 2.71±
0.51
(19 %)

1 0.13,
0.33

12.4 12.4 12.6±
0.9
(7 %)

11.6±
2.0
(17 %)

12.0 11.7 11.6±
1.5
(13 %)

12.6±
1.6
(12 %)

2.80 2.83 2.74±
0.44
(16 %)

a Assuming auto-correlated but independent variables w(t) and c(t), with αwc = 0. b The method was modified such that in Eq. (15) the covariances Rws(t ′)were calculated with
10 s intervals within the lag ranges from −300 to −100 and +100 to +300 s, making essentially the estimates independent. c Assuming independent random variables w(t) and
c(t), with αw = 0, αc = 0 and αwc = 0.
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Figure 1. Dependence of relative flux random errors on (a) ZU−1

and (b) ZL−1. Here we denote with Z the height above the
displacement height, i.e. Z = z− d . The error estimates δF,
δF, W and δF, B were calculated according to Eqs. (A4), (A5)
and (18), respectively.

according to Eq. 18) and the relative error does not show de-
pendence on wind speed.

According to ASL similarity functions the relative flux
error is largest at near-neutral stability and decreases both
for unstable and stable conditions. In stable cases the er-
rors are smaller because the turbulent spectrum is shifted to-
wards higher frequencies, resulting in more efficient averag-
ing (over the same period T ) and reduced relative random
uncertainty. This is similar to the effect of wind speed where
higher wind speed implies higher-frequency turbulence and
lower relative random uncertainty. In unstable cases the nor-
malised frequencies nw and nc are independent of stability
and the stability dependence of the relative error is caused by
the functions in Eq. (A6).

We further analysed in detail the flux errors for the condi-
tions characterised by ZU−1

= 10 s and three stability cases
ZL−1

=−1, 0, 1. Table 1 indicates that the simulated error
estimates according to Eq. (21) are close to the analytical
expectations. Also the numerical methods by Finkelstein and
Sims (2001), Salesky et al. (2012) and Billesbach (2011) pro-
duce similar values. However, the error estimated according
to the Wienhold et al. (1995) method, δ̂F, W in Eq. (15), devi-
ates from what we expected theoretically (Eqs. 16 and A5).
The underestimation is particularly evident under neutral
conditions when the relative error is largest. We modified the
method to essentially decorrelate the individual Rws values
by using values after every 10 s time shift and obtained much
better correspondence to the expectations according to theory
and simulations. Therefore we believe the error estimate δ̂F, W
can underestimate the flux error not only because it omits the
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Figure 2. Flux error estimates δ̂F, FS, δ̂F, S, δ̂F, W, δ̂F, B and δ̂F, N vs. the flux magnitude. Individual outliers were left outside the panels in
order to show the majority of the data better.

covariance term but also because the subsequent values of
Rws are not independent, leading to underestimation of the
total variability.

The variability of the error estimates (calculated according
to Eq. 22) is around 10 to 20 % for δ̂F, FS and is slightly larger
for δ̂F, S and δ̂F, W. The uncertainty of the random error esti-
mate is larger for unstable and neutral conditions and smaller
for stable.

4.2 Comparison of flux errors

The flux uncertainty estimates increase approximately lin-
early with the flux magnitude at all sites (Fig. 2 and Table 2).
As expected from theory, the error estimate δ̂F, FS yielded
largest values for the uncertainty. The same magnitude would
be expected from the estimates δ̂F, S. However, the Salesky et
al. (2012) method gave approximately ten to twenty percent-
ages smaller uncertainty estimates than the Finkelstein and
Sims (2001) method (Table 2 and Fig. 3). The possible rea-
sons for this will be discussed in Sect. 5. The error δ̂F, W gave
few tens of percentages smaller uncertainty estimates com-
pared to δ̂F, FS (CO2: forest 29 %, fen 35 %, lake: 45 %; H2O:
forest 33 %, fen 23 %, lake 15 %; CH4: fen 18 %). This is re-
lated to the difference between Eqs. (5) and (16): the estimate

δ̂F, FS included a cross-covariance term, whereas δ̂F, W esti-
mated the flux uncertainty related only to the auto-covariance
term. Also, the method by Wienhold et al. (1995) as defined
by Eq. (15) likely underestimates the error as discussed in
Sect. 4.1. The error δ̂F, B obtained according to Lenschow et
al. (2000) gave systematically higher uncertainty estimates
than δ̂F, N, as predicted in Sect. 2.3. As δ̂F, N is expected to es-
timate the flux uncertainties due to instrumental noise, δ̂F, B
is clearly a different error estimate.

