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Abstract. There is considerable interest in retrieving pro-
files of aerosol effective radius, total number concentra-
tion, and complex refractive index from lidar measurements
of extinction and backscatter at several wavelengths. The
combination of three backscatter channels plus two extinc-
tion channels (3β+ 2α) is particularly important since it
is believed to be the minimum configuration necessary for
the retrieval of aerosol microphysical properties and be-
cause the technological readiness of lidar systems permits
this configuration on both an airborne and future space-
borne instrument. The second-generation NASA Langley air-
borne High Spectral Resolution Lidar (HSRL-2) has been
making 3β+ 2α measurements since 2012. The planned
NASA Aerosol/Clouds/Ecosystems (ACE) satellite mission
also recommends the 3β+ 2α combination.

Here we develop a deeper understanding of the informa-
tion content and sensitivities of the 3β+ 2α system in terms
of aerosol microphysical parameters of interest. We use a
retrieval-free methodology to determine the basic sensitivi-
ties of the measurements independent of retrieval assump-
tions and constraints. We calculate information content and
uncertainty metrics using tools borrowed from the optimal
estimation methodology based on Bayes’ theorem, using a
simplified forward model look-up table, with no explicit in-
version. The forward model is simplified to represent spher-
ical particles, monomodal log-normal size distributions, and
wavelength-independent refractive indices. Since we only
use the forward model with no retrieval, the given simplified
aerosol scenario is applicable as a best case for all existing

retrievals in the absence of additional constraints. Retrieval-
dependent errors due to mismatch between retrieval assump-
tions and true atmospheric aerosols are not included in this
sensitivity study, and neither are retrieval errors that may be
introduced in the inversion process. The choice of a simpli-
fied model adds clarity to the understanding of the uncertain-
ties in such retrievals, since it allows for separately assess-
ing the sensitivities and uncertainties of the measurements
alone that cannot be corrected by any potential or theoretical
improvements to retrieval methodology but must instead be
addressed by adding information content.

The sensitivity metrics allow for identifying (1) informa-
tion content of the measurements vs. a priori information;
(2) error bars on the retrieved parameters; and (3) potential
sources of cross-talk or “compensating” errors wherein dif-
ferent retrieval parameters are not independently captured by
the measurements. The results suggest that the 3β+ 2α mea-
surement system is underdetermined with respect to the full
suite of microphysical parameters considered in this study
and that additional information is required, in the form of
additional coincident measurements (e.g., sun-photometer or
polarimeter) or a priori retrieval constraints. A specific rec-
ommendation is given for addressing cross-talk between ef-
fective radius and total number concentration.
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1 Introduction

Aerosol effects on global and regional climate and hu-
man health depend on aerosol amount, vertical distri-
bution, and proximity to clouds, as well as the com-
position, size and absorption properties of the aerosol.
The NASA Aerosol/Clouds/Ecosystems (ACE) mission
(https://acemission.gsfc.nasa.gov/index.html) recommended
by NRC’s 2007 Earth Decadal Study (National Research
Council, 2007) is currently in pre-formulation stage and aims
to produce a comprehensive set of vertically and horizon-
tally resolved aerosol properties as a function of time and
location. This dataset will be used to constrain aerosol trans-
port models and model estimates of globally averaged di-
rect aerosol radiative forcing, not just at the top of the at-
mosphere but also near the surface and within the atmo-
sphere. The mission therefore addresses the quantification of
(1) aerosol sources, sinks and transport, (2) direct aerosol
forcing, and (3) aerosol–cloud interactions (ACE Science
Working Group, 2010).

To achieve these goals, ACE is planned to include a
multi-wavelength high spectral resolution lidar (HSRL) and
a multi-wavelength, multi-angle imaging polarimeter from
which vertically resolved aerosol microphysical retrievals
will be made. While passive polarimeter measurements can
provide accurate retrievals of column averaged microphysi-
cal properties (Dubovik et al., 2011; Hasekamp et al., 2011),
only lidar measurements can provide the vertical resolution
required. The combination of three backscatter and two ex-
tinction wavelengths (3β+ 2α) for the lidar is considered to
be the minimum number of channels required for an aerosol
microphysical retrieval (Bockmann et al., 2005; Veselovskii
et al., 2002) based on a heritage of aerosol microphysical
retrievals from ground-based Raman measurements of vary-
ing wavelength combinations (e.g., Müller et al., 1999; Bock-
mann, 2001; Donovan and Carswell, 1997). Accordingly, the
ACE plan calls for an HSRL to measure the aerosol backscat-
ter coefficient at 355, 532, and 1064 nm and the aerosol ex-
tinction coefficient at 355 and 532 nm. This combination is
frequently referred to as “3β+ 2α” lidar. The NASA Lang-
ley airborne HSRL-2 is one prototype for the ACE lidar.

