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Abstract. The objective of this paper is to describe the devel-
opment and evaluate the performance of a completely new
version of the Passive microwave Neural network Precipi-
tation Retrieval (PNPR v2), an algorithm based on a neural
network approach, designed to retrieve the instantaneous sur-
face precipitation rate using the cross-track Advanced Tech-
nology Microwave Sounder (ATMS) radiometer measure-
ments. This algorithm, developed within the EUMETSAT H-
SAF program, represents an evolution of the previous ver-
sion (PNPR v1), developed for AMSU/MHS radiometers
(and used and distributed operationally within H-SAF), with
improvements aimed at exploiting the new precipitation-
sensing capabilities of ATMS with respect to AMSU/MHS.
In the design of the neural network the new ATMS channels
compared to AMSU/MHS, and their combinations, includ-
ing the brightness temperature differences in the water vapor
absorption band, around 183 GHz, are considered. The algo-
rithm is based on a single neural network, for all types of
surface background, trained using a large database based on
94 cloud-resolving model simulations over the European and
the African areas.

The performance of PNPR v2 has been evaluated through
an intercomparison of the instantaneous precipitation esti-
mates with co-located estimates from the TRMM Precipita-
tion Radar (TRMM-PR) and from the GPM Core Observa-
tory Ku-band Precipitation Radar (GPM-KuPR). In the com-
parison with TRMM-PR, over the African area the statisti-
cal analysis was carried out for a 2-year (2013–2014) dataset

of coincident observations over a regular grid at 0.5◦× 0.5◦

resolution. The results have shown a good agreement be-
tween PNPR v2 and TRMM-PR for the different surface
types. The correlation coefficient (CC) was equal to 0.69 over
ocean and 0.71 over vegetated land (lower values were ob-
tained over arid land and coast), and the root mean squared
error (RMSE) was equal to 1.30 mm h−1 over ocean and
1.11 mm h−1 over vegetated land. The results showed a slight
tendency to underestimate moderate to high precipitation,
mostly over land, and overestimate moderate to light precipi-
tation over ocean. Similar results were obtained for the com-
parison with GPM-KuPR over the European area (15 months,
from March 2014 to May 2015 of coincident overpasses)
with slightly lower CC (0.59 over vegetated land and 0.57
over ocean) and RMSE (0.82 mm h−1 over vegetated land
and 0.71 mm h−1 over ocean), confirming a good agreement
also between PNPR v2 and GPM-KuPR. The performance of
PNPR v2 over the African area was also compared to that of
PNPR v1. PNPR v2 has higher R over the different surfaces,
with generally better estimation of low precipitation, mostly
over ocean, thanks to improvements in the design of the neu-
ral network and also to the improved capabilities of ATMS
compared to AMSU/MHS. Both versions of PNPR algorithm
have shown a general consistency with the TRMM-PR.
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1 Introduction

The availability of data from the Advanced Technology Mi-
crowave Sounder (ATMS), a cross-track scanning radiome-
ter currently onboard the Suomi National Polar-orbiting Part-
nership (Suomi-NPP) satellite (and on the Joint Polar Satel-
lite System (JPSS) series starting in 2017), represents an
important step in short- and long-term weather forecasting
and environmental monitoring. Combining the capabilities of
its predecessor sounders such as the Advanced Microwave
Sounding Unit-A (AMSU-A) and the Microwave Humid-
ity Sounder (MHS) aboard NOAA-18 and NOAA-19 and
the ESA MetOp-A and MetOp-B satellites, ATMS provides
sounding observations with improved resolution, sampling,
and coverage for retrieving atmospheric vertical temperature
and humidity profiles. Moreover, this new-generation instru-
ment provides more information about surface, vertical dis-
tribution of hydrometeors, precipitation, and other key en-
vironmental variables (Chen et al., 2007; Boukabara et al.,
2013; Zou et al., 2013; Kongoli et al., 2015).

With regard to precipitation it should be mentioned that,
although the reliable knowledge of its intensity and accumu-
lation is essential for understanding the global hydrological
and energy cycles, precipitation estimate (from satellite and
from the surface) is complicated by several factors: the large
variability of the precipitation in time and space, the con-
version of satellite measurements into quantitative precipita-
tion estimates, uncertainties associated to rain gauges (and
to their spatial distribution) and radar measurements (i.e., at-
tenuation, beam-blocking), and their unavailability in several
regions in the world and over ocean (Mugnai et al., 1993;
Iturbide-Sanchez et al., 2011; Bennartz and Petty, 2001; Tian
et al., 2009; Kirstetter et al., 2012).

An important step forward towards the improvement
of global precipitation monitoring is represented by the
Global Precipitation Measurement (GPM) mission launched
on 27 February 2014. GPM is expected to provide accu-
rate precipitation estimates thanks to the availability of the
NASA/JAXA GPM Core Observatory (GPM-CO) (equipped
with the GPM Microwave Imager (GMI) and the Dual-
frequency Precipitation Radar (DPR)), a common, global ob-
servatory of 3-D precipitation structure at 5 km resolution,
and to the exploitation of a constellation of international Low
Earth Orbit (LEO) satellites equipped with microwave ra-
diometers for precipitation observation, providing frequent
measurements over most of the globe (3-hourly coverage be-
tween 65◦ S and 65◦ N) (Hou et al., 2014; Draper et al., 2015;
Newell et al., 2014; Petković and Kummerow, 2015). A con-
tribution of ATMS as part of the GPM constellation is fore-
seen in this direction, also in relation to the technological
improvements over its predecessor sounders.

In Europe, the EUMETSAT “Satellite Application Facil-
ity on Support to Operational Hydrology and Water Man-
agement” (H-SAF; Mugnai et al., 2013a) has been called
upon to participate in and to contribute towards the GPM

by providing its own precipitation products and simultane-
ously be a user of GPM data and a direct collaborator of
GPM on two main aspects: development and refinement of
retrieval techniques through the exploitation of all available
radiometers in the GPM constellation, and validation activ-
ity. In this context, operational passive microwave (PMW)
precipitation products for the different radiometers are being
released within H-SAF as new radiometers become available,
and they are based on two approaches (Mugnai et al., 2013b):
the physically based Bayesian Cloud Dynamics and Radia-
tion Database (CDRD) algorithm (Casella et al., 2013, Sanò
et al., 2013) for conically scanning radiometers and the Pas-
sive microwave Neural network Precipitation Retrieval al-
gorithm (PNPR) for cross-track scanning radiometers, origi-
nally developed for AMSU/MHS and fully described in Sanò
et al. (2015) (PNPR-AMSU/MHS, hereafter PNPR v1).

The objective of this paper is to describe the develop-
ment and evaluate the performance of a newly developed
version of PNPR designed to retrieve the instantaneous sur-
face precipitation using the ATMS radiometer data. This al-
gorithm (PNPR-ATMS, hereafter PNPR v2) represents an
evolution of PNPR v1 (used operationally within the EU-
METSAT H-SAF) with improvements aimed at exploiting
the new precipitation-sensing capabilities of ATMS with re-
spect to AMSU/MHS.

Neural networks (NNs) represent a highly flexible tool al-
ternative to regression and classification techniques, widely
applied in an increasing field of meteorological research for
their capability to approximate complex nonlinear and imper-
fectly known functions (e.g., Liou et al., 1999; Del Frate and
Schiavon, 1999; Shi, 2001; Marzban, 2003; Blackwell and
Chen, 2005; Chen et al., 2006; Krasnopolsky et al., 2008;
Shank et al., 2008; Haupt et al., 2009; Aires et al., 2012).

NNs have been used in precipitation retrieval – precipita-
tion being one of the most difficult of all atmospheric vari-
ables to retrieve – because of the opportunities offered by
their ability to learn and generalize (Hsu et al., 1997; Hall
et al., 1999; Staelin et al., 1999; Sorooshian et al., 2000;
Chen and Staelin, 2003; Hong et al., 2004; Surussavadee
and Staelin, 2007, 2008a, b, 2009, 2010; Bellerby, 2007;
Krasnopolsky et al., 2008; Leslie et al., 2008; Mahesh et
al., 2011). However, it should be mentioned that the use of
NNs involves the training phase with a large representative
database, often obtained from cloud-resolving model sim-
ulations. Consequently, the performance of the network is
largely dependent on the completeness and the representa-
tiveness of the database and on its consistency with the ob-
servations.