Based on the linear regression statistics presented in Ta-
ble 2, a few findings can be emphasised. The intercept values
are small (compared to the flux error magnitudes) and im-
ply that flux uncertainties tend to vanish with no turbulent
exchange. Generally the relative flux error is larger over the
forest (slope 0.14 and 0.18 for CO2 and LE) compared to fen
site (respective slopes 0.08 and 0.09). Surprisingly, the rela-
tive flux error is largest for CO2 over the lake. This could be
due to advective conditions for CO2. During the calm condi-
tions, in particular at nights, CO2 is expected to drain down-
hill towards the lake and accumulate, causing the concentra-
tion to increase and induce variation which is not related to
local exchange over the lake. Additional variance in concen-
tration record would impact also the flux error estimate.
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Table 2. Linear fitting parameters between absolute value of the flux and flux uncertainty estimates (uncertainty= |flux| × S+ I ) obtained
from measurements at three sites. Robust fitting method was used to minimise the effect of outliers.

CO2 Latent heat flux CH4

I I I

S (–) (µmol m−2 s−1) r2 S (–) (W m−2) r2 S (–) (nmol m−2 s−1) r2

Forest δ̂F, FS 0.139 0.23 0.83 0.18 1.952 0.91
δ̂F, S 0.107 0.29 0.74 0.15 2.017 0.89
δ̂F, W 0.109 0.16 0.87 0.13 1.332 0.93
δ̂F, B 0.013 0.06 0.66 0.02 0.358 0.85
δ̂F, N 0.004 0.03 0.35 0.01 0.070 0.45

Fen δ̂F, FS 0.084 0.15 0.75 0.09 1.767 0.91 0.112 −0.55 0.99
δ̂F, S 0.071 0.14 0.70 0.08 1.445 0.90 0.092 −0.37 0.98
δ̂F, W 0.076 0.08 0.82 0.08 1.093 0.94 0.092 −0.28 0.98
δ̂F, B 0.015 0.03 0.64 0.02 0.209 0.91 0.017 0.10 0.98
δ̂F, N 0.005 0.01 0.30 0.01 0.022 0.52 0.002 0.20 0.02

Lake δ̂F, FS 0.343 0.14 0.75 0.09 1.827 0.76
δ̂F, S 0.197 0.17 0.64 0.08 1.511 0.79
δ̂F, W 0.206 0.10 0.72 0.09 1.196 0.75
δ̂F, B 0.030 0.04 0.55 0.02 0.078 0.79
δ̂F, N

The error due to instrumental noise (δ̂F, N) is weakly cor-
related with the flux value, as expected from theory. The
method δ̂F, B gives correlated estimates with fluxes and this is
expected due to correlation between the concentration vari-
ance and the flux (turbulent exchange naturally gives rise to
concentration fluctuations).

For qualitative comparison with the behaviour of our the-
oretical model based on ASL similarity theory we con-
structed a plot similar to the one presented in Sect. 4.1
(Fig. 1); see Fig. 4. The figure illustrates that the observed be-
haviour holds: the relative flux errors increase with increas-
ing (z− d)U−1 (i.e. with lower wind speeds) and the sta-
bility dependence looks similar. Our theoretical model pre-
dicted the highest relative errors for near-neutral conditions.
This holds for CO2, but in the case of H2O the peak is shifted
towards the stable stratification side. This apparent dissimi-
larity of scalars could be the result of different source–sink
behaviour.

The method δ̂F, B produces wind speed invariant relative
error estimates and again similar behaviour with stability as
presented in Fig. 1. It is noteworthy that in Fig. 4 the esti-
mates δ̂F, FS and δ̂F, S compare well whereas the estimate δ̂F, FS
tended to produce higher values, as represented by regression
statistics in Table 2 and Fig. 3. This implies that the median
values compare well whereas the larger error estimates that
affect the regression slopes more tend to deviate.

