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Abstract. We present an analysis of uncertainties in global
measurements of the column averaged dry-air mole fraction
of CO2 (XCO2) by the NASA Orbiting Carbon Observatory-
2 (OCO-2). The analysis is based on our best estimates for
uncertainties in the OCO-2 operational algorithm and its in-
puts, and uses simulated spectra calculated for the actual
flight and sounding geometry, with measured atmospheric
analyses. The simulations are calculated for land nadir and
ocean glint observations. We include errors in measurement,
smoothing, interference, and forward model parameters. All
types of error are combined to estimate the uncertainty in
XCO2 from single soundings, before any attempt at bias cor-
rection has been made. From these results we also estimate
the “variable error” which differs between soundings, to infer
the error in the difference of XCO2 between any two sound-
ings. The most important error sources are aerosol interfer-
ence, spectroscopy, and instrument calibration. Aerosol is the
largest source of variable error. Spectroscopy and calibration,
although they are themselves fixed error sources, also pro-
duce important variable errors in XCO2. Net variable errors
are usually < 1 ppm over ocean and∼ 0.5–2.0 ppm over land.
The total error due to all sources is ∼ 1.5–3.5 ppm over land
and ∼ 1.5–2.5 ppm over ocean.

1 Introduction

The Orbiting Carbon Observatory-2 (OCO-2) was launched
on 2 July 2014 and has been making global measurements of
CO2 and O2 spectral bands in reflected sunlight since early
September 2014. Spectra are recorded in two CO2 bands
at 1.61 and 2.06 µm (WCO2 and SCO2, respectively), and
the O2 A-band at 0.76 µm with a resolving power between
17 000 and 20 000. These measurements are analyzed to pro-
vide estimates of the column-averaged dry-air mole fraction
of CO2, known as XCO2. Details of the OCO-2 mission,
measurement technique, and XCO2 retrieval may be found in
Crisp et al. (2008) and O’Dell et al. (2012). The instrument
calibration is detailed in Rosenberg et al. (2016) and Lee et
al. (2016). An overview of the results to be expected from
OCO-2 was given by Bösch et al. (2011). These measure-
ments are motivated primarily by the need to infer regional
carbon fluxes, and to constrain global models of the carbon
cycle. Characterizing the uncertainties in XCO2 as measured,
and in how these uncertainties vary in space and time, is criti-
cal for this purpose. Earlier studies of the error to be expected
from such observations include Butz et al. (2009) and Jung
et al. (2016). The present study is part of the ongoing effort
at uncertainty quantification for the OCO-2 mission.

In this paper we assess the uncertainty in a single XCO2
sounding by bottom-up analysis, using the best available
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estimates of errors in the algorithm and its inputs (“error
sources”), computing the contribution of each error source
to uncertainty in XCO2, and combining them to estimate net
uncertainty. We further estimate the uncertainty in the dif-
ference of XCO2 between any two soundings, by excluding
the mean error produced by error sources that are constant in
themselves. We compare XCO2 uncertainties and their vari-
ability over land (nadir) and ocean (glint) for both June and
December simulated data sets. Finally, we summarize the ef-
fect of all error sources globally, and identify those that are
largest and most variable.

Our methodology is described in detail in Sects. 2 and 3
below. In overview, simulations of OCO-2 spectra were run
with the CSU orbit simulator (O’Brien et al., 2009), retrievals
were performed with the operational Level-2 (L2) code, and
a linear error analysis was performed using a dedicated of-
fline code. This study used simulations to allow full control
of the calculations and their inputs. The use of simulations
for this analysis should not significantly affect its overall con-
clusions or their applicability to OCO-2 operational measure-
ments, since the simulations are calculated from “true states”
drawn from a realistic atmosphere.

Simulated spectra were calculated for 3 days in June and 3
in December. Only nadir spectra were calculated over land,
and only glint spectra over ocean. Calculations were done for
a single footprint (as opposed to eight footprints for the flight
data), with the sounding frequency set at 1 Hz (as compared
to 3 Hz in operation). The resulting reduction in data volume
(factor of 24) was done purely for convenience and should
not affect conclusions from this study. After cloud screen-
ing using the oxygen A-band preprocessor (ABP) (Taylor
et al., 2016), the operational L2 code was run on the sim-
ulations, and the results were screened for convergence. A
second screen was performed to minimize the occurrence of
outliers, by restricting the accepted range of some sound-
ing and retrieved parameters. More than 20 000 soundings
passed these screens, and those were run with the L2 code a
second time, using an extended state vector including a set of
interfering aerosols. The interfering aerosols are tightly con-
strained to very small values in this step, but are included to
force the L2 code to calculate their Jacobians. The Jacobian
matrix, K, for the extended state vector was saved for later
analysis. (The Jacobian matrix contains the first-order par-
tial derivatives of the forward model with respect to the state
vector elements, i.e., K= dF(x)/dx.) In addition, Jacobians
were evaluated for a range of forward model errors, and were
also saved.