There exist various aerosol microphysics retrievals based
on 3β+ 2α lidar measurements (e.g., Bockmann, 2001;
Veselovskii et al., 2002, 2012; Chemyakin et al., 2014;
Müller et al., 1999). In general, these retrievals are performed
for each vertically resolved altitude level (grid-point) in the
lidar profile, on a single set of three backscatter and two ex-
tinction measurements at a time, with each altitude level be-
ing treated independently.

The inversion with regularization retrieval (Müller et al.,
1999; Veselovskii et al., 2002) is the standard algorithm used
for 3β+ 2α retrievals. Mie theory kernels link the lidar opti-
cal measurements of aerosol backscatter and extinction coef-
ficients with aerosol size distributions, which are represented
as a combination of five to eight triangular basis functions.

The size distribution is retrieved using inversion with reg-
ularization for a given complex refractive index and set of
minimum and maximum particle sizes (integration limits).
The integration limits and complex refractive index are then
varied over a range of values that are typically found for
aerosols, for example between 30 nm and 8 µm for the in-
tegration limits, between 1.325 and 1.8 for the real part of
the refractive index, and between 0 and 0.1 for the imaginary
refractive index (the limits of the search space vary some-
what for different authors). Specific solutions (sets of values
for the size distribution parameterization and complex refrac-
tive index) are selected based on limiting the amount of dis-
crepancy between the measurements and the backscatter and
extinction coefficients reproduced from the Mie solutions.
A few hundred individual solutions with different integra-
tion limits and refractive indices are then averaged together
to provide the mean value and error bars for the final so-
lution. The process of averaging multiple solutions together
adds stability to the retrieval (Veselovskii et al., 2002). The
inversion with regularization retrieval was demonstrated with
airborne HSRL-2 measurements by Müller et al. (2014).

The linear estimation method (Veselovskii et al., 2012)
solves for the particle size distribution represented as a lin-
ear combination of the measurement kernels. Only the total
integrated number concentration is retrieved rather than the
full size distribution. The refractive index is retrieved by it-
eration, solving the equation for an assumed refractive index
and minimizing the resulting systematic error. The system-
atic error to be minimized is estimated by using only four
of the measurements to attempt to reproduce the fifth and
repeating for all five measurements. Like the inversion with
regularization technique, the final solution is an average of a
family of individual solutions.

The arrange and average method (Chemyakin et al., 2014)
is a simplified version of the 3β+ 2α retrieval which is par-
ticularly helpful for experimental work in understanding re-
trieval behavior (Chemyakin et al., 2016). This methodology
makes use of a pre-computed look-up table (LUT), simplify-
ing the exploration of the full space of possible solutions.
The LUT used in the present study and by Chemyakin et
al. (2014) has only monomodal log-normal size distributions.
Since the complex refractive index is also included in the
LUT and therefore treated identically to the size distribution
parameters in this retrieval, all parameters are retrieved si-
multaneously and the relationships between retrieval param-
eters are more transparent. Solutions are selected from the
LUT that match the optical measurements to within a small
discrepancy.

While it has been demonstrated that 3β+ 2α lidar mea-
surements can yield accurate retrievals of aerosol microphys-
ical parameters that agree with in situ measurements of effec-
tive radius and total integrated number concentration (Müller
et al., 2014), it is also understood that this retrieval is under-
determined (Veselovskii et al., 2002; Bockmann et al., 2005;
Pérez-Ramírez et al., 2013; Chemyakin et al., 2016). There-
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fore, characterization of the aerosol microphysical state pa-
rameters requires additional information or constraints be-
yond the lidar measurements. In general, constraints can take
various forms, including smoothing, regularization, a priori
state values, or limits on the ranges of values that the re-
trieved parameters can take (Rodgers, 2000, chapter 10).

Previous studies of the 3β+ 2α lidar retrieval system also
point out the difficulty of retrieving the complex refractive in-
dex in particular (Veselovskii et al., 2012; Müller et al., 2014;
Pérez-Ramírez et al., 2013). The 3β+ 2α retrievals represent
the relationship between the measured optical properties and
the particle size distribution as Fredholm integral equations
of the first kind, with known limits of integration and known
complex refractive index. Consequently, the complex refrac-
tive index is generally assumed based on context, or else var-
ied in a separate minimization process (Müller et al., 1999;
Veselovskii et al., 2012), which makes the retrieval perfor-
mance and sensitivities complicated to assess.