In most cases the flux random uncertainty is dominated by
the stochastic nature of turbulence and the instrumental noise
is a minor part of the total uncertainty. The relative contribu-
tion of instrumental noise to the total uncertainty can be as-
sessed by comparing the flux error estimates δ̂F, FS and δ̂F, N.
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Figure 3. Error estimate calculated based on the Salesky et
al. (2012) method (δ̂F, S, Eq. (10) in this study) plotted against
the error estimated according to the Finkelstein and Sims (2001)
method (δ̂F, FS, Eq. (6) in this study) for forest site.

Figure 5 shows that for CO2 flux measurements at the fen
site the instrumental noise causes around 5. . .10 % of the flux
random uncertainty indicating that instrumental noise level is
low enough for flux measurements at the given site. For sites
with very low fluxes the situation might be opposite and the
instrumental noise becomes limiting in detection of surface
exchange.
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Figure 4. Dependence of relative errors on (z− d)U−1 and (z− d)L−1 at the SMEAR II forest site. Data were binned before plotting
(symbols connected by lines: medians; areas: interquartile range). For (a) and (c) only periods with |(z− d)L−1

|< 0.1 were used, and for
(b) and (d) periods when 2 m s−1 <U < 4 m s−1 were selected.
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Figure 5. Frequency distribution of the ratio between the flux in-
strumental noise error (the error estimate δ̂F, N) and total flux uncer-
tainty (the error estimate δ̂F, FS). CO2 data measured at the fen site
with SNR < 3 (see Sect. 4.3.1) were used in the plot.

4.3 Numerical guidelines for error calculation

4.3.1 Instrumental noise according to Lenschow et
al. (2000)

The calculated σ̂ 2
n, f values were grouped according to SNR

and ITS τϕ . Note that the ITS for ϕ is smaller roughly by a
factor of 3 compared to the timescale of concentration c (cf.
Eqs. 3 and A8). The results are shown in Fig. 6. At all three

sites, the method by Lenschow et al. (2000) overestimated
the noise variance if SNR > 3, the ITS was small and temper-
ature signal was not low-pass filtered (cf. Fig. 6a–c). In these
cases the signal was high compared to noise (SNR > 3), large
part of the signal was at high frequencies (implying small
ITS) and the high frequencies were not attenuated. When the
ITS was larger, the noise was estimated more accurately, es-
pecially at the lake and fen sites. In contrast, if SNR < 3, the
accuracy of the noise estimation did not significantly depend
on the ITS, and the relative error of the noise estimation was
in general within 10 %.

If the temperature signal was low-pass filtered before su-
perimposing the signal with Gaussian noise, the accuracy of
the noise estimation was improved (cf. Fig. 6d–f). When the
SNR was below 5, the noise variance was estimated success-
fully (relative error within ±30 %), regardless of the ITS. In-
creasing the ITS improved the results, especially at the fen
site (cf. Fig. 6e). In addition, stronger high-frequency signal
damping generally increased the accuracy of the noise es-
timate (not shown). This result suggests that the Lenschow
et al. (2000) method is more suitable for signals which are
high-pass filtered (measurements with closed-path gas anal-
ysers) than for less attenuated signals (measurements with
open-path gas analysers and sonic anemometers).

On the whole, the accuracy of the Lenschow et al. (2000)
method depends on how strong is the signal relative to noise
at high frequencies, since the noise is estimated using small
time shifts close to the auto-covariance peak. The signal-to-
noise ratio at high frequencies decreases if (i) the total SNR
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Figure 6. Relative difference between the estimated (σ̂ 2
n, f) and the actual (σ 2

n, f) signal noise variance as a function of SNR and ITS calculated

as z−d
2πnmU

, where nm was found according to Eq. (3). The data were bin averaged before plotting. The values for τ in the subplots show the
time constant used in low-pass (auto-regressive) filtering of the original temperature time series (i.e. before superimposing the noise). The
dashed lines highlight the zero line (no systematic error in the noise estimate), whereas the dotted lines show the ±30 % thresholds. The top
row shows data with no low-pass filtering.
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Figure 7. Three example cases for application of the Lenschow et al. (2000) method with presented spectra (upper panels) and auto-
correlation functions (lower panels). Case 1 (a, d): no filtering, low SNR, high ITS. Case 2 (b, e): no filtering, low SNR, low ITS. Case
3 (c, e): filtering used, high SNR, moderate ITS. Red lines correspond to the original signal; black lines correspond the original signal (high-
passed filtered in case 3) superimposed with the noise; blue lines are the linear fits to the auto-correlation functions for lags from 0.1 to 0.5 s;
green line in spectral plots indicates the +1 slope on log–log representation.