Linear error analysis (Rodgers, 2000; Rodgers and Con-
nor, 2003) was performed on the extended L2 output, us-
ing an offline code developed for the purpose (Connor et al.,
2008). We calculate actual uncertainties using estimates of
true error in the measured spectrum, the variability of the at-
mospheric ensemble, and forward model errors.

These calculations are intended to apply to a comparison
of L2 results to the true atmospheric values, without applying
a “bias correction” (Wunch et al., 2011) to the L2 results.

The paper is organized as follows. In Sect. 2 we briefly
discuss the L2 retrieval algorithm and then present details of
the error analysis methodology. This is followed by an enu-
meration and discussion of the error sources to be considered
in Sect. 3. Section 4 contains the results of the linear error
analysis. Section 5 is a discussion of the results, and Sect. 6
identifies needs for future research.

2 Background and methodology

The OCO-2 level 2 full physics retrieval algorithm (“L2”),
consists of a forward model and inverse method, described
in full detail in JPL (2015). The forward model is a radiative
transfer model of the atmosphere coupled to a model of the
solar spectrum to calculate the monochromatic spectrum at
the top of the atmosphere, which is then convolved with the
response function as measured for the OCO-2 instrument.
The inverse method is a maximum a posteriori likelihood
method of a type which has been widely used in the com-
munity (Rodgers, 2000; Rodgers and Connor, 2003; Con-
nor et al., 2008, O’Dell et al., 2012). For comparison, the
retrieval algorithm for the spectrally similar measurements
by the GOSAT satellite is described in Yoshida et al. (2011).
Uncertainty in the OCO-2 measurements of XCO2 has been
assessed using an offline error analysis code developed for
the purpose (Connor et al., 2008).

2.1 Formulation

The error analysis algorithm performs a linear analysis us-
ing Jacobians calculated by the operational OCO-2 forward
model. This section closely follows the discussion in Connor
et al. (2008).

As defined in JPL (2015), Sa is the a priori covariance
matrix, Sε is the measurement error covariance matrix, and
K is the weighting function (Jacobian) matrix. The offline
calculations are more detailed and more realistic than error
estimates performed operationally. For example, if forward
model errors are included in the Sε matrix used operationally,
the retrieved state may be systematically biased by the a pri-
ori state. Thus we evaluate the effect of forward model errors
offline. Further, evaluation of the smoothing and interference
errors strictly requires the covariance of the ensemble of true
states, Sc, which is not necessarily equal to the a priori co-
variance Sa (Rodgers and Connor, 2003). The authors’ ex-
perience with other remote sensing retrievals suggests that
the a priori constraint, embodied in Sa, should be as uniform
as practical over all soundings, to avoid introducing an addi-
tional source of variability. However, the covariance of true
states, Sc, varies with latitude, longitude, and season. Esti-
mates of Sc are readily included in the offline error estimates
(see for example Sect. 3.3.1.)
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Equations (1)–(6) follow the definitions of Rodgers (2000)
and Rodgers and Connor (2003). Given K, Sε, and Sa, we
first characterize the operational retrieval by calculating the
gain function Gy and the averaging kernel matrix A:

Gy =

(
KT S−1

ε K+S−1
a

)−1
KT S−1

ε (1)

and

A=GyK. (2)

We then specify a list of estimated errors to include in the
calculation, and where possible the correlation between er-
rors. We will refer to these as error sources. Next we assem-
ble these into an ensemble covariance Sc (for elements in
the state vector) and a forward model parameter covariance
Sb (for elements not included in the state vector). Finally,
we calculate the Jacobian matrix with respect to the forward
model parameters, denoted Kb.

For each error in the list, we calculate the resulting covari-
ance of the retrieved state vector, as follows. For measure-
ment error,

Ŝm =GySδGT
y , (3)

where Sδ may be equal to Sε, or an alternative estimate of the
actual measurement covariance. In the work presented here,
Sδ = Sε.

For forward model error,

Ŝf =GyKbSbKT
b GT

y . (4)

For smoothing error,

Ŝs = (A− I)Sc(A− I)T , (5)

where I is the identity matrix.
For interference error, which refers to error in CO2 caused

by non-CO2 components of the state vector,

Ŝi = AueSecATue, (6)

where Sec is the ensemble covariance for the non CO2 ele-
ments e, and Aue is the off-diagonal block of the averaging
kernel matrix that relates e to the CO2 profile u.