Retrieval algorithms based on NNs, proposed for precip-
itation estimation from remotely sensed information, using
MW or VIS/IR measurements, are different from each other
in the different approaches used, in the design of the net-
work architecture, in the selection of type and number of in-
put variables, in the determination of the number of networks
used, in the implementation of the training database (e.g., the
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cloud-resolving model), and in the training process. With re-
gard to the input variables, when MW radiometers are used
their choice is normally based on physical considerations on
the radiometric signatures (or brightness temperatures, TBs)
of different microwave channels and on the direct or indi-
rect relationship of these signatures with environmental, me-
teorological, and microphysical variables (e.g., atmospheric
temperature and humidity, surface conditions, hydrometeor
types, sizes, and shapes) involved in the precipitation re-
trieval process. The TBs at the MW channels so identified
are selected as part of the input variables. However, some
techniques such as principal component analysis (PCA) are
applied to the selected channels in order to reduce the num-
ber of inputs, reduce the complexity of the NN, and to reduce
the noise (e.g., to filter out the signal due to the background
surface) (Chen and Staelin, 2003; Surussavadee and Staelin,
2008a, 2010; Blackwell and Chen, 2005). Special functions
of TBs already proposed for rainfall retrieval (Kidd, 1998;
Ferraro and Marks, 1995; Grody, 1991), such as the polariza-
tion corrected temperature (PCT85) and the scattering index,
have also been considered as the NN inputs (Sarma et al.,
2008; Mahesh et al., 2011). Some geographical and meteo-
rological parameters (e.g., surface type, surface height, sea-
son, latitude) are often considered as auxiliary input data in
order to reduce the ambiguity intrinsic to the PMW precipita-
tion retrievals based only on observed TBs (e.g., Panegrossi
et al., 1998; Kummerow et al., 2011; You and Liou, 2012;
You et al., 2015).

In the VIS/IR-based NN algorithms the input selection is
based on different considerations due to the indirect relation-
ship between cloud-top radiances and surface rainfall and the
lack of information on the precipitation structure within the
cloud. Additional inputs are then considered in addition to
TBs, i.e., cloud texture information (TB mean and variance
for 3× 3 and 5× 5 pixel rectangles around each measure-
ment), the rate of change of cloud-top temperatures, and the
number of pixels with TB less than a given threshold (Hsu et
al., 1997; Bellerby et al., 2000; Tapiador et al., 2004). This
approach normally involves the use of more complex net-
works.

The number of NNs used in the precipitation retrieval al-
gorithms is defined so as to optimize the network perfor-
mance under different operating conditions. In PMW precip-
itation retrieval separate NN algorithms are usually proposed
depending on the type of surface (i.e., land or sea) to dis-
criminate between the different precipitation emission signa-
tures relative to background (e.g., Surussavadee and Staelin,
2008a). Separate NN algorithms are also proposed to deal
separately with stratiform and convective precipitation (e.g
Sarma et al., 2008).

In the design of PNPR v2 important aspects in relation
to the topics mentioned above, concerning the choice of the
inputs, the number of networks used by the algorithm, and
the database used in the training phase, have been thoroughly
analyzed and will be presented in this paper.

Another important issue to consider is that PNPR v2 has
been designed in the perspective of the full exploitation of
the MW radiometers in the GPM constellation of satellites,
and of the achievement of consistency (besides accuracy)
of the retrievals from the different sensors. These goals are
considered priorities in the international GPM mission com-
munity because their achievement leads to a significant re-
duction of the errors, also associated with the inadequate
sampling of precipitation, with positive impact on precipi-
tation monitoring (see also Panegrossi et al., 2015, 2016),
hydrological applications, and climate studies. This is also
true when higher spatial/temporal-resolution products based
on MW/IR combined techniques are used, such as IMERG
(GPM) and TMPA (Tropical Rainfall Measuring Mission –
TRMM; see Huffman et al., 2007, 2015); within the EU-
METSAT H-SAF program these aspects have also become a
priority. Therefore, PNPR v2 for ATMS, as well as PNPR v1
for AMSU/MHS, and all other H-SAF products for conically
scanning radiometers represent an important contribution to-
wards the exploitation of the current and future constellation
of PMW radiometers for global precipitation monitoring.

In this paper the PNPR v2 algorithm is described in detail,
and the methodology and the results of an intercomparison of
the PNPR v2 instantaneous precipitation estimates with co-
located spaceborne radar estimates from the TRMM Precip-
itation Radar (TRMM-PR) and from the GPM-CO Ku-band
Precipitation Radar (GPM-KuPR) are presented.

Section 2 presents a brief description of the characteristics
of ATMS. In Sect. 3 a description of the PNPR v2 algorithm
is presented, with reference to the design of the neural net-
work, the main characteristics of the algorithm, and the rele-
vant features of the ATMS training database. The verification
study is presented in Sect. 4, which includes a brief descrip-
tion of the characteristics of PR and DPR, of the methodol-
ogy used to create the co-located observation dataset used in
the study, the analysis of the performance of PNPR v2 com-
pared to TRMM-PR and to GPM-KuPR, and a comparison
with PNPR v1 using TRMM-PR rainfall estimates as refer-
ence. Section 5 contains the conclusive remarks about the
performance of PNPR v2 and future perspectives.

2 The ATMS radiometer

ATMS is a total power cross-track scanning microwave ra-
diometer on board the NPP satellite (and JPSS satellites
scheduled for early 2017), with a swath of 2600 km, an-
gular span of ±52.77◦ relative to nadir (Boukabara et al.,
2011, 2013; Weng et al., 2012; Goldberg et al., 2013; Zou
et al. 2013). During each scan the Earth is viewed at 96
different angles, sampled every 1.11◦. ATMS has 22 chan-
nels, ranging from 23 to 183 GHz, providing both temper-
ature soundings from the surface to the upper stratosphere
(about 1 hPa,∼ 45 km) and humidity soundings from the sur-
face to upper troposphere (about 200 hPa, ∼ 15 km). Partic-
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ularly, ATMS channels 1–16 provide measurements at mi-
crowave frequencies below 60 GHz and in an oxygen ab-
sorption band, and channels 17–22 are located at higher mi-
crowave frequencies above 89 GHz and in a water vapor ab-
sorption band. The beamwidth changes with frequency and is
5.2◦ for channels 1–2 (23.8–31.4 GHz), 2.2◦ for channels 3–
16 (50.3–57.29 and 88.2 GHz), and 1.1◦ for channels 17–22
(165.5–183.3 GHz). The corresponding nadir resolutions are
74.78, 31.64, and 15.82 km, respectively. The outmost FOV
sizes are 323.1 km× 141.8 km (cross-track × along-track),
136.7 km× 60.0 km, 68.4 km× 30.0 km, respectively.

Compared with its predecessors AMSU and MHS, ATMS
has improved resolution (31.6 km at nadir in the 54 GHz
band, vs. 48.6 km for AMSU) and angular sampling (1.11◦

in the 54 GHz band, vs. 3.33◦ for AMSU), and has the great
advantages of a wider swath that practically eliminates the
orbital gaps. There are slight differences in the frequencies
of ATMS channels 88.2, 165.5, and 183.31± 7.0 GHz with
respect to the corresponding MHS channels (89.0, 157.0,
and 190.31 GHz). Three new channels are added compared
to AMSU/MHS: channel 4 (51.76 GHz) for lower tropo-
spheric temperature sounding and the two channels 19 and 21
(183.31± 4.5 and 183.31± 1.8 GHz) to enhance the mois-
ture profiling performance, improving the vertical resolu-
tion, and potentially very useful also for precipitation (Su-
russavadee et al., 2012; Weng et al., 2012; Zou et al., 2013).

3 The new PNPR algorithm

3.1 Algorithm description

PNPR v2 represents an evolution for ATMS applications, of
the previous PNPR v1 algorithm based on a NN approach,
developed at ISAC-CNR for precipitation rate estimation us-
ing AMSU/MHS observations. The full description of PNPR
v1 is provided in Sanò et al. (2015), while some important
aspects are reviewed in this paper for completeness.

Both versions of PNPR are designed to work over the
full Meteosat Second Generation (MSG) disk area (60◦ S–
75◦ N, 60◦W–60◦ E). In PNPR v1 the training of the NN
was carried out using two distinct NNs, one for the Euro-
pean/Mediterranean area (Sanò et al., 2015) and one for the
African area (Panegrossi et al., 2014). Each network was de-
signed to work with all types of surface backgrounds (i.e.,
land, sea, coast) in order to reduce the discontinuity of pre-
cipitation estimates often found in correspondence with tran-
sitions between surfaces with different radiometric proper-
ties. In PNPR v2 one unique NN has been designed, capable
of operating on the whole MSG disk area regardless of the
type of surface and of the geographical area.