decreases, (ii) the ITS increases (power spectrum shifts to
lower frequencies) or (iii) the high-frequency variation in the
signal is dampened. Thus for instance for signals measured

at a tall tower with a closed-path analyser, the method should
work well in estimating the instrumental noise, since most
of the turbulent signal is at relatively low frequencies (high
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Figure 8. Error estimate calculated based on the Billesbach (2011) method (δ̂F, B, Eq. (17) in this study) plotted against flux uncertainty
caused by instrumental noise (a) and a combination of noise and signal variances (b). If the method would estimate purely the instrumental
noise, the points in (a) would follow 1 : 1 line. Instead, as predicted by Eq. (18), the points follow 1 : 1 line in (b). Sonic temperature data
from the forest site were used with different level of noise added as shown in the legend.

measurement height) and the high-frequency variation in the
signal is dampened. However, for measurements close to the
ground with an open-path analyser the method does not per-
form equally well under all conditions. The reliability of the
Lenschow et al. (2000) method in estimating the instrumental
noise from the signal is determined by the SNR, as illustrated
in the Fig. 6. Therefore, a priori knowledge on the instru-
mental precision characteristics is needed when analysing the
outcome of the method.

We analysed in more detail the performance of the
Lenschow et al. (2000) method in Fig. 7. In case of low SNR
and high ITS the method estimates the true noise with rela-
tively small bias (Fig. 7a, d). For the same SNR but low ITS
value the variance is strongly overestimated (Fig. 7b, e). We
argued earlier that low-pass filtered signals enable to obtain
better noise variance estimates (Fig. 6). However, in case of
high SNR (Fig. 7c, f) the method leads to significant under-
estimation of the true variance. Thus filtered signals (instru-
ments with not perfect frequency response) are not always
preferred in terms of the method’s ability to determine the
signal noise.

In Table 3 we report the estimated signal noise statistics
for the instruments used in the current study by defining re-
liable values according to criterion SNR < 3. The fraction of
reliable estimates is low for the instruments with high preci-
sion characteristics. For example, the method does not typi-
cally work for estimation of the precision of horizontal wind
speed measurements of the sonic anemometers. However, the
method performed to produce the noise characteristics for the
vertical wind speed components at all sites. This is at least
partly due to the fact that the vertical wind speed variance

Figure 9. Normalised errors δ̂F, FS up to integration time 1500 s.
Estimated from time series with 2 h (7200 s) duration to avoid large
uncertainties of the auto-covariance function at long lags. Normali-
sation is done with the average between 400 and 600 s. Lines show
medians and the areas interquartile ranges around the medians. The
time constant used in the high-pass filtered case is given in the plot.
Sonic temperature data from the forest site were used.

is smaller than that of the horizontal component, resulting in
lower SNR for the vertical component. The estimated sig-
nal noise characteristics are in good correspondence with in-
strument specifications (where available) except for the CH4
analyser, which had much better precision value than re-
ported by the manufacturer.
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Table 3. Amount and magnitude of reliable noise estimates obtained by using Lenschow et al. (2000) method. The reported values are esti-
mates of 1 SD at 10 Hz sampling rate (i.e. σ̂n, f= 10 Hz). Noise estimate was considered reliable if SNR < 3, where SNR was calculated using
the modal value of σ̂n, f= 10 Hz obtained from the measurements. Also the performance specifications reported by instrument manufacturers
are given for comparison. They are RMS values of 10 Hz data if not otherwise noted.