Finally, the total covariance is

Ŝ= Ŝm+ Ŝs+ Ŝi + Ŝf, (7)

and the resulting variance of XCO2 is σ 2
XCO2 = hT Ŝh, where

h= ∂XCO2/∂x represents the pressure weighting function.
Alternatively, one may calculate the variance in XCO2 due
to a given error source, r , as σ 2

r =hT Ŝr h and sum the vari-
ances for all r .

The discussion of the preceding paragraph makes two as-
sumptions – one, that the retrieval is approximately linear
within the region bounded by its uncertainty, and two, that
the error sources considered are themselves uncorrelated.
Whenever error sources are correlated, the correlations must
be included in, e.g., Eqs. (4) or (6), and the net effect on
XCO2 calculated for the combined correlated sources.

2.2 Treatment of fixed error sources

Many of the error sources we will consider do not vary ran-
domly, and some do not vary at all. Spectroscopic errors be-
long to the class of error sources that are truly fixed. Unfor-
tunately, due to the varying amount of information in each
measured spectrum relative to the a priori constraint, embod-
ied in changes in the gain function, Gy , the resulting errors
in retrieved XCO2 are not fixed. We will treat such errors as
follows.

We note that the gain function, Gy , represents the sensitiv-
ity of the state vector to the measured radiances. Combining
that with the definition of Kb, and considering for the mo-
ment a single scalar parameter, the error caused by parameter
b is

x̂− x = hTGyKbdb, (8)

where x̂− x is the retrieved XCO2 minus the true XCO2, or
we may write

x̂− x =
(
hTGyKbdb2KT

b GT
y h

)1/2
. (9)

Replacing db2 with its matrix equivalent Sb, then for an en-
semble of retrievals,

σx = rms(x̂− x)= rms
[(

hTGyKbSbKT
b GT

y h
)1/2

]
, (10)

where rms denotes the root mean square error. Therefore, if
db is a constant, the error x̂−x caused by it will vary about a
mean value given by σx . While the true error in parameter b
is an unknown constant, we assume that error is equal to the
uncertainty in b.

2.3 Variable error

Sources and sinks of CO2 and the circulation of the atmo-
sphere produce temporal and spatial gradients in the XCO2
field, which are quantitatively predicted by carbon cycle
models. Measuring these gradients is a strong test of such
models. Thus, errors which vary from sounding to sounding
limit the efficacy of the OCO-2 measurements in constrain-
ing carbon cycle models. On the other hand, an error that is
constant, or at least has a well-defined mean value, can be
subtracted from all soundings with minimal or no effect on
gradients of XCO2. Therefore, we have attempted to distin-
guish the uncertainty that differs between soundings; i.e., it
applies to a difference in two soundings, from the total accu-
racy.

We will refer to this differential uncertainty as “variable
error”. By its nature, variable error has both random compo-
nents and those which are systematic in the sense that they
depend on conditions such as solar zenith angle, atmospheric
temperature, pressure, and aerosol, and surface properties. In
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other words, the concept of variable error applies to the dif-
ference between any two soundings, but its magnitude will
depend on the difference in conditions between them.

Our quantitative estimate of variable error is a composite
error calculated from a selection taken from all error sources
described above. Variable error will be calculated from all
error sources, but will exclude the mean error produced by
fixed error sources as discussed in Sect. 2.2. Then a first ap-
proximation to the predicted error in the difference of XCO2
between two soundings will simply be the variable error mul-
tiplied by

√
2, assuming remaining errors are uncorrelated in

space or time. This should be equivalent to estimating the
net uncertainty in each sounding, and assuming a simple bias
correction relative to validation observations has been per-
formed.

3 Error types

We will consider four types of error: measurement, smooth-
ing, interference, and forward model.

3.1 Measurement error

The first and most obvious error is random noise in the mea-
sured spectrum. This is calculated based on the operational
noise model (JPL, 2015), and its direct effect on XCO2 is
calculated, and tabulated as “measurement error.”

However, it is observed that spectral residuals do not de-
crease with averaging as would be expected for pure ran-
dom noise, but instead have a systematic structure. Because
of this it was decided to derive empirical orthogonal func-
tions (EOFs) representing this systematic structure, and to
retrieve scale factors for these functions at every sounding
(see Sect. 3.3.2.6 of JPL, 2015). Uncertainties in this process
are to be addressed as interference error, below.

3.2 Smoothing error

This represents error due to the a priori constraint of the state
vector. As suggested by Rodgers and Connor (2003), we have
separated this into two components. The first, smoothing by
the true CO2 profile, which we simply refer to as “smooth-
ing”, is discussed here. The second component is error intro-
duced into XCO2 by the non-CO2 elements of the state vec-
tor, which we call “interference”, discussed in the following
section.

