Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Volume 9, issue 10
Atmos. Meas. Tech., 9, 5193–5201, 2016
https://doi.org/10.5194/amt-9-5193-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 5193–5201, 2016
https://doi.org/10.5194/amt-9-5193-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Oct 2016

Research article | 24 Oct 2016

Inverse modelling of NOx emissions over eastern China: uncertainties due to chemical non-linearity

Dasa Gu1,a, Yuhang Wang1, Ran Yin1, Yuzhong Zhang1, and Charles Smeltzer1 Dasa Gu et al.
  • 1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
  • anow at: Department of Earth System Science, University of California, Irvine, USA

Abstract. Satellite observations of nitrogen dioxide (NO2) have often been used to derive nitrogen oxides (NOx =  NO + NO2) emissions. A widely used inversion method was developed by Martin et al. (2003). Refinements of this method were subsequently developed. In the context of this inversion method, we show that the local derivative (of a first-order Taylor expansion) is more appropriate than the “bulk ratio” (ratio of emission to column) used in the original formulation for polluted regions. Using the bulk ratio can lead to biases in regions of high NOx emissions such as eastern China due to chemical non-linearity. Inverse modelling using the local derivative method is applied to both GOME-2 and OMI satellite measurements to estimate anthropogenic NOx emissions over eastern China. Compared with the traditional method using bulk ratio, the local derivative method produces more consistent NOx emission estimates between the inversion results using GOME-2 and OMI measurements. The results also show significant changes in the spatial distribution of NOx emissions, especially over high emission regions of eastern China. We further discuss a potential pitfall of using the difference of two satellite measurements to derive NOx emissions. Our analysis suggests that chemical non-linearity needs to be accounted for and that a careful bias analysis is required in order to use the satellite differential method in inverse modelling of NOx emissions.

Publications Copernicus
Download
Short summary
We show in this study that the non-linearity of NOx chemistry implies that the local derivative (of a first-order Taylor expansion) is better suited in the inverse modelling of NOx emissions over eastern China. We used single-grid-cell-based perturbation sensitivity calculation. The method leads to smaller NOx emission over highly polluted regions and higher NOx emission over rural regions. There are also more consistent results from using two different satellite instruments.
We show in this study that the non-linearity of NOx chemistry implies that the local derivative...
Citation