% of reliable Median 25th 75th Specifications
estimates (%) value percentile percentile of analysers

Forest w (m s−1) 10 0.030 0.023 0.039
u (m s−1) 0
Ts (◦C) 3 0.023 0.021 0.025
CO2 (ppm) 61 0.28 0.27 0.28 0.6a

H2O (ppth) 11 0.015 0.015 0.016 0.06a

Fen w (m s−1) 19 0.041 0.037 0.047
u (m s−1) 6 0.062 0.052 0.066
Ts (◦C) 15 0.048 0.041 0.059
CO2 (ppm) 57 0.23 0.23 0.24 0.16
H2O (ppth) 1 0.011 0.010 0.011 0.011
CH4 (ppb) 5 1.67 1.60 1.78 9.5b

Lake w (m s−1) 4 0.033 0.032 0.036
u (m s−1) 0
Ts (◦C) 3 0.034 0.030 0.038
CO2 (ppm) 0 0.11
H2O (ppth) 0 0.0047

a Peak-to-peak value. For the comparison with 1 SD precision characteristic should be divided by a factor of 3. b Converted
from a value reported for 1 Hz data using Eq. (14)

4.3.2 Random error according to Billesbach (2011)

Billesbach (2011) introduced the so-called “random shuffle”
method to estimate the instrumental noise from EC measure-
ments. However, as argued in Sect. 2.3 this method does not
estimate the flux error due to the instrumental noise since it
mixes turbulent variation with noise and thus the error corre-
sponding to the sum of the variances of the turbulent signal
and the noise is deduced by the method. This is exempli-
fied by Fig. 8a and b: the error estimated with the “random
shuffle” method (δ̂F, B) is equal to the calculation using the
combined variances of signal and noise (Fig. 8b) and not to
the calculation using the variance of the noise only (Fig 8a).
Thus the method cannot be expected to be suitable for es-
timation of the flux error due to (instrumental) noise in the
signal.

4.3.3 Integration time in the Finkelstein and Sims
(2001) method

Under different wind speed and stability conditions the ITS
of turbulence varies and therefore it becomes relevant what
would be the appropriate integration time for the method
by Finkelstein and Sims (2001). The integration time of the
flux error δ̂F, FS is studied by varying m in Eq. (6) up to
1500 s. Further, to see the influence of different high-pass
filtering techniques used in EC flux calculation, we applied
the method to time series of sonic temperature from the forest

site with following detrending options: mean removal (no de-
trending applied), linear detrending and auto-regressive high-
pass filtering with time constant 200 s. In general, the flux er-
ror estimate increases with integration time up to about 300 s
(Fig. 9). At short integration times the high-pass filtered time
series converge faster to the limit at longer integration times.
This indicates contribution of low-frequency part of the spec-
tra to the error estimates. Possibly part of this low-frequency
variation is contributed by non-stationarity of the series. At
larger integration times than about 300 s the error estimates
essentially do not change. We choose further to normalise the
error estimates with average value over the interval from 400
to 600 s.

Plots for different sites (varying the observation level and
surface type) and wind speed and stability influences as re-
flected by ITS classes indicate that integration time 200 s
serves as an optimal choice for all conditions (Fig. 10).
This would guarantee less than 10 % systematic underesti-
mation of the flux error even in case of 25 % largest ITS val-
ues (ITS > 75th percentile) for fen and lake sites. The figure
also illustrates that the cross-covariance term in Eq. (5) con-
tributes 10 to 30 % of the error estimate, suggesting that the
method by Wienhold et al. (1995), which ignores this term,
underestimates the error by the same fraction.
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Figure 10. Normalised uncertainty estimate according to Finkelstein and Sims (2001), δ̂F, FS, as a function of integration time used in Eq. (6).
Contribution of the cross-covariance (blue area) and auto-covariance (green area) terms in the Eq. (6) are shown separately. The values were
normalised with average δ̂F, FS at integration times between 400 and 600 s and grouped in two ITS classes before plotting. No detrending of
time series was used.