The error due to the true atmospheric CO2 profile would
be best estimated by using the covariance of the ensemble of
true states, Sc. Exactly which states to include in the ensem-
ble is not well defined. We have chosen to use the a priori
covariance Sa, which is intended to represent the variability
of CO2 globally throughout the year. We will systematically
overestimate the smoothing error as a result. However, the
smoothing error is always small, as we will see, and the use
of Sa is fundamentally conservative.

3.3 Interference error

3.3.1 Aerosol and cloud

We apply the Modern Era Retrospective analysis for Re-
search and Applications (MERRA) aerosol reanalysis clima-
tology for daytime (local time 10:00, 13:00, and 16:00) in
June and December, to represent the aerosol-related variabil-
ity in the OCO-2 spectral measurements (Rienecker et al.,
2011). The MERRA aerosol data are the basis for the OCO-
2 forward model’s aerosol types, as described in detail in
JPL (2015, pages 28–31). MERRA aerosol data consisting
of five composite types, namely dust (DU), sea salt (SS), sul-
fate (SU), black carbon (BC), and organic carbon (OC), have
nearly zero bias and a correlation coefficient of ∼ 0.9 with
respect to the collocated aerosol optical depth (AOD) mea-
surements from AErosol RObotic NETwork (AERONET),
Multi-angle Imaging SpectroRadiometer (MISR), and Ozone
Monitoring Instrument (OMI) (Buchard et al., 2015). At each
sounding location, the two composite types most common at
that location are included in the state vector for the opera-
tional retrieval, along with liquid water and ice cloud, and
are retrieved by the L2 algorithm. For the analysis presented
here we take into account the variability of all five type of
aerosols, including those not retrieved, as described next.

The L2 calculations for linear error analysis are performed
at each sounding with the operational state vector and a priori
uncertainties, augmented as follows. Ten additional aerosol
quantities are added to the state vector, namely the AOD for
each of the five composite MERRA aerosols, integrated over
two layers. Using the relative pressure scale σ , defined as the
fraction of surface pressure, the lower layer is at σ = 0.95
with width 0.05, while the upper layer is at σ = 0.5 with
width 0.2. The a priori amount and uncertainty for each of
these 10 aerosol quantities is set equal to a small positive
number, nonzero to avoid singularity, but small enough to
have negligible effect on the algorithm. The L2 algorithm
then calculates the Jacobians for each of these 10 interfering
aerosol species.

Subsequently, the linear error analysis combines the Jaco-
bians for all of the aerosol and cloud quantities (liquid water,
ice, the two types retrieved, and the 10 additional interfer-
ing aerosols) with estimates of the ensemble variability of
their total atmospheric AOD, to calculate the resulting er-
ror in XCO2. For this step, we have created a database of
the standard deviation of each of the five MERRA composite
types, in two layers defined as the surface to 750 and 750 hPa
to top of atmosphere, on a 2.5◦× 2.5◦ lat/long grid, for each
month. For each sounding location, our error analysis algo-
rithm looks up the standard deviation at the nearest grid point
for all 10 aerosols, and uses that as the estimated ensemble
variability. For liquid water and ice cloud, we assume the
ensemble variance equals the a priori variance. The a priori
uncertainty of liquid water and ice (approximately a factor 6,
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1σ) was deliberately set large enough to minimize its effect
on retrieved XCO2.

The two retrieved aerosol types are counted twice by this
procedure, once in the operational state vector and again in
the part of the state vector as augmented for the error anal-
ysis. To avoid an error due to “double counting”, we set the
ensemble variance for the aerosols in the operational state
vector to very small values, ensuring they produce negligible
error in retrieved XCO2.

3.3.2 Empirical orthogonal functions (EOFs)

Interference errors due to the scale factors applied to the op-
erational EOFs are calculated as part of the error analysis
by including the actual EOF scale factors in the state vector.
The results show negligible effects on XCO2 uncertainties
and degrees of freedom due to these scale factors.

3.3.3 Other interference errors

Other non-CO2 components of the state vector include sur-
face pressure, water vapor column, an offset to the a priori
temperature, a linear dispersion coefficient for each spectral
band (defining the separation in wavelength between adja-
cent pixels), albedo, and the linear change in albedo across
each spectral band. Land (nadir) observations also include a
coefficient of fluorescence, and ocean (glint) observations in-
clude wind speed. These have all been included in the error
analysis.