These challenges have been acknowledged and addressed
in the existing retrievals, but there is still relatively little pub-
lished discussion about the true sensitivities of the 3β+ 2α
lidar measurements with respect to aerosol microphysical pa-
rameters of interest and the implications for the need for ad-
ditional information content in the retrievals. We wish to rig-
orously and quantitatively deepen our understanding of the
information content of the retrieval system by determining
how much information in the retrieval stems from the lidar
measurements themselves and conversely which information
is provided only by constraints or a priori information. The
results of this sensitivity study will also clarify how other
measurements (e.g., polarimeter or sun-photometer measure-
ments) may significantly add to the information content. This
study therefore supports ongoing work to implement a full
combined active+ passive (lidar+ polarimeter) vertically re-
solved aerosol retrieval and to understand the retrieval limi-
tations in situations where only lidar data are available (i.e.,
night side of the orbit or gaps in broken cloud systems).
These studies will also help refine measurement require-
ments and determine retrieval uncertainties for ACE or other
future measurement systems.

An ideal framework for a study of retrieval sensitivity
and information content is optimal estimation (OE). OE,
based on Bayesian statistics, is a formalized framework
for combining measurements, measurement errors, exter-
nal information, and constraints. Thoroughly described by
Rodgers (2000), it provides a number of key tools for char-
acterizing the sensitivities and information content of a re-
trieval system. For example, Knobelspiesse et al. (2012)
use the Shannon information content and the propagated re-
trieval errors to characterize the capabilities of multi-angle,
multi-wavelength polarimeter for aerosol microphysics re-
trieval. Xu and Wang (2015) analyze the information con-
tent of AERONET measurements with respect to aerosol
microphysics retrievals using the propagated retrieval errors
and degrees of freedom (DOF) of the signal. Veselovskii

et al. (2005) also discuss an assessment of the information
content and retrieval uncertainties of the 3β+ 2α lidar mea-
surements using an eigenvalue analysis based on work by
Twomey (1977), which, like the OE framework, allows for an
assessment of the information content in a way that is mostly
independent of any retrieval methodology.

In other words, the diagnostics for sensitivities and infor-
mation content in the OE framework do not depend on com-
pleting a retrieval. Rather, they depend only on retrieval in-
puts: the forward model, measurement uncertainties, and the
a priori constraints. Therefore, although the lidar retrieval al-
gorithms described above are not OE algorithms, these tools
can nevertheless be usefully applied to this problem to pro-
vide implementation-independent best-case sensitivity met-
rics. Unlike a perturbation method, the strategy of perform-
ing the sensitivity study using only the forward model al-
lows for mapping out the entire state space relatively quickly,
without the need for time-consuming retrievals. In addition,
since the OE method is a matrix method, the measurement
covariance matrix is handled as a single object, taking into
account measurement errors in all channels simultaneously,
without requiring simplifying assumptions such as an addi-
tive property (Pérez-Ramírez et al., 2013). Finally, the OE
method provides a formalized means of representing the re-
trieval constraints, a critical part of an underdetermined re-
trieval like this, but one which is not well represented using
a perturbation sensitivity study or the eigenvalue approach of
Veselovskii et al. (2005) and Twomey (1977). In this study,
we use an LUT approach to simplify the forward model and
set the stage for a retrieval-independent study of sensitivity
and information content of the 3β+ 2α lidar measurement
system with respect to a small set of aerosol microphysi-
cal parameters. While the simplifications necessarily ignore
some errors that would occur in a generic real-world aerosol
situation, this strategy provides a transparent and rigorous
view of the basic sensitivities for this retrieval problem that
is applicable to any retrieval with the same measurement in-
puts, as long as the retrieval assumptions are no more restric-
tive than those consistent with the very simplified aerosol
under consideration. Note also that retrievals will also po-
tentially include additional errors that are dependent on the
method used to converge to a solution, which, again, are not
included in this assessment.