5 Discussion and conclusions

Commonly applied random error estimates of turbulent
fluxes were tested and compared in this study. The meth-
ods proposed by Finkelstein and Sims (2001) and Salesky
et al. (2012), the error estimates δ̂F, FS and δ̂F, S according to
Eqs. (6) and (10) respectively, approximate the random flux
error defined as 1 standard deviation of the random uncer-
tainty of turbulent flux observed over an averaging period
T . The method by Salesky et al. (2012) is a novel approach
that introduces a filtering method in error evaluation. How-
ever, the method stems from the same theory and is there-
fore expected to result in the same error estimates as Finkel-
stein and Sims (2001). We performed evaluation of per-
formance of both methods with stationary artificial records
as well as field measurements. Under stationary conditions
(represented by simulated records) the method by Salesky
et al. (2012) slightly underestimated the expected theoret-
ical values (Table 1). The median flux error statistics ob-
tained from measured data compared well (Fig. 4), whereas
the obtained regression slope statistics suggested that the
method by Finkelstein and Sims (2001) produced system-
atically higher error values than the Salesky et al. (2012)
method (Table 2). It is also important that the methods did
not produce distinctly different estimates which could be ob-
served as outliers in Fig. 3. We interpret this that both of
the methods perform well but the filtering embedded in the
method by Salesky et al. (2012) effectively reduces the flux
uncertainty introduced by non-stationarity in natural records.

The methods by Finkelstein and Sims (2001) and Salesky
et al. (2012) do not require estimation of the ITS and have
an advantage compared to the methods which do so be-

cause of uncertainty of the estimation. It was demonstrated
by Salesky et al. (2012) that, under non-stationary condi-
tions, their method performed better than the other methods
involving direct evaluation of the ITS, namely the methods
by Lumley and Panofsky (1964) and Lenschow et al. (1994).
The methods proposed by Lenschow and Kristensen (1985)
and in a discrete form by Finkelstein and Sims (2001) re-
quire just integration of the products of the covariance func-
tions over sufficiently long time exceeding the ITS. While
avoiding direct calculation of the ITS, the impact of non-
stationarity is indirectly embedded in the method by Finkel-
stein and Sims (2001). As discussed above, we believe that
the impact of non-stationarity is reduced due to the filtering
in Salensky et al. (2012) method. The theory of turbulent flux
and flux error calculation relies on the assumption of the sta-
tionarity. Violation of this assumption introduces additional
uncertainty in time-average statistics including the flux ran-
dom errors. Therefore superior performance of any of these
two methods discussed above is not evident, and we suggest
that both methods are reliable alternatives for flux error eval-
uation.

Wienhold et al. (1995) defined an error estimate (δ̂F, W,
Eq. (15) in this study), calculating the standard deviation of
cross-covariance function over the lag interval far from the
maximum. They called the error estimate as the detection
limit of the flux. It was shown in the current study that the
error estimate δ̂F, W is in a good correspondence with δ̂F, FS
even though it does not rigorously define the same flux er-
ror. The method δ̂F, W underestimates the flux random uncer-
tainty by a few tens of percent due to the fact that it ignores
the covariance part of the estimate in Eq. (5). We also demon-
strated in this study that the error estimate δ̂F, W as formulated
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by Wienhold et al. (1995) underestimates the true flux uncer-
tainty due to the fact that the cross-covariance estimates at
neighbouring lags are not independent. To overcome this de-
ficiency we suggest calculating the flux error variance from
the cross-correlation values over longer lag interval but sep-
arated in time. For example, in the numerical exercise we
chose the cross-covariance values with 10 s intervals within
the lag ranges from −300 to −100 and +100 to +300 s. The
modified approach reproduced the flux error values close to
theoretical expectations whereas the original method under-
estimated the theoretical value up to 26 % (from three studied
cases).

An alternative to one-point statistical estimation of the flux
random errors as described in this study (Sect. 2.1) is the
two-tower approach, where the flux random error is evalu-
ated by using the difference of the fluxes measured at two
EC towers (e.g. Hollinger et al., 2004). The method assumes
statistically similar observation conditions with independent
realisations of turbulence at the two towers. Since the con-
ditions are difficult to realise because of spatial correlation
in measurements (e.g. Rannik et al., 2006), we suggest that
the one-point statistical approach provides rigorous but more
convenient method to estimate the flux random errors. Nev-
ertheless, the two-tower approach was shown to give close
results to the method by Finkelstein and Sims (2001) when
similar weather conditions at the two sites were included in
the analysis (Post et al., 2015).