For all of these components, an effort has been made to
include an estimate of global variability as the a priori un-
certainty, and this has been used as the estimated ensemble
variability in the error analysis. The net effect of these un-
certainties is fairly small compared to aerosols and forward
model errors, so refining this ensemble estimate has not been
a high priority, but may be considered later.

3.4 Forward model error

Forward model errors that have been evaluated in this anal-
ysis include those due to a variety of spectroscopic and cali-
bration parameters.

Table 1 shows the estimated uncertainties in spectroscopic
parameters used in the L2 algorithm. The parameters listed
are those required for the spectroscopic line shape models
used within the OCO-2 v7 L2 algorithm. For CO2 this is a
speed-dependent Voigt line shape with tridiagonal line mix-
ing and for O2, this is a Voigt line shape with first-order line
mixing, with a contribution from collision-induced absorp-
tion (CIA). The relevant references, describing these param-
eters and the uncertainty estimates, are given in the table.

The majority of the uncertainties listed in Table 1 are based
on published values. The notable exceptions are speed depen-
dence in the CO2 bands and line mixing in the O2 A-band.
Fairly large uncertainties have been estimated for these by

Table 1. Uncertainties in spectroscopic parameters used in the L2
algorithm.

Band Uncertainty Reference

Line strength SCO2 0.40 % Joly et al. (2009)
WCO2 0.30 % Devi et al. (2007, 2016)
O2-A 0.40 % Long et al. (2010)

Air broaden. SCO2 0.15 % Joly et al. (2009)
WCO2 0.10 % Devi et al. (2007)
O2-A 0.20 % Robichaud et al. (2008)

T -width SCO2 0.45 % Joly et al. (2009)
WCO2 0.60 % Devi et al. (2007)
O2-A 1.25 % Drouin et al. (2016)

CIA O2-A 0.1a Long et al. (2012)

H2O broaden. SCO2 3 % Sung et al. (2009)
WCO2 3 % Sung et al. (2009)

Pressure shift SCO2 2.60 % Joly et al. (2009)
WCO2 1.50 % Devi et al. (2007)
O2-A 2 % Robichaud et al. (2008)

Line mixing SCO2 10 % Benner et al. (2011)
WCO2 10 % Benner et al. (2011)
O2-A 10 % estimateb

Speed dep. SCO2 10 % estimateb

WCO2 10 % estimateb

a 10−7 cm−1 amagat−2;
b L. Brown, personal communication, 2014.

L. Brown at the Jet Propulsion Laboratory (JPL) (L. Brown,
personal communication, 2014).

It is also worth noting that the exponent of the temperature
dependence of the pressure broadened line widths in the O2-
A band has been measured recently by Droiun et al. (2015).
The absolute value of this parameter differs by ∼ 8 % from
the previously published value (Brown and Plymate, 2000),
which was used in the OCO-2 data processing up to and in-
cluding v7. The newer, Drouin et al value will change the
derived XCO2 values by ∼ 1 ppm.

A discrepancy between recent measurements of the line
strength in the WCO2 band is also of note. The values used
by the OCO-2 algorithm are based on Devi et al. (2007,
2016). Values from Polyansky et al. (2015) differ from those
in Devi et al. (2016) by ∼ 1.2 %.

Spectroscopic uncertainties in interfering gas species are
not a significant source of error in retrieved XCO2. The
strongest interferent, by far, is H2O, and its largest uncer-
tainties are in its pressure broadening. Earlier tests of the L2
algorithm (not part of the present analysis) evaluated H2O
line parameters with broadening coefficients 20 % different
from reference values, and found mean XCO2 changes of
< 0.01 ppm, with apparently random distribution. Therefore
we have not included spectroscopic uncertainties in any in-
terfering species in Table 1, and will not discuss them further.
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Table 2. Uncertainties in calibration parameters used in the L2 al-
gorithm.

Uncertainties Correlations

ILS

O2-A 0.25 % 0.7 to SCO2 and WCO2
WCO2 0.25 % 0.8 to SCO2
SCO2 0.40 %

Radiometric gain

O2-A 1.10 % 0.5 to WCO2 and SCO2
WCO2 1.50 %
SCO2 1.60 %

Polarization angle

O2-A 0.5◦

WCO2 0.5◦

SCO2 0.5◦

Uncertainties in the calibration parameters are shown in
Table 2. These are based on pre-flight laboratory calibra-
tion of the instrument at the Jet Propulsion Laboratory.
The parameters are defined as follows. The instrument line
shape (ILS) in each band is assumed to have a single uncer-
tainty, in its width. Its shape as measured in the laboratory
before launch is assumed to be correct. Radiometric gain is
the factor applied to the measured voltages to convert them
to absolute physical units. Finally, OCO-2 is only sensitive
to one polarization of the incoming radiation, whose angle of
orientation is the “polarization angle”.