In Sect. 2 we describe the overall methodology for our sen-
sitivity study and in Sect. 3 we describe the specific cases
used for illustration in this paper. In Sect. 4 we give a brief
demonstration of the sensitivity of the 3β+ 2α lidar mea-
surement system to the microphysical aerosol properties (the
state parameters). Then in Sects. 5 and 6 we delve into spe-
cific metrics provided by the OE toolset: the DOF of the
signal (Sect. 5) and the propagated state errors (Sect. 6). In
Sect. 7 we expand the discussion of the propagated state er-
rors by discussing the sensitivity to different levels of mea-
surement uncertainty. Section 8 revisits the propagated state
covariance matrix with a new focus on the correlation terms.
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Section 9 discusses correlation in additional detail in terms
of cross-talk between state parameters and gives a recom-
mendation for resolving some of the ambiguity in 3β+ 2α
retrievals. Section 10 provides a brief look at the effect of us-
ing volume distribution kernels. Section 11 provides a sum-
mary and outlook.

2 Methodology

With this study, we wish to develop a deeper understanding
of the information content and sensitivities of the 3β+ 2α
measurement system in terms of aerosol microphysical pa-
rameters of interest, namely the complex refractive index, to-
tal number concentration, and a parameterization of the size
distribution. The retrieval methodologies for this inversion
system tend to be fairly complicated, particularly due to the
difficulty in solving for the complex refractive index. For this
study, we aim to determine the basic sensitivities common to
all 3β+ 2α lidar retrievals using a methodology that is inde-
pendent of any retrieval. We accomplish this by calculating
the information content and uncertainty metrics using only a
forward model, with no explicit inversion.

The measurements for these retrievals are bulk aerosol ex-
tinction and backscatter coefficients measured by an HSRL
or Raman lidar system. They are related to the particle size
distribution and complex refractive index of the volume of
aerosols by this general relationship:

gi, λ =

rmax∫
rmin

Ki (m,r,)f (r)dr + ε, (1)

where gi,λ represents a lidar measurement of either backscat-
ter or extinction coefficient at wavelength λ. The function
f (r) represents the aerosol size distribution, which is a func-
tion of r , the particle size. Ki represents the extinction and
backscatter measurement kernels, which are dependent on
particle size, wavelength, and the complex refractive index,
m. The measurements also include some measurement er-
ror, ε.

Equation (1) is of the following general form:

y = F(x)+ ε, (2)

in which F, the forward function, relates the vector of state
parameters, x, to the vector of measurements y. Comparing
Eq. (2) with Eq. (1), the vector of measurements y in Eq. (2)
is comprised of gi,λ, the five lidar measurements of backscat-
ter and extinction. The state vector x in Eq. (2) comprises the
complex refractive index m and variables describing the size
distribution f (r).

If the forward model is linear or can be linearized, then
Eq. (2) can be written by the following matrix equation:

y = Jx+ ε, (3)

where J, the Jacobian matrix, relates the state vector x to the
measurement vector y.

Rodgers (2000) describes the generalized inverse prob-
lem, the OE methodology for solving it, and also a number
of useful diagnostics for assessing the information content
and retrieval errors. Although the existing lidar aerosol mi-
crophysical retrievals solve the generalized inverse problem
in various ways not limited to OE, the metrics described by
Rodgers (2000) are useful for the retrieval-free information
assessment in this project. These include the scalar DOF met-
ric and the state error covariance matrix, propagated from
the measurement errors. To calculate these metrics, it is nec-
essary to have the weighting function matrix or Jacobian
matrix, J, whose elements are the partial derivatives of the
forward model elements with respect to the state vector ele-
ments.

Jij =
∂Fi (x)

∂xj
(4)

To generate a Jacobian matrix for the purpose of
the sensitivity study, we first simplify the problem
by assuming single scattering processes from spherical
particles, monomodal log-normal size distributions, and
wavelength-independent refractive indices. The assumption
of wavelength-independent refractive indices has been used
in all 3β+ 2α lidar aerosol microphysical inversions to date
(Müller et al., 1999; Veselovskii et al., 2002; Bockmann et
al., 2005; Chemyakin et al., 2014) and is necessitated in part
by lack of knowledge of the wavelength dependence of the
complex refractive index for real aerosols. However, some
types of aerosols may have a complex refractive index with
significant spectral dependence (Veselovskii et al., 2016).
The assumption of monomodal log-normal size distributions
is used by the arrange and average algorithm (Chemyakin
et al., 2014) but not the inversion with regularization algo-
rithm (Müller et al., 1999), the hybrid regularization method
(Bockmann et al., 2005), or the linear estimation method
(Veselovskii et al., 2012). The retrievals which do not make
this assumption can retrieve more general size distribution
shapes of which the monomodal log-normal can be seen as
a special case. Similarly, the assumption of spherical parti-
cles is generally found in these retrievals due to limitations
in the accuracy of non-spherical models for lidar measure-
ments, but some retrieval studies (Veselovskii et al., 2010,
2016) have allowed limited retrievals for non-spherical par-
ticles with more generalized assumptions about shape. Our
forward model adopts the most restrictive assumptions used
by any of these retrievals, as have the fewest unknown state
parameters; therefore, it has the fewest unknown state param-
eters. That is, we are characterizing the retrieval of aerosols
that conform perfectly to the most restrictive forward model
assumptions. The same set of measurements would have less
information content with respect to a forward model with
more unknown state parameters. Additionally, mismatch be-
tween retrieval assumptions and true atmospheric aerosols
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will also generate errors which are not assessed by this anal-
ysis and which will be retrieval dependent. Sensitivity stud-
ies to assess the measurement content with respect to more
complex aerosol scenarios (specifically bimodal size distri-
butions) are part of our ongoing work.