Another significant aspect in the design of PNPR v1 was
the use of the TB differences in the water vapor absorption
band channels at 183 GHz as input to the neural network.
Opaque channels around 183 GHz were originally designed

to retrieve water vapor profiles due to their different sensitiv-
ity to specific layers of the atmosphere (Wang et al., 1997;
Staelin and Chen, 2000; Blackwell and Chen, 2005). How-
ever, these channels have shown great potential for precip-
itating cloud characterization and for precipitation retrieval.
The different penetration ability of these channels in the at-
mosphere can be exploited to analyze the vertical distribu-
tion of hydrometeors (Wang et al., 1989, 1997; Burns et al.,
1997; Staelin and Chen, 2000; Ferraro et al., 2005; Hong
et al., 2005, 2008; Funatsu et al., 2007, 2009; Laviola and
Levizzani, 2011) and to obtain some criteria for the char-
acterization of precipitation as weak, moderate, strong con-
vective, or stratiform using the TB differences 117, 113,
and 137 (corresponding, respectively, to the differences be-
tween the 183.31± 1 and 183.31± 7 GHz, 183.31± 1 and
183.31± 3 GHz, 183.31± 3 and 183.31± 7 GHz channels)
(e.g., Ferraro, 2004; Qiu et al., 2005). In the design of PNPR
v2 we have focused on the exploitation of the improved tech-
nical characteristics of ATMS with respect to AMSU/MHS,
with the analysis of the information carried by two new
channels in the 183 GHz water vapor absorption band (at
183.31± 4.5 and 183.31± 1.8 GHz) (see Sect. 3.4 dedicated
to the input selection). As in PNPR v1, a canonical correla-
tion analysis has been carried out to find the linear combina-
tion of TBs of selected channels best correlated with surface
precipitation rate.

The flow diagram of the PNPR v2 algorithm is basically
the same as that of PNPR v1, described in detail in Sanò et
al. (2015), except for the use of one unique network trained
on a database representative of MSG full disk area (see
Sect. 3.2) and changes in the input selection in the design
of the network (described in Sect. 3.4). Furthermore, in the
preprocessing of the brightness temperatures, in addition to
the decoding of the file format and the quality control of
the input data, the removal of the three outmost pixels along
the scan is carried out. Other processing steps of the algo-
rithm, such as the screening procedure of no-rain pixels and
the quality index map providing indications on areas or con-
ditions where the retrieval is more or less reliable, are un-
changed with respect to those used for the algorithm PNPR
v1 (Sanò et al., 2015). In a similar way, the new algorithm
also provides at its output, in addition to the precipitation rate
(mm h−1), the phase of the precipitation (solid, liquid, mixed,
or unknown), and the quality index. The PNPR v2 output is
provided on a grid corresponding to the ATMS nominal reso-
lution varying from 15.82 km× 15.82 km/circular at nadir to
68.4 km× 30.0 km/elliptical at scan edge.

3.2 The training database

The training of PNPR v2 was performed using a large cloud–
radiation database representative of the MSG full disk area,
built from 94 cloud-resolving model (CRM) simulations of
different precipitation events including 60 simulations over
the European/Mediterranean area (Casella et al., 2013) and
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Figure 1. Geographical location of the inner domain of the 94 NMS
simulations over European and African areas.

34 simulations over Africa and Southern Atlantic (Pane-
grossi et al, 2014). The simulations were carried out using
the University of Wisconsin Nonhydrostatic Modeling Sys-
tem (UW-NMS) (Tripoli, 1992; Tripoli and Smith, 2014a, b)
coupled to a radiative transfer model (RTM) relating CRM
environments to expected top-of-atmosphere PMW TBs of
the ATMS radiometer (see Smith et al., 2013, and Casella et
al., 2013, for the details about the cloud model configuration
setup and Sanò et al., 2015, for AMSU/MHS RTM simula-
tions). Figure 1 shows the geographical location of the inner
domain of the 94 simulations. Simulated events were selected
in order to cover the different seasons and different meteo-
rological situations and precipitation regimes. The selection
of the simulations in terms of season, typology of event, and
geographical location was performed in order to optimize the
completeness and representativeness of the database for the
area of interest (see Casella et al., 2013). In detail, over the
European/Mediterranean area we have considered 15 differ-
ent meteorological events for each season over different ge-
ographical areas. Simulations over African and Southern At-
lantic area were chosen also on the basis of the TRMM-PR
observations (in particular the rain type flag and the freezing
level height) and different climatic regions in order to cover
as much as possible the climatic variability in the area of in-
terest with a limited number of simulations.

The simulated TBs were calculated considering the differ-
ent ATMS viewing angles and channel frequencies using the
same approach used for AMSU/MHS and described in Sanò
et al. (2015). For the European/African regions, the database
contains more than 70 million entries. Each entry is a vec-
tor composed of the simulated ATMS TBs, surface precip-
itation rate, and the corresponding ancillary parameters, as-
sociated with one cloud-resolving model microphysical re-
alization and one ATMS viewing angle (and corresponding
IFOV). It is worth noting that 45 different ATMS viewing
angles (discarding the three outmost pixels due to the low
resolution) are considered to build the database.

3.3 The neural network

A detailed description of the NN is provided in Sanò et
al. (2015), but some basic aspects are presented for complete-
ness.

The neural network scheme, shown in Fig. 2 in Sanò et
al. (2015), is characterized by ni inputs, one input layer, two
hidden layers, and a number of nodes for each layer (e.g.,
n1 for the first layer). Each node has its own transfer func-
tion and receives, as input, a weighted sum of the outputs of
the previous layer. The output of the transfer function corre-
sponds to the output of each node. For example, the output
of a node (kth), yk , of the first hidden layer takes the form:

yk (ω,x)= f2

[∑n1
j=1

ωkj · f1 ·
(∑ni

t=1
ωj t · xt + b1

)
+ b2

]
, (1)

where xt is the input signals (ni values), ωj t is the weights
connecting the inputs to the nodes of the input layer, and ωkj
the weights connecting the nodes of the input layer to the
nodes of the first hidden layer. f1 and f2 are the transfer func-
tions of the input layer and the first hidden layer, and b1 and
b2 are the bias of nodes of the two layers. During the training
phase (back propagation network and Levenberg–Marquardt
algorithm) a training database is used that provides the net-
work with synthetic input and output data. The input signal
propagates forward from the input layer of nodes to the out-
put layer. The node in the output layer produces an output
(yi), which is compared to the ith target output (ti) defined
in the training set. An error value is calculated as

E =
1
n

∑n

i=1
(yi − ti)

2, (2)

where n is the number of elements of the training set. The
network corrects its weights to lessen the errors. The iteration
continues in order to minimize the error. At the end of the
training phase the performance of the NN is measured by the
mean squared error and the correlation coefficient (CC).

3.4 Input selection

The first objective in the new NN design was the selection
of the inputs based on the evaluation of their impact on the
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Figure 2. Relative sensitivity (Si) of the NN evaluated for five in-
puts (113, 137, 117, 124, LCT), for three different background
surfaces.

performance of the NN or on their sensitivity to precipita-
tion. Consistently with PNPR v1 and on the basis of the re-
sults obtained for AMSU/MHS (Sanò et al., 2015), for the
new NN we have initially imposed the use of the three inputs
117, 113, and 137 (Hong et al., 2005; Funatsu et al., 2007,
2009). These TB differences have been proven to be very
effective in detecting precipitation, differentiating between
different precipitation structures, and retrieving rainfall rate.
For PNPR v2, a detailed analysis to evaluate the effect of
additional inputs on the performance of the NN has been
carried out. All possible TB differences with the two new
ATMS 183 GHz (183.31± 1.8 and 183.31± 4.5 GHz) chan-
nels were considered, and the analysis was based on a cross-
validation method (Anders and Korn, 1999; Marzban, 2009)
already used for PNPR v1 (Sanò et al., 2015). This method
consists, essentially, in comparing the quality of two NNs
by evaluating their mean squared prediction error (MSPE)
when they are applied to an equal number (M) of valida-
tion datasets. Therefore, the cross-validation index (CV) is
defined as

CV=
1
M

∑M

m=1
MSPEm. (3)

In a first test, only the three differences 114, 124,
and 127 (corresponding, respectively, to the differ-
ences between the 183.31± 1 and 183.31± 4.5 GHz,
183.31± 1.8 and 183.31± 4.5 GHz, and 183.31± 1.8 GHz
and 183.31± 7 GHz channels) showed a real improvement in
the NN performance. The use of the differences between con-
tiguous channels resulted in fact irrelevant. The subsequent
tests with these three new inputs proved that 124, added to
117, 113, and 137 already selected in PNPR v1, was the
input with most significant impact on the NN performance.
Table 1 shows some results obtained during the test.