In applying the uncertainties in polarization angle, we note
that the observed spectrum S may be written in terms of the
Stokes parameters I, Q, U, and V, and Mueller matrix coef-
ficients m_I, m_Q, m_U, and m_V:

S=m_I× I+m_Q×Q+m_U×U+m_V×V. (11)

Uncertainties in the Mueller matrix coefficients were calcu-
lated as follows. First,

m_I= 0.5
m_Q= 0.5× cos(2×φpol)

m_U= 0.5× sin(2×φpol)

m_V= 0.

The uncertainty in the polarization angle φpol is ±0.5◦ (Ta-
ble 2, 1σ) for all three bands, m_Q and m_U are derived
from the same measurement, so have correlation= 1, and the
three bands should be independent. From the above, a 3× 3
covariance matrix can readily be calculated, which applies to
all three bands (uncertainty inm_I is assumed to be nonzero,
but very small, to avoid singularity). Note that V, the circular
component of polarizaton, is completely ignored in the L2
algorithm as there are very few natural sources.

Figure 1. Measurement error. Top: June, land; second row: June,
ocean; third row: Dec., land; bottom: Dec., ocean.

4 Results

Figures 1–6 and Tables 3 and 4, below, display the summary
of results for the offline error analysis. The data are gridded
into 10◦× 10◦ bins, and only bins with a minimum of three
soundings are displayed. An overall observation is that there
is some spatial seasonal dependence in all of the error types
due to the shifting subsolar point of the sun from summer to
winter, which drives signal- and air-mass-related errors.

Figure 1 shows measurement error due to random noise
in the measured spectra. It is typically ∼ 0.5 ppm for a sin-
gle sounding, and is expected to decrease with averaging ap-
proximately as expected for random error, i.e., in proportion
to
√
N , for N = the number of soundings in the average.

The error is smaller and more uniform for ocean than land,
presumably due to the increased signal-to-noise ratio in glint
viewing mode.

Forward model error, divided into spectroscopic and in-
strument error, is shown in Figs. 2 and 3, respectively. Spec-
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Figure 2. Error due to spectroscopy. Top: June, land; second row:
June, ocean; third row: Dec., land; bottom: Dec., ocean.

troscopic and instrument error make roughly equal contribu-
tions to forward model error. Spectroscopic error in ocean
glint observations shows little variation, and is ∼ 1.3 ppm.
For land nadir it is more variable, typically 1–2 ppm. The
most important spectroscopic error is due to uncertainty in
the WCO2 band strength (Tables 3 and 4). Instrument error is
somewhat more variable, especially over land. It is ∼ 1 ppm
in ocean glint and ∼ 0.5–2.5 in land nadir. The most impor-
tant instrument error is due to uncertainty in the instrument
line shape (ILS).

Maps of aerosol error are shown in Fig. 4a, and for
comparison, the monthly mean aerosol optical depth from
MERRA is shown in Fig. 4b and its standard deviation in
Fig. 4c. The sensitivity of XCO2 to interference error caused
by the various aerosol types is shown in the Supplement pub-
lished with this paper.

In most places, aerosol errors are surprisingly small, typ-
ically ∼ 0.5 ppm. However there are regions where they are

Figure 3. Instrument error. Top: June, land; second row: June,
ocean; third row: Dec., land; bottom: Dec., ocean.

systematically larger, ∼ 2.0–2.5 ppm. These regions include
east Asia, which has highly variable aerosol loading, and the
tropical North Atlantic, due to dust (not shown), presumably
from north Africa. There are also systematically large errors
over the Arctic Ocean. We believe these occur because of
high sensitivity of the algorithm to small spectral errors at
high solar zenith angle.

Variable error is shown in Fig. 5. Comparison to Figs. 3
and 4 shows that variable error over land is dominated by
instrument error (due to instrument line shape), but also by
aerosol error over ocean. It is typically∼ 0.5–2.0 ppm in land
nadir, and mostly < 1 ppm in ocean glint, but as for aerosol,
it is 2.0–2.5 ppm in glint in some regions.

Total error from all sources is shown in Fig. 6. It is ∼ 1.5–
3.5 ppm over land and ∼ 1.5–2.5 ppm over ocean.
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Figure 4. (a) Aerosol error. Top: June, land; second row: June,
ocean; third row: Dec., land; bottom: Dec., ocean.