Consistent with the assumption of spherical particles and
single scattering processes, we use Mie kernels, which are
calculated with code from Bohren and Huffman (1983). The
size distributions are represented as monomodal log-normal
size distributions characterized by the total number concen-
tration, N ; median radius, rmed; and geometric standard de-
viation, s. The mode width is the natural logarithm of s.

f (r)=
N

r
√

2π lns
exp

−
(

ln r
rmed

)2

2(lns)2

 (5)

In all, five state parameters are used in this study: the
median radius and geometric standard deviation of the
monomodal log-normal size distribution, the total num-
ber concentration, and the complex refractive index (real
and imaginary parts). From these, the extinction and 180◦

backscatter are calculated from Eq. (1) at the wavelengths
measured by the 3β+ 2α lidar system, which are 355
and 532 nm for extinction and 355, 532, and 1064 nm for
backscatter. The integrals are performed for values of r from
1 nm to 50 µm. The state parameters and the output extinction
and backscatter values are saved in the form of an LUT for
a wide range of state variable values meant to conservatively
include realistic aerosol states. The original LUT was devel-
oped by Chemyakin et al. (2014), who describe it in more
detail. The version of the LUT used for this study includes
median radii from 17 to 605 nm; geometric standard devia-
tions from 1.425 to 2.625; real refractive indices from 1.37
to 1.75; and imaginary refractive indices including 0 plus in-
crements from 0.00025 to 0.10175. For the purpose of this
study, we have also included total number concentration as
a fifth dimension. The range of total number concentration
values in the modified LUT is 1–40 000 cm−3.

For our purposes, the Jacobian matrix is calculated from
the LUT using finite differences, using the increments of
the LUT itself. The use of finite differences amounts to an
assumption that the increments are small enough that the
derivatives are locally linear. Testing with both smaller and
larger increments confirms that the derivatives are insensitive
to the size of the increments from about one-tenth the size of
the increments used to at least about 5 times the size used.
However, the derivatives and associated retrieval sensitivities
are not constant across the entire state space. Therefore, the
Jacobians and the metrics describing information content and
error propagation have been calculated for several specific re-
alistic cases and also over multiple continuous slices of the
hypercube defined by the five state variables, to develop a
sense of how these metrics vary over the state space.

Although the published aerosol microphysical retrievals
referenced in the introduction solve the inverse problem in
various ways, the LUT can be thought of as a generalized
realization of the forward function, given the simplifications
described above. Since the calculation of the sensitivity and
error metrics (Rodgers, 2000) depend on the forward func-
tion but not on any explicit retrieval, the LUT can be used to
assess the 3β+ 2α measurement sensitivities with respect to
aerosol microphysical retrievals, independent of any particu-
lar retrieval strategy, not just the arrange and average retrieval
for which the LUT was developed.

Besides the Jacobian matrix, the sensitivity calculations
also require the measurement covariance matrix, which de-
pends on the observation system. We use a simple but realis-
tic matrix to describe the measurement errors for this study,
modeling the uncertainties as constant, normally distributed
relative values with standard deviation of nominally 20 % for
the extinction coefficients and 5 % for the backscatter coef-
ficients, and with no correlations between the uncertainties
in each channel. Zero or near-zero correlation for the uncer-
tainties between channels is realistic for lidar, for which un-
certainties are primarily from random processes (e.g., shot
noise) and channel-specific systematic sources (e.g., uncer-
tainty in the filter transmittance). The uncertainty levels used
in this study are chosen as realistic targets for a space-based
lidar system, based on existing HSRL-2 technology (Hair et
al., 2008; Burton et al., 2015). Later in this study (Sect. 7),
we explore a few other benchmark values of measurement
uncertainties. In reality, uncertainty will not be constant for
all aerosol scenarios, but for the purpose of this study, a few
benchmark values are sufficient to explore the sensitivities.