In the table the various possible differences considered as
input to the NN in this analysis are shown in the first col-
umn; 1F =113, 137, 117 denotes the three difference com-
binations used in the PNPR v1 algorithm. In the second and

Table 1. Results of the tests for the selection of the inputs to the
NN. Input combinations are listed in the first column (1F = 113,
137, 117); R indicates the correlation coefficient, MSE the mean
squared error, and CV the cross-validation index (subscripts L and
CV indicate the learning and cross-validation phases).

INPUT RL MSEL RCV CV

1F 0.85 0.39 0.76 0.42
1F and 114, 124, 127 0.78 0.64 0.70 0.68
1F and 114, 124 0.89 0.37 0.80 0.42
1F and 114, 127 0.83 0.49 0.78 0.53
1F and 124, 127 0.81 0.50 0.70 0.54
1F and 114 0.87 0.37 0.79 0.41
1F and 124 0.92 0.32 0.87 0.35
1F and 127 0.83 0.48 0.68 0.52

fourth columns the values of the CCs between output and tar-
get during the learning phase (RL) and the mean values dur-
ing the cross-validation phase (RCV) are shown. In the third
and the fifth columns the values of the mean squared error
during the learning phase (MSEL) and the cross-validation
index CV (the mean MSPE values during the cross-validation
phase) are provided. From the results shown in the table it is
evident that the NN performance improves when the input
124 is added. It is worth noting that to achieve the results
shown in Table 1 the training protocol described in Sanò et
al. (2015) has been applied, and for each input configuration
(each row in the table) more than 100 NNs (with different
levels and nodes) were compared to select the optimal net-
work configuration, where “optimal” refers to the one with
best performance, i.e., minimum CV over the full dynamic
range of the inputs, absence of overfitting, and absence of
anomalous inhomogeneities in the retrievals (Staelin and Su-
russavadee, 2007).

The contribution of 124 as new input can be seen as a
compensation of 117 when, under certain conditions, this is
affected by the “noise” of the background surface. In fact,
the 183± 7 GHz channel, the most penetrating among the
183 GHz channels, has a weighting function peaking at the
lowest levels (Bennartz and Bauer, 2003), and the TB can
be significantly affected by the signal from the underlying
surface (for example in cold and dry conditions). In con-
trast, in the same conditions, the 183± 4.5 GHz channel has a
weighting function peaking at higher levels. Some tests have
been carried out on different cloud model profiles extracted
from the CRM simulations and based on RTM computations
to analyze the behavior of the 117 and 124, and they have
confirmed these effects (not shown). We have also verified
that, by replacing 117 with 124, a lower performance of the
network is achieved, whereas the combined use of the two
differences guarantees the optimal performance. The use of
124 as added input to 117, 113, and 137 in PNPR v2 rep-
resents the best compromise between the achievement of a
good performance and the minimization of the number of in-
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puts of the NN in order to reduce its complexity, key aspects
in any NN design.

Another difference between PNPR v2 and PNPR v1 al-
gorithms is the result of the canonical correlation analysis
(CCA) applied to the training database to find the linear com-
bination of TBs (LCT) of selected channels best correlated
with surface precipitation rate, to be used as additional input
to the network (see Sanò et al., 2015). The resulting linear
combination for ATMS is composed of the window channels
31.4, 88.2, and 165.5 GHz, showing the highest CCs in the
CCA analysis (with respect to the surface rain rate) for all
types of background surfaces (in PNPR v1 for AMSU/MHS
the 50.3, 89, and 150 GHz were selected for LCT).

With regard to other inputs to the network, in PNPR v2
the same ancillary data used in PNPR v1 were maintained
(surface height, background surface type, month, and se-
cant of the zenith angle along the ATMS cross-track scan).
An additional auxiliary input was added to drive NN in the
transition between the European and African area, i.e., the
monthly mean total precipitable water (TPW) obtained from
ECMWF Era Interim reanalysis in the 2011–2014 period.
It should be mentioned that geographical and environmen-
tal/meteorological parameters (including TPW) in PMW pre-
cipitation retrieval are utilized to reduce the ambiguity intrin-
sic to the PMW precipitation retrieval process (for example
in the NASA GPM Bayesian algorithms – see Kummerow et
al., 2011, 2015; Kidd et al., 2016).

During the phase of network design and the training pro-
cess, more than 400 architectures have been tested and an
“optimal” NN has been obtained.

In summary, 10 input variables (five TBs derived and five
ancillary inputs) are used in the NN for ATMS:

1. an LCT at 31.4, 88.2, and 165.5 GHz;

2. 117 difference between the TBs of channels 183.31± 1
and 183.31± 7 GHz;

3. 137 difference between the TBs of channels 183.31± 3
and 183.31± 7 GHz;

4. 113 difference between the TBs of channels 183.31± 1
and 183.31± 3 GHz;

5. 124 difference between the TBs of channels
183.31± 1.8 and 183.31± 4.5 GHz;

6. surface type (land, sea, coast);

7. monthly mean TPW;

8. month;

9. surface height (altitude);

10. secant of the zenith angle.

The network architecture is similar to that of PNPR v1,
with one input layer (with number of nodes equal to the num-
ber of inputs) and two hidden layers with 23 and 10 nodes in
the first and in the second layer, respectively (the number of
nodes differs from PNPR v1). The tan-sigmoid transfer func-
tion is used for the input and the hidden layers, while a linear
transfer function is used for the output node.

3.5 Sensitivity analysis

During the training procedure, an assessment of the sensitiv-
ity of the NN output to variations of the inputs was carried
out. Sensitivity analysis provides an estimation of the relative
importance of the inputs (Coulibaly et al., 2005). The knowl-
edge of the NN behavior, in relation to input perturbation,
helps to assess the relevance of the individual contributions
to the output and to verify the correct training of the NN (i.e.,
the weights remain stable) that is achieved when there is no
significant changes of the sensitivity during the last training
iterations (epochs).

The sensitivity analysis, limited to the TBs derived vari-
ables that are more related to the rain rate estimate and not to
the ancillary variables, was applied to the “optimal” NN (i.e.,
defined by the listed inputs and the architecture described
in the previous section) and was carried out during the final
phase of the training (see Sanò et al., 2015). The final phase
was reached when the two parameters indicating the quality
of the learning process, i.e., the CC (R) and the gradient of
performance (mean squared error) were, respectively, larger
than 0.89 and less than 0.05, with the number of epochs in the
700–900 range (see Sanò et al., 2015, for more details on this
procedure). The assessment of the sensitivity was carried out
several times, in correspondence with successive epochs (to
ensure the representativeness of the data used for the anal-
ysis), and for three different surface types (land, coast, and
ocean), using NN input data randomly extracted from the
training and test databases. Five inputs (113, 137, 117, 124,
LCT) were slightly perturbed by percentages of their value
within three times their standard deviation (calculated in the
database).

The relative sensitivity (S) of the NN to each input (i.e.,
for a number of input perturbations) is calculated as the ratio
between the mean standard deviation of the output (i.e., the
surface rainfall rate) and the mean standard deviation of the
input.

Si =
σ(RRi)

σ (Vi)
, (4)

where Si is the relative sensitivity corresponding to the in-
put Vi and σ(RRi) and σ(Vi) are the standard deviations of
the rainfall rate and the input variable. Figure 2 shows the
results obtained for the three different background surface
types considered.

The results show a similar behavior of the sensitivity for
the three different surface backgrounds considered. It is evi-
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Figure 3. Number of co-located pixels from TRMM-PR and the Suomi-NPP ATMS coincident overpasses over the African area in the 24-
month period 2013–2014 (left panel) and from GPM-Ku-NS and Suomi-NPP ATMS coincident overpasses over European and African areas
in the 15-month period (March 2014–May 2015) (right panel).

dent the higher sensitivity of NN with respect to the LCT in
comparison with the other inputs; this is due to the contri-
bution of window channels used in LCT, selected by max-
imizing the correlation with the surface precipitation rate.
Another important aspect is the relative contribution of the
other inputs (TBs difference in the 183 GHz band channels)
quite similar among the three types of surface, with a slightly
higher contribution of the input 117 for land and coast and a
good contribution of the new ATMS input124 for all surface
types.