5 Discussion

Inspection of the global mean and standard deviations in
Tables 3 and 4 gives rise to some interesting observations.
In general, the fixed, or approximately fixed, error sources
(spectroscopy and instrument calibration) cause mean errors
much larger than their standard deviations. This implies that
whatever the true value of the error in the relevant forward
model parameter, most of its effect can in principle be re-
moved by simple bias correction based on validation mea-
surements. However, the remaining, variable error, caused by
the fixed error source, is of critical importance. The error in
the difference in XCO2 between two soundings is better char-
acterized by the variability of that parameter’s effect than by
its mean; i.e the mean effect is the same for both soundings
and is removed by taking their difference. This is the ratio-
nale for our definition and use of variable error, as discussed
in Sect. 3. It is also worth noting that both the mean and stan-

Figure 4. (b) Monthly mean aerosol optical depth (AOD) from
MERRA. Top: June, land; second row: June, ocean; third row: Dec.,
land; bottom: Dec., ocean.

dard deviation of errors due to fixed sources are larger for
land nadir than for ocean glint soundings.

As noted above, spectroscopic error varies little over the
ocean, and modestly over land. The main sources of this be-
havior can be traced to WCO2 and O2 line strength, which
are the largest error sources but are fairly constant in both
regimes, and SCO2 and O2 line mixing, which have highly
variable effects over land, and little variation over ocean.

Three components of instrument error were analyzed. Er-
ror due to uncertainty in the polarization angle φpol is negli-
gible, < 0.01 ppm (not shown elsewhere). Uncertainty in in-
strument gain is a significant but fairly small source of XCO2
error, averaging 0.2–0.3 ppm. The behavior of the instrument
error is dominated by the ILS; uncertainties in XCO2 due to
the ILS are the largest single error source over land, with
variability second only to aerosol (∼ 1.4± 0.4 ppm). Pre-
flight measurements of the ILS were done to high accuracy

Atmos. Meas. Tech., 9, 5227–5238, 2016 www.atmos-meas-tech.net/9/5227/2016/



B. Connor et al.: Quantification of uncertainties in OCO-2 measurements of XCO2 5235

Figure 4. (c) Monthly standard deviation of aerosol optical depth
(AOD) from MERRA. Top: June, land; second row: June, ocean;
third row: Dec. land; bottom: Dec., ocean.

(Table 2), but the sensitivity of XCO2 to the ILS is high. Er-
ror due to the ILS is larger and much more variable over land
than over ocean.

Uncertainty due to smoothing error is fairly small. It is
typically≤ 0.2 ppm. The full results (not shown) indicate it is
rarely, if ever, larger than 0.4 ppm. The magnitude of smooth-
ing error was deliberately minimized by choice of a loose a
priori constraint on the CO2 profile in the L2 algorithm. It
is likely to vary systematically with local conditions, since it
arises in the difference between the actual and a priori CO2
profile shapes.

Tables 3 and 4 also emphasize that the dominant variable
error is due to aerosol. Although the absolute size of the
aerosol error is fairly small, it varies widely from place to
place, with a standard deviation up to 195 % of its mean value
(the coefficients of variation are 134, 109, 195, and 132 %
for June nadir – land, Dec. nadir – land, June glint – water,
and Dec. glint – water, respectively). Furthermore, it will de-
pend on the actual atmospheric aerosol distribution, which
will vary in a complex fashion with space and time. Correla-
tion of the aerosol distribution is likely to be a major source

Figure 5. Variable error. Top: June, land; second row: June, ocean;
third row: Dec. land; bottom: Dec., ocean.

of correlation in XCO2 error, which will be difficult to char-
acterize quantitatively.

6 Recommendations for further research

We envisage a continual ongoing analysis to quantify uncer-
tainties in the OCO-2 measurements. We believe such quan-
tification is critical for using the data to constrain the geo-
physical carbon cycle. Linear error analysis as presented here
will be a key part of that effort, and it is important to replicate
the analysis when future versions of the L2 algorithm are re-
leased and mission data are reprocessed. The error analysis
should be extended to further examine errors produced by
the algorithm itself. This would include studying the effect
of errors in algorithm inputs such as the a priori state vector.
A more general subject for study is nonlinearity of the for-
ward and inverse models. Both of these areas are foci of ac-
tive research. In the particular case of nonlinearity, linear er-
ror analysis can be supplemented with Monte Carlo studies.
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Table 3. Global mean errors in XCO2 and standard deviations for land nadir observations. The coefficient of variation (relative standard
deviation) is also shown.