The error estimates with very clear physical meaning are
the total error resulting from stochastic nature of turbulence
due to limited sampling in time and/or space, the methods by
Finkelstein and Sims (2001) and Salesky et al. (2012), and to
a good approximation the method by Wienhold et al. (1995),
as well as the random error due to instrumental noise only.
To estimate the latter from the field measurements (not from
laboratory experiment) Lenschow et al. (2000) suggested cal-
culating the signal noise variance from the difference be-
tween the signal auto-covariance at zero lag and the extrap-
olated value of the auto-covariance function to zero lag. The
noise variance enables to calculate the flux error according to
Eq. (11), which gives essentially the flux uncertainty under
hypothetical conditions of no turbulent exchange (and thus
variability) of scalar concentration (or vertical wind speed if
the error due to anemometers noise is considered).

Billesbach (2011) proposed the flux error estimate based
on the product of vertical wind speed and concentration fluc-
tuations, randomly re-distributing one of the series (denoted
by δ̂F, B, Eq. (17) in this study). The method was called
the “shuffling method” and the authors proposed that the
method was designed to only be sensitive to random instru-
ment noise. We point out in this study that the method effec-
tively adds the variance of turbulent scalar variation to noise
variance and therefore the method is not equivalent to (over-
estimating) the method proposed by Lenschow et al. (2000)
and also not to the Finkelstein and Sims (2001) method by
strongly underestimating the total flux uncertainty.

Different flux error estimates have been assigned the
meaning of the flux detection limit. For example, Wienhold
et al. (1995) called their method as “detection limit of the
flux”. Billesbach (2011) suggested that the method they in-
troduced “was sensitive to random instrument noise”. The
method by Lenschow et al. (2000) estimates the flux value
that the system is able to detect within an averaging period
T under hypothetical conditions of no turbulent variation of
concentration. This error estimate serves as the theoretical
lowest detection limit of the EC system. However, under
natural turbulent exchange conditions the flux random un-
certainty is contributed in addition to signal noise also by
the stochastic nature of turbulence and the total flux error
is larger, also meaning that the detection limit is larger than
compared to the error introduced by the instrumental noise.
Respectively, Langford et al. (2015) have defined “limit of
detection” as 3× δ̂F, W (the uncertainty according to Wien-
hold et al. (1995) method) to give the flux measurement pre-
cision within 99 % confidence interval. By default most of
the publications refer to 1 standard deviation of flux random
variability (which corresponds to 68 % confidence intervals
assuming normal distribution) when talking about the flux
precision or random errors. If different confidence level is
aimed, as by Langford et al. (2015), this should be explicitly
stated.

The flux detection limit has been used also in conjunction
with other flux measurement techniques. For example, in the
case of chamber measurements the flux detection limit has
been used to denote the flux error arising from all possible
error sources. The traditional way to perform chamber mea-
surements is to determine the gas concentration at several
time moments during the chamber operation. In such data
collection the sources of uncertainty are the imprecision re-
lated to gas sampling (either manual or automatic) as well
as instrumental uncertainty (e.g. Venterea et al., 2009), lead-
ing to a measurement precision which is called a detection
limit of chamber-based flux measurement system. It has to
be noted that the flux detection limit of the chamber systems
depends on several factors such as the type of the chamber
and respective sampling method, the precision of the instru-
ment, chamber dimensions and operation time. Therefore the
flux detection limit of the chamber-based systems (which ac-
counts for all possible sources of uncertainty) is comparable
to the total stochastic error of the EC fluxes.

We also studied the performance of the Lenschow et
al. (2000) and Finkelstein and Sims (2001) flux error esti-
mation methods over different ecosystems and observation
conditions. The performance of the Lenschow et al. (2000)
method is affected by the SNR and the ITS of turbulence.
We established that the method provides reliable estimates
for SNR < 3 (in the statistical sense, single biased values can
occur). However, no criterion based on the ITS could be pro-
vided as the results deviated among sites.