4 Verification study

4.1 Dataset description

This section presents the verification study carried out for the
PNPR v2 algorithm, using as reference the data provided by
the TRMM and GPM spaceborne radars. The TRMM-PR is
a 13.8 GHz radar with a swath width of 247 km (after the
satellite was boosted to higher orbit in 2001). Its coverage al-
lows regional intercomparison of convective–stratiform con-
tributions to precipitation across the tropics, with data avail-
able since the launch of the satellite in November 1997 un-
til October 2014. It is considered the precursor to GPM
DPR and has represented, during this time interval, the best

available remote-sensing instrument for precipitation (Schu-
macher and Houze Jr., 2003). The TRMM PR2A25 prod-
uct (Iguchi et al., 2000) provides rainfall rates based on the
reflectivity–rainfall rate relationships, along with a raindrop
size distribution (DSD) model, attenuation correction, and
a non-uniform beam-filling correction. Even though issues
have been raised about the accuracy of PR2A25, related to
surface properties, variations of the DSD, or impact of in-
cidence angles (i.e., Iguchi et al., 2009; Hirose et al., 2012;
Kirstetter et al., 2013), during its operational period this radar
has provided accurate estimates of instantaneous rain rate, as
well as calibration for other precipitation-relevant sensors in
sun-synchronous orbits (Bellerby et al., 2000; Heymsfield et
al., 2000; Liao et al., 2001; Schumacher and Houze Jr., 2003;
Lin and Hou, 2008). The GPM DPR (on board the GPM-CO)
is composed of two precipitation radars, the GPM-KuPR at
13.6 GHz (an updated version of the TRMM-PR) and the Ka-
band precipitation radar (GPM-KaPR) at 35.5 GHz. The si-
multaneous use of the two radars was designed to obtain a
greater dynamic range in the measurements, more detailed
information on the microphysical rain structure (such as rain-
drop size distribution), and a consequent better accuracy in
the rainfall retrieval (Le and Chandrasekar, 2013a, b; Hou et
al., 2014; Chandrasekar et al., 2014). KuPR and KaPR have
the same space resolution at nadir, equal to 5.2 km, the same
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beamwidth, equal to 0.71◦, and cross-track swath widths of
245 and 120 km, respectively. In this study we have consid-
ered only the GPM-KuPR products because of the similar-
ities with the TRMM-PR and because its larger swath size
compared to the GPM-KaPR offers better chances to find co-
incident observations with ATMS.

It is worth considering also that in spite of the similarities
between the two radars, the GPM-KuPR has higher sensi-
tivity (with minimum detectable reflectivity between 12 and
14 dBZ, outperforming the original instrumental design of 18
dBZ) (Toyoshima et al., 2015; Hamada and Takayabu, 2016)
than the TRMM-PR radar (18 dBZ minimum detectable re-
flectivity).

Two datasets have been created, one composed of 2 years
(2013–2014) of coincident Suomi-NPP ATMS and TRMM-
PR overpasses over the African area (36◦ S–36◦ N and
60◦ E–30◦W), and one made of 15 months (1 March 2014–
31 May 2015) of ATMS and GPM-KuPR coincident over-
passes over the European and African areas (36◦ S–65◦ N and
60◦ E–30◦W). In the study the comparison is carried out be-
tween the PNPR v2 precipitation rate and the NASA/JAXA
precipitation products from the two spaceborne radars, in
particular the TRMM-PR standard product 2A25 (V7) and
GPM 2ADPR Ku normal scan (Ku-NS) (V03). Coincident
observations in the area of interest within a 15 min time win-
dow (maximum delay between the observations to be consid-
ered coincident) have been considered between ATMS and
TRMM-PR (hereafter ATMS-PR) and between ATMS and
GPM-Ku-NS (hereafter ATMS-DPR-Ku).

It should be pointed out that the results obtained from the
ATMS-DPR-Ku coincidence dataset are not as robust as the
results obtained from the ATMS-PR dataset because of the
limited size of the dataset and because of some uncertainties
in the less consolidated day-1 V03 DPR products, linked to
factors such as the DSD parameterization (Liao et al., 2014),
the evaluation of the path-integrated attenuation, the surface
reference technique, and the non-uniform beam-filling effect
(Shimozuma and Seto, 2015).

Figure 3 (left panel) shows the geographical distribution
(on the ATMS grid) of about 1.8 milions coincident pixels
ATMS-PR found over the African area in the 2-year time
frame 2013–2014. The figure shows a rather good coverage
of the entire area, with a number of coincident pixels between
30 and 150 on Central Africa, increasing moving to the north
and to the south.

In the right panel of the figure, the distribution of the coin-
cident pixels ATMS-DPR-Ku over the European and African
areas, between March 2014 and May 2015, is shown. In con-
trast to the left panel, the coverage is not as good with a lower
number of coincident pixels, and with some uncovered ar-
eas. The number on coincident pixels increases over north-
ern Europe at the high latitudes, reaching a maximum value
around 200. In the southern part of Europe and Africa, the
number of coincidences is significantly reduced (maximum
values around 50).

To obtain co-located vectors of rainfall estimates of ATMS
and TRMM-PR, and of ATMS and GPM-KuPR, the radar
precipitation rate at the surface was downscaled to the PNPR
v2 product nominal resolution (variable along the scan line,
see Sect. 3.1), by averaging the rainfall rate of all radar pix-
els falling within each PNPR v2 pixel. In order to reduce the
geolocation and synchronization errors, due to the different
viewing geometry of ATMS and the spaceborne radar, and
to the time lag between the observations, statistical analysis
was carried out over a regular grid at 0.5◦× 0.5◦ resolution.
For some of the analysis the coincidence datasets were cat-
egorized on the basis of the background surface – vegetated
land, arid land (for Africa only), ocean, and coast – using a
digital land/sea map at 2 s of arc resolution (see Casella et al.,
2015).

4.2 Comparison with TRMM-PR

Figure 4 shows the geographical distribution of the values of
three statistical indexes (hit bias, CC, and root mean squared
error (RMSE); see Tian et al., 2016, for the definition of these
scores), obtained for the ATMS-PR dataset. The scores are
computed considering all coincident ATMS-PR pixels within
each 0.5◦× 0.5◦ grid box (regardless of the time of the over-
passes) with precipitation rate greater than 0 mm h−1 both
from the radiometer and the radar (hits only).

The top panel shows a rather uniform distribution of low
bias (between −0.2 and 0.1 mm h−1, negative in most re-
gions), with areas with larger positive bias (0.8 mm h−1)

over the equatorial region, mostly over the Atlantic and In-
dian Ocean, and a few scattered areas of larger negative
bias (−0.8 mm h−1). Moreover, the algorithm shows an over-
all good correlation (middle panel) (CC > 0.8 in most areas)
and an RMSE (bottom panel) with a pattern quite similar to
the hit bias, with most values between 0.2 and 0.5 mm h−1,
and a limited number of grid points with values around
1.3 mm h−1. Overall, the panels point out a good agree-
ment between PNPR v2 and TRMM-PR, evidenced by the
widespread low values of bias and RMSE and the high val-
ues of CC.

In Fig. 5 the density scatter plots for all 0.5◦× 0.5◦ res-
olution grid boxes of the ATMS-PR dataset are shown for
different surface types. In the scatter plot, the coordinates
are the values (in logarithmic scale) of the mean precipita-
tion rate from ATMS and for TRMM-PR in each grid box,
while the color represents the number of points in the dataset
for each pair of precipitation rate values. The correlation is
quite good for all background surfaces. A significant num-
ber of coincident observations below the diagonal are found
over ocean, mostly for precipitation rates less than 1 mm h−1,
and over vegetated land (for all precipitation rates). This con-
firms the overall slight underestimation (negative hit bias)
over land of Fig. 4 (top panel). The values of the statistical
indexes (hit bias, CC, and RMSE) calculated over the entire
dataset are also provided, and they confirm the good agree-
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Figure 4. Hit bias (top panel), correlation coefficient (CC, middle
panel), and root mean squared error (RMSE, bottom panel) resulting
from the comparison between PNPR v2 and TRMM-PR retrievals
over the African area (using a 0.5◦× 0.5◦ regular grid, for the pe-
riod 2013–2014).

ment between PNPR v2 and TRMM-PR for the different sur-
face types (results for coast and arid land are affected by the
low number of coincident pixels found for these areas). The
(small) bias is negative for vegetated land (−0.08 mm h−1)

and arid land (−0.05 mm h−1) and positive for ocean and
coast (0.05 mm h−1). Low RMSE is also found for all sur-
face types, higher for ocean (1.30 mm h−1) than for vegetated
land (1.11 mm h−1), and equal to 0.80 and 1.37 mm h−1 for
arid surfaces and coastal area, respectively. CC is higher for
vegetated land (0.71) compared to ocean (0.69), coast (0.65),
and arid land (0.64).