The third input needed for these calculations is the a pri-
ori covariance matrix. This matrix represents the uncertainty
of the prior knowledge of the state. The diagonal terms rep-
resent the variance and are chosen so that the standard de-
viation is represented as one half of the full range in the
LUT for each state variable. The off-diagonal terms repre-
sent the correlation or covariance between state variables;
we assume zero correlation in the a priori. These large prior
variances and zero correlations are an intentionally conser-
vative choice. For an actual retrieval, prior information about
aerosol type and real aerosol variability would typically be
used to decrease these prior variance terms, which can cer-
tainly decrease the uncertainty in the final result. Likewise,
if it were known a priori that the state variables were cor-
related, this could also be used to decrease the uncertainty
in the final result. However, since our aim is primarily to
assess the information content of the measurements them-
selves, we use conservative prior variance and covariance
values for the sensitivity study. We recognize that the state
variables are not normally distributed in reality, although the
OE formalism makes the assumption that they are (and that
the measurement errors likewise are normally distributed). A
more advanced strategy would be to use the Markov Chain
Monte Carlo method (Posselt and Mace, 2014), which al-
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Table 1. State variables and selected derived variables for five constructed reference cases.

Case 1 Case 2 Case 3 Case 4 Case 5
(urban) (larger particles) (coarse mode) (absorbing) (large number conc.)

Total number conc. (cm−3) 1101 1101 50 1101 20 001
Median radius (µm) 0.12 0.15 0.20 0.12 0.12
Geom. SD 1.48 1.58 2.48 1.48 1.48
Effective radius (µm) 0.17 0.24 1.60 0.17 0.17
Effective variance 0.16 0.23 1.27 0.16 0.16
Real refractive index 1.47 1.47 1.47 1.61 1.61
Imaginary refractive index 0.003 0.003 0.003 0.03 0.03
Single scattering albedo (532 nm) 0.98 0.98 0.91 0.89 0.89
Lidar ratio (532 nm) (sr) 72 62 27 81 81

lows for generalized error distributions. However, for this ini-
tial study, we use the more straightforward OE method and
partially compensate by choosing conservatively large prior
variances values.

3 Case definitions

In describing the calculation of the metrics, we will illus-
trate the procedures and interpretation using five particular
sets of values in the state space, which we collectively call
“the reference cases.” The values of the state variables for
the five reference cases are given in Table 1, as well as val-
ues of effective radius, effective variance, single scattering
albedo (SSA), and lidar ratio, which are calculated from the
state variables. For a log-normal distribution, the effective
radius and effective variance can be expressed as analytical
functions of rmed and s:

reff = rmedexp

(
5ln2s

2

)
, (6)

veff = exp
(

ln2s
)
− 1. (7)

The SSA is calculated from the state variables using Mie
theory.

The first of the references cases has been constructed to
approximately reflect a real measurement scenario encoun-
tered during the DOE TCAP (Two-Column Aerosol Project)
field mission by HSRL-2 (Berg et al., 2015; Müller et al.,
2014); the parameters model a plume of urban outflow. The
complex refractive index for this constructed case is 1.47–
0.00325i, corresponding to a very weakly absorbing aerosol
with SSA value of 0.98 at 532 nm. The aerosol is composed
of accumulation-mode particles; the constructed monomodal
size distribution has effective radius of 0.17 µm and effective
variance of 0.16, or median radius 0.12 µm and geometric
standard deviation of 1.48. The total number concentration is
moderate, with a value of 1100 cm−3.

For the other four reference cases, we vary the state vari-
ables in sets. Cases 2 and 3 have the same complex re-
fractive index as Case 1, but different size distributions.
For Case 2, the effective radius and effective variance are
somewhat larger at 0.24 µm and 0.23, respectively (median
radius= 0.15 µm and geometric standard deviation= 1.58).
Like Case 1, this size distribution is considered fine mode.
For Case 3, the effective radius and effective variance are
1.60 µm and 1.27, respectively (median radius is 0.20 µm
and geometric standard deviation is 2.48). The total num-
ber concentration is 50 cm−3. The total number concentra-
tion is much lower than cases 1 and 2, but the larger parti-
cles are more scattering and therefore the signal levels are
comparable. For comparison, the 532 nm extinction value
is 0.092 km−1 for Case 1 and 0.084 km−1 for Case 3. This
larger size distribution approximately reflects a coarse-mode
marine aerosol, although the complex refractive index is not
necessarily appropriate for marine aerosol. Since we will be
using these cases to understand the dependencies of the re-
trieval sensitivities on the state space, we choose to vary the
state variables relating to the size distribution separately from
those relating to the complex refractive index.