Application of the EC method requires stationarity of time
series within averaging period (e.g. Foken and Wichura,
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1996). Non-stationarity results in higher random uncertainty
of the flux value and therefore the stationarity requirement
has to be fulfilled if each 30 min or 1 h average value is ex-
pected to be statistically significant. We tested sensitivity of
the flux errors derived by the Finkelstein and Sims (2001)
method on integration time and high-pass filtering of the
fluxes performed by mean removal, linear detrending and
auto-regressive filtering. It was observed that the flux error
increased with integration time up to about 300 s, revealing
the influence of the low-frequency (possibly non-stationary)
signal variance on the flux estimates. The high-pass filtered
time series were less affected. For consistency, the flux er-
rors should be calculated based on the same time series (in
terms of filtering) as used for flux calculation. Apart from
the impact of the low-frequency contribution to flux errors
(and fluxes), which we believe is related to non-stationarity
of the conditions, we observed that, in order to obtain δ̂F, FS
with good accuracy, integration of Eq. (6) over 200 s is suf-
ficient for wide range of sites as well as observation condi-
tions. Finkelstein and Sims (2001) originally performed sum-
mation over 20 s and suggested that the results changed less

than 1 to 2 % for summation over 10 to 40 s for the dataset
they used. Our results suggested that longer summation pe-
riod is needed for robust determination of the error in case of
tower-based measurements over variety of surfaces and wide
range of observation conditions.

The EC fluxes are uncertain due to stochastic nature of tur-
bulence by about 10 to 20 % under typical observation condi-
tions. By using simulation of time series with statistical prop-
erties similar to natural records we deduce that the flux error
estimates in turn are uncertain by about 10 to 30 %.

6 Data availability

Data are freely available upon request from the authors.
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Appendix A: Markovian simulation of time series

The wind speed and scalar concentration time series were
simulated as

w(t)= αww(t −1t)+βwεw (t)σw

c (t)= αcc (t −1t)+βcw [αwcεw (t)+βwcεc (t)]σc, (A1)

where εw(t) and εc(t) are Gaussian random processes with
zero means and unit variances; to preserve the variances and
covariance, the coefficients were chosen as

βx =

√(
1−α2

x

)
, x = w,c,wc

αwc =
ρwc(1−αwαc)

βwβc
. (A2)

Here ρwc =
Rwc(0)
σwσc

is the cross-correlation between w and

c. By taking αw = exp
(
−1t
τw

)
and αc = exp

(
−1t
τc

)
, where

1t is the simulation time step (much shorter than the
timescales τw and τc), the constructed processes have the
following exponential covariance and cross-covariance func-
tions:

Rw (τ )= σ
2
w exp

(
−
|τ |

τw

)
Rc (τ )= σ

2
c exp

(
−
|τ |

τc

)

Rwc (τ )=


u∗c∗ exp

(
−
|τ |

τc

)
,τ > 0

u∗c∗ exp
(
−
|τ |

τw

)
,τ < 0.

The theoretical random error estimate for the flux calcu-
lated from described artificial time series is given according
to Eq. (5) by

δ2
F = 2

(
σ 2

wσ
2
c + u∗c∗

)[ τwτc

T (τw+ τc)

]
, (A3)

where u∗ and c∗ represent the friction velocity and the flux
concentration, defining the flux by F = u∗c∗. For the error
estimate by Wienhold et al. (1995), Eq. (10), the respective
error would read as

δ2
F, W = 2σ 2

wσ
2
c

[
τwτc

T (τw+ τc)

]
. (A4)

For unstable stratification (L< 0) the following scaling of
variances was assumed (Monin and Yaglom, 1971; Rannik,
1998)

σw

u∗
= 1.25

(
1− 3

Z

L

)1/3

σc

c∗
= 3

(
1− 28

Z

L

)−1/3

. (A5)

Under stable stratification the neutral limits of the above ex-
pressions were used.

In addition, the timescales were related to wind speed and
stability via

nw =

{
0.5, L < 0

0.5+ 0.755ζ, L > 0 , (A6)

where the normalised frequency n= fZ
U

is used and ζ =
Z/L, and

nc =

{
0.062, L < 0

0.062+ 0.415ζ 0.6, L > 0.
(A7)

Timescales and frequencies are related via fx = 1
2πτx

.
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