Table 2 presents the contingency table for the ATMS-PR
dataset, based on the mean rainfall rate from ATMS and
TRMM-PR within each 0.5◦× 0.5◦ grid box. The percent-
ages shown in a given column, provided for the four sur-
face backgrounds, represent how the PNPR v2 product clas-
sifies the precipitation assigned to each TRMM-PR class.
Four rainfall rate intervals were selected in this compar-
ison, 0.01–0.25, 0.25–1, 1–5, and 5–15 mm h−1. There is
an appreciable general consistency between PNPR v2 and

Figure 5. Density scatter plots of the PNPR v2 and TRMM-PR
mean rainfall rates (over a 0.5◦× 0.5◦ regular grid, for the period
2013–2014) for the African area for different surface types. A log-
arithmic scale is used for the precipitation rates in mm h−1.

TRMM-PR estimates, as shown by the largest percentages
found on the main diagonal for each type of surface back-
ground. The percentages exceed 70 % for low precipita-
tion rates (≤ 0.25 mm h−1) and 50 % for higher precipita-
tion rates. Looking at the distribution of the percentages for
each radar range (in each column), the underestimation of
PNPR v2 compared to TRMM-PR (higher percentages in the
cells above the diagonal) is noticeable, which confirms what
shown in Fig. 5 for vegetated land and ocean.

Table 3 shows the performance index calculated for the
different background surfaces, defined as

Perf.Index= 100 ·

∑4
i=1

nij (i=j)
1i∑4

i=1

(∑4
j=1nij
1i

) , (5)

where nij is the number of occurrences in cell ij , i is the
column index, j is the row index, and 1i is the width of the
ith rain rate class (mm h−1). For each surface type, the index
consists of the weighted sum of the number of occurrences in
the main diagonal of the cells, divided by the weighted sum
of the total number of occurrences, where the weight is the
rain rate range for each class. The values shown confirm the
good ability of the PNPR v2 to provide precipitation rates
consistently with TRMM-PR, mostly over ocean.
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Table 2. Contingency table of PNPR v2 retrievals relative to TRMM-PR measurements (at 0.5◦× 0.5◦ resolution). n/a indicates not available.

Radar rain rate (mm h−1)

Vegetated land 0.01≤Rad≤ 0.25 0.25 < Rad≤ 1.0 1.0 < Rad≤ 5.0 5.0 < Rad≤ 15.0
PN

PR
v2

ra
in

ra
te

(m
m

h−
1 )

0.01≤PNPR v2≤ 0.25 80.3 % 35.4 % 2.9 % 0.0 %
0.25 < PNPR v2≤ 1.0 17.8 % 50.4 % 35.1 % 6.2 %
1.0 < PNPR v2≤ 10.0 1.9 % 13.6 % 54.6 % 38.4 %
5.0 < PNPR v2≤ 15.0 0.0 % 0.6 % 7.4 % 55.4 %

Coast 0.01≤Rad≤ 0.25 0.25 < Rad≤ 1.0 1.0 < Rad≤ 5.0 5.0 < Rad≤ 15.0

0.01≤PNPR v2≤ 0.25 86.4 % 34,0 % 7.1 % 0.0 %
0.25 < PNPR v2≤ 1.0 12.1 % 52,3 % 31.1 % 0.0 %
1.0 < PNPR v2≤ 10.0 1.5 % 13.0 % 51,0 % 26.6 %
5.0 < PNPR v2≤ 15.0 0.0 % 0.7 % 10.8 % 73.4 %

Ocean 0.01≤Rad≤ 0.25 0.25 < Rad≤ 1.0 1.0 < Rad≤ 5.0 5.0 < Rad≤ 15.0

0.01≤PNPR v2≤ 0.25 85.2 % 32.5 % 3.7 % 0.0 %
0.25 < PNPR v2≤ 1.0 13.1 % 51.4 % 30.8 % 7.5 %
1.0 < PNPR v2≤ 10.0 1.7 16.0 % 54.7 % 39.1 %
5.0 < PNPR v2≤ 15.0 0.0 % 0.1 % 10.8 % 53.4 %

Arid land 0.01≤Rad≤ 0.25 0.25 < Rad≤ 1.0 1.0 < Rad≤ 5.0 5.0 < Rad≤ 15.0

0.01≤PNPR v2≤ 0.25 72.1 % 27.6 % 1.2 % n/a
0.25 < PNPR v2≤ 1.0 27.6 % 53.4 % 37.1 % n/a
1.0 < PNPR v2≤ 10.0 0.3 % 18.7 % 58.0 % n/a
5.0 < PNPR v2≤ 15.0 0.0 % 0.3 % 3.7 % n/a

Table 3. Performance indexes for the different background surfaces.

Vegetated Ocean Coast Arid
land land

Perf. index 69.0 % 76.0 % 75.7 % 66.7 %

4.3 Comparison with GPM-KuPR

As mentioned previously, a verification of PNPR v2 algo-
rithm has been made also using precipitation rate estimates
from the GPM-KuPR, available at mid-high latitudes. This
was initially intended for the European area only, where a
larger number of coincident overpasses are available dur-
ing the time frame considered (March 2014–May 2015) (see
Fig. 3). However, results are shown also for the African area,
despite the lower number of coincidences available, in order
to assess the degree of consistency of the results obtained
over the same area with the two Ku-band spaceborne radars.

As for the comparison with the TRMM-PR, all co-
located ATMS and GPM-KuPR retrievals were regridded at
a 0.5◦× 0.5◦ resolution, and only grid boxes with precipi-
tation rates greater than 0 mm h−1 (hits) are considered. In
Fig. 6 the density scatter plots over the African area and the
European area are shown, for vegetated land and ocean (the
number of coincidences for the other surface types is too low
in the ATMS-DPR-Ku dataset). The corresponding values of

Table 4. Statistical indexes obtained in the comparisons of PNPR
v2 retrievals with GPM-KuPR and TRMM-PR products.

Vegetated land Ocean
GPM-KuPR/ GPM-KuPR/
TRMM-PR TRMM-PR

BIAS (mm h−1) 0.15/− 0.08 −0.04/0.05
CC 0.70/0.71 0.70/0.69
RMSE (mm h−1) 1.08/1.11 1.21/1.30

bias, CC, and RMSE computed over the whole dataset are
also provided in each panel. Over Africa, both panels show
patterns quite similar to those found in the comparison with
TRMM-PR (Fig. 5). Also in this case there is a slight under-
estimation for low precipitation (< 1 mm h−1) more evident
over the ocean. Table 4 shows the comparison between sta-
tistical indexes obtained for the ATMS-DPR-Ku dataset and
those obtained for the ATMS-PR dataset, shown in Fig. 5.

The table shows a good agreement between the scores ob-
tained with two datasets, with very low bias (slightly posi-
tive/negative over land/ocean for the ATMS-DPR-Ku dataset,
while the reverse is valid for the ATMS-PR dataset), low
RMSE (lower for the ATMS-DPR-Ku dataset), and good cor-
relation.

The right panels of Fig. 6 show the scatter plots obtained
in the comparison of PNPR v2 and GPM-KuPR over the
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Figure 6. Density scatter plots of the PNPR v2 and GPM-KuPR
mean rainfall rates (over a 0.5◦× 0.5◦ regular grid, for the period
1 March 2014–31 May 2015) for the African area (left panels) and
the European area (right panels), for vegetated land and ocean. A
logarithmic scale is used for the precipitation rates in mm h−1.

European area. Pixels with likely presence of ice or snow
on the ground have been eliminated from the dataset in or-
der to exclude from the verification study cases of snowfall
(or precipitation over frozen background) whose precipita-
tion rate estimate is affected by larger uncertainty (both in
the GPM-DPR-Ku V03 product and in PNPR v2). For the
identification of these pixels the “Snow Depth” and “Sea Ice
Cover” products from the ECMWF Era Interim re-analysis
(at 0.5◦× 0.5◦ resolution) available every 6 h have been used.
A dataset corresponding to the ATMS-DPR-Ku coincidence
rainfall pixels has been created, considering the ECMWF
re-analysis closest in time to each overpass and using the
nearest-neighbor approach to match the ATMS-DPR-Ku pix-
els with the ECMWF grid.