Case 4 has a size distribution equal to Case 1, but larger
real and imaginary refractive index values of 1.61 and 0.03,
respectively. For this size distribution, this complex refrac-
tive index corresponds to a 532 nm SSA value of 0.89. This
can be thought of as similar to a biomass burning plume.

Case 5 is similar to Case 4 in everything except total num-
ber concentration. Now the total number concentration has
been increased dramatically to 20 000 cm−3, approximating
as a very intense smoke plume.

These five cases will be used for illustrating the results of
the sensitivity analysis, starting in Sect. 5.

4 Dependence of lidar intensive variables on aerosol
microphysical parameters

First, to build an intuition of the information content encoded
within the 3β+ 2α dataset, we briefly examine the depen-
dence of some of the lidar intensive variables on the effec-
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Figure 1. The sensitivity of the extinction Ångström exponent to
the effective radius and complex refractive index is shown. The
left panel shows the dependence of extinction Ångström exponent
(y axis) on effective radius (x axis) for four values of the real re-
fractive index (colors); the imaginary refractive index is held fixed
at 0.003 and the geometric standard deviation is held fixed at 1.48
(values from Case 1 in Table 1). The middle panel shows the de-
pendence on real refractive index along the x axis, parameterized
by effective radius. The right panel shows the dependence on the
imaginary refractive index (x axis) for four values of the real re-
fractive index; in this case, median radius is held fixed at 0.12 µm
and geometric standard deviation is held fixed at 1.48 (values also
from Case 1 in Table 1).

tive radius (Eq. 6) and complex refractive index. We use Mie
modeling of spherical particles and use the simplified as-
sumption of a monomodal log-normal size distribution (as
discussed in Sect. 2) for this exercise.

Recall that aerosol intensive variables are those that do not
scale with the amount of aerosol loading. Of the five state
variables, total number concentration is an extensive variable
while the other four (real and imaginary parts of the refrac-
tive index, median radius, and geometric standard deviation)
are intensive variables. Aerosol extinction and backscatter
coefficients, the direct measurements of a lidar using the
HSRL or Raman techniques, are extensive variables; ratios
of these basic measurements are intensive variables. Burton
et al. (2012) show that intensive variables such as the lidar
ratio (extinction-to-backscatter ratio at a given wavelength)
and backscatter color ratio (i.e., ratio of backscatter at two
different wavelengths) encode information about the type of
aerosol present in broad categories, i.e., marine vs. smoke vs.
urban pollution. It is also known that the extinction Ångström
exponent is sensitive to the particle size distribution (e.g.,
Schuster et al., 2006; Ångström, 1929; Kaufman et al., 1994).

Figure 1 (left panel) illustrates the monotonic dependence
of extinction Ångström exponent (355/532 nm) on the ef-
fective radius, for monomodal log-normal size distributions.
The sensitivity of this parameter to either the real or imagi-
nary part of the refractive index is smaller, as demonstrated
by shallower slopes in the middle and right panels of Fig. 1.
However, Fig. 2 illustrates the dependencies of the lidar ra-
tio (at 532 and 355 nm), which is the ratio of the extinction
to backscatter and is also the inverse of the product of the
aerosol 180◦ phase function and the SSA. The dependence
on effective radius is non-monotonic, and there is a compli-
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Figure 2. Like Fig. 1 but for 532 nm lidar ratio (top row) and 355 nm
lidar ratio (bottom row).

               

0.1 0.2 0.3 0.4
Effective radius (µm)

1.5

2.0

2.5

3.0

3.5

B
a

c
k
sc

a
tt

e
r 

c
o

lo
r 

ra
ti
o

(5
3

2
/1

0
6

4
 n

m
)

RRI
1.35
1.45
1.55
1.65

 1.4 1.5 1.6 1.7
Real ref index

 

 

 

 

 

Eff rad
0.07
0.11
0.17
0.26
0.44

 0.01 0.02 0.03 0.04 0.05
Imag ref index

 

 

 

 

 
RRI
1.35
1.45
1.55
1.65

Figure 3. Like Fig. 1 but for the backscatter color ratio (which is
the ratio of the aerosol backscatter coefficient at 532 nm divided by
the aerosol backscatter coefficient at 1064 nm).