June December

Measurement 0.55± 0.12 22 % 0.58± 0.12 21 %

SCO2 line strength 0.23± 0.15 65 % 0.28± 0.18 64 %
WCO2 line strength 0.94± 0.16 17 % 0.92± 0.21 23 %
O2 line strength 0.55± 0.14 25 % 0.57± 0.09 16 %
O2 line width 0.27± 0.08 30 % 0.28± 0.05 18 %
O2 width T dependence 0.11± 0.06 55 % 0.19± 0.09 47 %
Line mixing SCO2 0.40± 0.26 65 % 0.52± 0.36 69 %
Line mixing O2 0.21± 0.17 81 % 0.22± 0.17 77 %
Speed dependence WCO2 0.32± 0.06 19 % 0.34± 0.10 29 %
Total spectroscopy 1.35± 0.17 13 % 1.43± 0.27 19 %

Radiometric gain 0.15± 0.09 60 % 0.16± 0.09 56 %
ILS 1.39± 0.44 32 % 1.32± 0.32 24 %
Total instrument 1.40± 0.43 31 % 1.33± 0.32 24 %

Smoothing 0.15± 0.02 13 % 0.19± 0.04 21 %
Aerosol interference 0.47± 0.63 134 % 0.43± 0.47 109 %
Interference w/o aerosol 0.18± 0.11 61 % 0.28± 0.16 57 %

Variable 0.93± 0.59 63 % 0.94± 0.44 47 %
Total 2.16± 0.56 26 % 2.17± 0.42 19 %

Table 4. Global mean errors in XCO2 and standard deviations for ocean glint observations. The coefficient of variation (relative standard
deviation) is also shown.

June December

Measurement 0.35± 0.10 29 % 0.41± 0.07 17 %

SCO2 line strength 0.27± 0.09 33 % 0.20± 0.10 50 %
WCO2 line strength 0.86± 0.07 8 % 0.91± 0.09 10 %
O2 line strength 0.74± 0.05 7 % 0.72± 0.03 4 %
O2 line width 0.37± 0.03 8 % 0.36± 0.02 6 %
O2 width T dependence 0.16± 0.03 19 % 0.22± 0.08 36 %
Line mixing SCO2 0.07± 0.05 71 % 0.10± 0.05 50 %
Line mixing O2 0.28± 0.09 32 % 0.23± 0.08 35 %
Speed dependence WCO2 0.31± 0.03 10 % 0.33± 0.03 9 %
Total spectroscopy 1.32± 0.04 3 % 1.35± 0.05 4 %

Radiometric gain 0.28± 0.10 36 % 0.27± 0.07 26 %
ILS 0.88± 0.12 14 % 0.84± 0.16 19 %
Total Instrument 0.93± 0.13 14 % 0.88± 0.15 17 %

Smoothing 0.15± 0.02 13 % 0.15± 0.02 13 %
Aerosol 0.37± 0.72* 195 % 0.19± 0.25 132 %
Interference w/o aerosol 0.06± 0.06 100 % 0.08± 0.05 63 %

Variable 0.62± 0.67* 108 % 0.52± 0.23 44 %
Total 1.77± 0.54* 31 % 1.69± 0.18 11 %

* driven by Sahara dust and high-latitude outliers.

The Monte Carlo approach can interrogate the probability
distribution of retrieval errors under specified conditions and
can characterize correlations between multiple error sources,
such as interference and nonlinearity, for example. Monte

Carlo studies require far more computational effort than the
linear error analysis, so experiments should be designed for
a carefully selected subset of conditions.
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Figure 6. Total error. Top: June, land; second row: June, ocean;
third row: Dec. land; bottom: Dec., ocean.

Specific recommendations for linear error analysis include
the following. Linear error analysis, as applied here to simu-
lations, will be used to estimate uncertainties in selected sets
of actual OCO-2 measurements. This work will have two
main goals. First, we will analyze sets of OCO-2 measure-
ments, which have been used for top-down error estimates
and validation, by comparison to data from TCCON (the
Total Carbon Column Observing Network) and by examin-
ing observed scatter in uniform, local areas. The volume of
OCO-2 data has provided a large collection of validation data
sets for many regions, spanning all seasons. The results of
these top-down estimates will be compared to the bottom-
up estimates of linear error analysis. If these two types of
estimates are consistent they will give us confidence in our
overall understanding of measurement uncertainty. Any in-
consistencies will require further investigation. One possible
source of inconsistencies, already under investigation as de-
scribed above, is nonlinearity of the forward model.

Second, the variability of the bottom-up estimates will be
systematically compared to the variation in sounding geom-
etry, atmospheric conditions, and surface type. This will im-

prove insight into the causes of measurement uncertainty, and
guide data users in quantitative applications.

7 Data availability

The simulations and analyses reported in this paper are not
a part of the OCO-2 data set or of the public record of the
OCO-2 project. They are exploratory in nature and not pub-
lically accessible because it has not been feasible to select,
catalog, and document the relevant material.

The Supplement related to this article is available online
at doi:10.5194/amt-9-5227-2016-supplement.
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