The scatter plots in Fig. 6 show a similar behavior for veg-
etated land for the two areas, while over ocean in the Euro-
pean area there is a general tendency of PNPR v2 to over-
estimate the precipitation with respect to the GPM-KuPR.
The total bias has very low values, negative for vegetated
land (−0.12 mm h−1) and positive for ocean (0.12 mm h−1).
The CC show lower values than for the African region
for the two background surfaces (0.59 for vegetated land,
0.57 for ocean), while the RMSE is lower than over the
African region, equal to 0.82 mm h−1 for vegetated land, and
0.71 mm h−1 for ocean.

Figure 7. Hit bias (top panel), CC (middle panel), and RMSE (bot-
tom panel) resulting from the comparison between PNPR v2 re-
trievals and GPM-KuPR measurements over the European area (us-
ing a 0.5◦× 0.5◦ regular grid, for the period 1 March 2014–31 May
2015).

In order to better interpret the results in Fig. 6, the geo-
graphical distribution of bias, CC, and RMSE over the Euro-
pean area is shown in Fig. 7 (similarly to Fig. 4). In these
maps the statistical indexes are evaluated including pixels
with snow or ice on the ground. There is a prevalence of a
positive bias (although mostly below 0.3 mm h−1, with some
peaks above 0.5 mm h−1) over the ocean (in the Northern At-
lantic Ocean, top-left panel) and in the few areas available in
the coincidence dataset over the Mediterranean Sea. In the
remaining areas and over land there is a rather uniform dis-
tribution of lower bias (between −0.2 and 0.2 mm h−1). The
correlation CC has quite high values (prevalently between
0.80 and 1) throughout the European area, except for some
regions in the Northern Atlantic Ocean, where the values are
around 0.6. The RMSE presents quite similar patterns as the
hit bias, with higher values (around 0.7 and 1–1.5 mm h−1

for few pixels) where the bias is high and lower values (less
than 0.5 mm h−1) where the bias is low.
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4.4 Comparison with PNPR v1

In the second part of the verification study we have compared
the performances over the African area of the PNPR v2 with
the PNPR v1 to evaluate whether the use of the new ATMS
channels and the newly designed NN have led to improve-
ments in the retrievals. The performance of the PNPR v1 al-
gorithm has been tested on the same 2-year period (2013–
2014) used for PNPR v2, considering coincident observa-
tions of AMSU/MHS radiometers, on board the NOAA-18,
NOAA-19, MetOp-A, and MetOp-B satellites, with TRMM-
PR. The PNPR v1 and TRMM-PR coincidence dataset is
made of about 3 million pixels. The procedure used to evalu-
ate the PNPR v1 performance is the same as that adopted for
the PNPR v2 algorithm, described in Sect. 4.1.

Table 5 presents the values of the statistical indexes hit
bias, CC, and RMSE obtained in the comparison of PNPR
v1 and PNPR v2 with TRMM-PR precipitation retrievals,
over a 0.5◦× 0.5◦ regular grid, for different background
surfaces. These results indicate a good agreement of both
the algorithm retrievals with the TRMM-PR (NASA/JAXA
product 2A25) and a better performance of PNPR v2 es-
pecially over vegetated land, in terms of CC (0.71 for
PNPR v2 vs. 0.68 for PNPR v1) and RMSE (1.11 mm h−1

vs. 1.65 mm h−1), and over ocean in terms of all scores
(CC= 0.69 vs. 0.61, RMSE= 1.30 mm h−1 vs. 2.32 mm h−1,
and hit bias= 0.05 mm h−1 vs. 0.59 mm h−1). Over arid land
and coast PNPR v2 results might be affected by the limited
size of the ATMS-PR coincidence dataset (ATMS is on board
one satellite only, while AMSU/MHS is on board four differ-
ent satellites). Improvements compared to PNPR v1 are evi-
dent in terms of hit bias (−0.05 mm h−1 vs. 0.30 mm h−1 for
arid land and 0.05 mm h−1 vs. 0.20 mm h−1 for coast) and in
terms of RMSE (0.80 mm h−1 vs. 1.84 mm h−1 for arid land
and 1.37 mm h−1 vs. 1.90 mm h−1 for coast).

A further analysis of the performance of the two algo-
rithms has been performed through the study of the relative
bias percentage (RB%) and the adjusted fractional standard
error percentage (AFSE%) used to remove systematic errors
(Tang et al., 2014), as a function of the mean TRMM-PR
rainfall rate value computed for different rainfall rate inter-
vals (bins). In the analysis we have used rain rate bins of
variable size to obtain a meaningful number of pixels within
each bin.

These variables are defined as

relative bias %= 100 ·
∑N
i=1 (mwi − rri)∑N

i=1rri
, (6)

AFSE %=

√
1
N

∑N
i=1(mwi − rri − bias)2

1
N

∑
irri

· 100, (7)

where mwi is the PNPR (v1 or v2) rainfall rate and rri is the
TRMM-PR rainfall rate. N represents the number of pixels
in each precipitation rate bin.

Figure 8. Relative bias percentage (top panel) and AFSE percentage
(bottom panel) of PNPR v1 and PNPR v2 retrievals with respect to
the TRMM-PR measurements.

Considering the RB% (top panel of Fig. 8), the better per-
formance of PNPR v2 in the rain rate estimation over ocean
(solid blue line) with respect to the PNPR v1 (dashed blue
line) is evident. The high relative bias over ocean for low
rain rates in the PNPR v1 is significantly reduced in PNPR
v2. In the interval between 0 and 4 mm h−1 the RB% ranges
from 300 to 100 % for the PNPR v1 and from 50 to 1 % for
the PNPR v2. In the following interval (4 to 10 mm h−1) the
values varies from−5 to−40 % for both the algorithms with
a slightly better performance of PNPR v2.

Over land both the algorithms present similar perfor-
mances, with a slightly better result for PNPR v2 (solid
black line) for low rain rates (0–3 mm h−1) and lower RB%
of PNPR v1 (dashed black line) for higher rain rate values
(> 3 mm h−1).

In the bottom panel of Fig. 8 AFSE% shows high values
(> 250 %) over ocean (blue curves) for very low rain rates
(< 0.5 mm h−1) in PNPR v1, while for PNPR v2 AFSE% is
much lower (< 200 %). For higher rain rates the two curves
are similar, with slightly better performance of PNPR v2 for
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Table 5. Statistical indexes of the comparison of PNPR v1 and PNPR v2 vs. TRMM-PR retrievals.

Arid land Vegetated land Coast Ocean
PNPR v1/PNPR v2 PNPR v1/PNPR v2 PNPR v1/PNPR v2 PNPR v1/PNPR v2

BIAS (mm h−1) 0.30/− 0.05 −0.09/− 0.08 0.15/0.05 0.63/0.05
CC 0.66/0.64 0.68/0.71 0.75/0.65 0.60/0.69
RMSE (mm h−1) 1.84/0.80 1.66/1.11 1.73/1.37 2.25/1.30

rain rates < 2 mm h−1 and better performance of PNPR v1 for
rain rates between 2 and 6 mm h−1.

Over land, PNPR v2 shows lower AFSE% compared
to PNPR v1 for mid- to high rainfall rates (> 2 mm h−1),
while for lower rain rates the two curves are similar, with
slightly better results for PNPR v2 for very low rain rates
(< 0.5 mm h−1) and for PNPR v1 for rain rates between 0.5
and 2 mm h−1. It should be noted that overall this compari-
son shows a general agreement in the capability to estimate
the precipitation by the two algorithms (as expected since
they are based on the same physical foundation) with better
performance of the ATMS version of PNPR for low precip-
itation rates, in particular over ocean (both in terms of RB%
and AFSE%). For higher precipitation rates both PNPR ver-
sions tend to underestimate the precipitation (negative RB%),
with larger (negative) bias of PNPR v2 than PNPR v1 over
land.

It is worth noting that the main improvement of PNPR v2
with respect to PNPR v1 is the reduction of the relative bias
(RB%) for low precipitation rates (where RB% was higher)
especially over ocean. Moreover, considering the AFSE%,
the error is generally lower in version 2 even if the effect
of the bias reduction is not taken into account.

5 Summary and conclusion

This paper describes the design of a new algorithm, PNPR
v2, for estimation of precipitation on the ground for the
cross-track ATMS radiometer and presents the results of a
verification study where the instantaneous precipitation rate
estimates available from TRMM and GPM spaceborne radars
are used as reference.

PNPR v2 has been designed for retrieval of precipitation
in the MSG full disk area. The algorithm, based on a neural
network approach, represents an evolution of the previous
version PNPR v1, designed for the AMSU/MHS radiome-
ter, with some changes made to take advantage of the im-
provements of ATMS with respect to AMSU/MHS. Simi-
larly to the previous algorithm it is based on a single neural
network for all types of surface background, trained using
a large database based on 94 cloud-resolving model simula-
tions over the European and the African areas.

The verification study carried out through a compar-
ison with co-located observations of ATMS with the
NASA/JAXA TRMM-PR and GPM-KuPR spaceborne

radars analyzed on a 0.5◦× 0.5◦ regular grid showed a sub-
stantial agreement of PNPR v2 with the precipitation prod-
ucts available from the two radars. In the comparison with
TRMM-PR, over the African area the CC has values between
0.64 (arid land) and 0.71 (vegetated land), and RMSE varies
between 0.80 mm h−1 (arid land) and 1.37 mm h−1 (coast).
The AFSE%, as a function of PR precipitation rate, ranges
from 250 to 130 % over ocean and from 250 to 100 % over
land in the interval from 0.1 to 1 mm h−1. It is less than
50 % for rain rate greater than 7 mm h−1 (ocean and land).
In the comparison with GPM-KuPR over the European area
the indexes are quite comparable with those over the African
area, with lower correlation (0.59 over vegetated land and
0.57 over ocean) and RMSE (0.82 mm h−1 over vegetated
land and 0.71 mm h−1 over ocean). It is worth noting that the
study based on GPM-KuPR will be further developed in the
future using a larger coincidence dataset and a more consoli-
dated version of DPR precipitation products. It should also be
noted that the results presented in this study may be affected
by the low sensitivity of spaceborne precipitation radars to
light precipitation. This aspect will be further investigated
through validation procedures based on ground radars and
rain gauges (i.e., Puca et al., 2014), and further studies and
dedicated activities are foreseen on these important aspects
within the ongoing scientific collaboration between the EU-
METSAT H-SAF and the NASA/JAXA PMM Research Pro-
gram.

For reference, it is useful to compare these results with
those found by other authors carrying out validation stud-
ies using ground-based radar data. Tang et al. (2014) in-
vestigated the performance of PMW precipitation products
from 12 passive microwave radiometers, including AMSU-B
(NOAA 15, 16, 17) and MHS (NOAA 18, 19 and MetOp-
A) rainfall rate estimates based on Ferraro et al. (2005) over
a 3-year period. They found values of CC around 0.55 (on
an annual scale, at 0.25◦× 0.25◦ regular grid) over the con-
tinental United States (land). They also analyzed the ad-
justed RMSEs normalized with the precipitation rate (cor-
responding to the AFSE% used in this study) as a function
of ground radar precipitation rate, and have found values
ranging from about 600 % at 0.25 mm h−1 to about 75 % in
the interval 6–16 mm h−1 for winter and from about 1200 %
at 0.25 mm h−1 to about 50 % above the 10 mm h−1 for
summer. Kidd et al. (2016) have analyzed the performance
of precipitation retrieval of the NASA Goddard PROFiling
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(GPROF) algorithm version developed for cross-track PMW
sensors (MHS). Using quality-controlled ground-based radar
data over the United States from 6 March 2014 through
5 March 2015, and computing the statistical scores (at the
native – 15.88 km× 15.88 km – retrieval resolution) over a
1◦× 1◦ grid, they have found CC < 0.50 over the western
USA and > 0.60 over the eastern USA. It is worth noting
that a comparison of the measured performances of different
algorithms is very difficult and may not be significant if the
conditions in which the various studies are performed are dif-
ferent (e.g., for the type and the quality of the reference data,
different climate regimes, different matching procedure, and
spatial resolution used in the analysis). Therefore, what can
emerge from such results is that PNPR v2 performance is at
least comparable with those of the analyzed algorithms.

In the comparison of PNPR v2 and PNPR v1 retrievals,
performed over the African area and based on a 2-year pe-
riod of coincident observations of ATMS and AMSU/MHS
radiometers with TRMM-PR, an appreciably better perfor-
mance of PNPR v2 has been evidenced by statistical indexes
(e.g., CC equal to 0.71 for PNPR v2, vs. 0.68 for PNPR v1
over vegetated land, and equal to 0.69 for PNPR v2, vs. 0.61
for PNPR v1 over ocean) and by a general improvement of
the estimate of low precipitation, mostly over ocean. The re-
sulting differences can likely be attributed to improvements
in the design of the neural network and also to the best tech-
nical features of ATMS compared to AMSU/MHS.

Overall, the two versions of PNPR algorithm have shown
a general consistency in the results, as expected considering
that both are based on the same physical basis (the train-
ing databases are based on the same cloud-resolving model
and to the same radiative transfer model). It is worth not-
ing that the achievement of consistency between products
derived from different sensors is very relevant in the cur-
rent GPM mission era, with constellation satellites (equipped
with cross-track or conical scanning microwave radiometers)
contributing to global coverage and higher temporal sam-
pling of precipitation. This aspect has become very important
also within the EUMETSAT H-SAF program and represents
a guideline for the development of PMW precipitation prod-
ucts. PNPR v2 and PNPR v1 for ATMS and AMSU/MHS,
as well as other products for conically scanning radiome-
ters (e.g., CDRD for SSMIS – Casella et al., 2013, Sanò et
al., 2013), and new products for the other constellation ra-
diometers are developed within H-SAF in this direction, with
foreseen improvements of derived MW/IR products used in
operational hydrology and near-real-time precipitation mon-
itoring applications.

The results, however, have revealed a slight tendency of
PNPR v2 to underestimate moderate to high precipitation,
mostly over land, and overestimate moderate to light precip-
itation over the ocean, especially compared to GPM-KuPR
product over the North Atlantic Ocean. Besides well-known
issues affecting PMW precipitation retrieval, such as non-
uniform beam-filling effects related to small-scale rainfall

structures associated with local convection and difficulties in
the retrieval of warm or shallow rain processes, in addition to
the lack of low-frequency channels very useful for precipita-
tion retrieval over ocean, other issues might be related to the
use of spaceborne radar products as reference. The impact
of sample volume discrepancies between radiometers and
spaceborne radars, and uncertainties in the spaceborne radar
estimates (due to attenuation correction, sensitivity thresh-
olds, non-uniform beam-filling effect), needs to be evaluated
when using spaceborne radar precipitation estimates as ref-
erence. PNPR v2 will undergo thorough extensive validation
within the EUMETSAT H-SAF program carried out by the
H-SAF Precipitation Products Validation Service (Puca et al.,
2014), using ground-based radars and rain gauges over Eu-
rope and, in limited areas, over Africa, which will be useful
to clarify some of these issues.

In spite of the above mentioned limitations, this study
shows that the TRMM and GPM spaceborne radars can be
very useful for an extensive verification, over long time peri-
ods, of consistency and accuracy of instantaneous precipita-
tion rate estimates from different sensors. The use of space-
borne radars as reference overcomes some of the limita-
tions in the use of ground-based data (such as inhomogeneity
in their technical characteristics and data treatment, limited
coverage, and beam blocking), providing consistent mea-
surements around the globe, including remote areas where
ground-based data are scarce or not available and oceans.

6 Data availability

The data used in the research concerning the ATMS
radiometer brightness temperature are provided by the Na-
tional Oceanic and Atmospheric Administration (NOAA),
Comprehensive Large Array-data Stewardship System
(CLASS), and are available at http://www.nsof.class.
noaa.gov/saa/products/search?sub_id=0&datatype_family=
ATMS_SDR&submit.x=15&submit.y=8 (NOAA, 2016).
The data concerning the TRMM-PR and GPMKuPR radar
measurements are provided by the National Aeronautics and
Space Administration (NASA) and are available at https:
//storm-pps.gsfc.nasa.gov/, ftp://pps.gsfc.nasa.gov/pub/, and
ftp://arthurhou.pps.eosdis.nasa.gov (NASA, 2016). Data ac-
cess is available to all users via a simple pre-registration pro-
cedure(https://registration.pps.eosdis.nasa.gov/registration/).
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