cated dependence on the real refractive index. For effective
radius larger than about 0.1 µm, there is significant sensi-
tivity to the real refractive index. There is a monotonic re-
lationship with the imaginary refractive index, with greater
sensitivity (steeper slopes) for the 355 nm lidar ratio com-
pared to the 532 nm lidar ratio, reflecting the relationship be-
tween lidar ratio and absorption. The lidar ratio increases as
the imaginary part of the refractive index increases and (for
large enough sizes) as the real part of the refractive index de-
creases. In Fig. 3 the backscatter color ratio (532/1064 nm) is
shown to vary in a complicated way with the real and imag-
inary refractive indices and with the effective radius, with
differently shaped curves compared to the dependence of the
extinction Ångström exponent and lidar ratios. Total number
concentration is not reflected in any of the intensive param-
eters of course, but by definition the extensive parameters
(backscatter and extinction) are linearly related to N .

While this simple sensitivity check illustrates that changes
in the aerosol microphysical parameters are reflected in the
measurements, it is not sufficient to determine if the mea-
surements are enough to retrieve all five state parameters. For
that, we must turn to more quantitative tools.
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Figure 4. The degrees of freedom (DOF) of the signal, ds, is shown color-coded, as orthogonal 2-D slices through the five variable state space.
The left graph shows the dependence on median radius and geometric standard deviation, with the complex refractive index held fixed as
1.47–0.00325i and the total number concentration held fixed at 1001 cm−3. The right graph shows the dependence on the complex refractive
index (RRI is real refractive index and IRI is imaginary refractive index) with the total number concentration held fixed at 1001 cm−3, the
median radius= 0.115 µm, and the geometric standard deviation= 1.475. Dependence on total number concentration is very slight and is not
illustrated here.

5 Degrees of freedom and averaging kernel matrix

The retrieval problem as specified above consists of five
direct aerosol measurements (two extinction and three
backscatter measurements) from a lidar system at a single
level in the atmosphere and five state vector elements (three
describing the number and size distribution and two to spec-
ify the complex refractive index). We would like to know if
the five measurements are sufficient to determine the five un-
knowns – in other words, to determine if the inverse system
is fully determined, overdetermined, or underdetermined and
by how much. Rodgers (2000) describes a useful metric to
quantify the number of pieces of independent information in
the measurement, the DOF for the signal, ds. It is defined as
the trace of the matrix J̃, which is known as either the pre-
whitening matrix (Rodgers, 2000) or the error-normalized Ja-
cobian matrix (Xu and Wang, 2015). This matrix is defined
in terms of the Jacobian matrix, J, the measurement error co-
variance matrix, Sε, and the a priori covariance matrix, Sa.

J̃= Sε−
1
2 JS

1
2
a (8)

Since the error-normalized Jacobian matrix is weighted
by the prior covariance in the numerator and the measure-
ment error in the denominator, elements greater than unity
indicate where variability in the true state exceeds measure-
ment noise. The trace of the matrix, ds, therefore indicates
the number of independent pieces of information about the
state contained in the measurements. For a fully determined
retrieval system, the DOF would be equal to the number of
state parameters.

For the first reference case, Case 1 (see Table 1 for descrip-
tion), the signal DOF, ds, is determined using this method
to be 4.5. The implication of this calculation is that of the

five pieces of information required to specify the state, 4.5 of
them are provided by the measurement signal.

The quoted ds is only applicable to one particular value of
the state vector. In general, the information content is regime-
dependent (dependent on the state). For the other cases in
Table 1, ds is 4.6 for the slightly larger fine-mode case, 3.9
for the coarse-mode case, 4.2 for the absorbing case, and 3.8
for the case with large total number concentration. Figure 4
provides a more detailed look at the regime dependence for
two orthogonal “slices” through the 5-D state space, illustrat-
ing that values of approximately 4 are typical of most of the
space, except for the smallest particle radii, where the signal
DOF decreases closer to 3.

Signal values for the DOF less than 5 mean that some of
the information in the five retrieved parameters is not pro-
vided directly by the measurements and will be “filled in”
by a priori information or other constraints in a retrieval.
A value of ds less than 5 is not surprising, because it is al-
ready well understood that this problem is underdetermined
(Veselovskii et al., 2002; Bockmann et al., 2005; Pérez-
Ramírez et al., 2013). In general for this system, we find
that approximately four independent pieces of information
are provided by the measurements, with slight regime depen-
dence.

6 Propagated state uncertainties

While the signal DOF is a useful metric that indicates the
number of independent pieces of information in the measure-
ments with respect to the state, the a posteriori (i.e., propa-
gated) state error covariance matrix is more useful both for
indicating how the retrieval errors are propagated from the
measurement errors and also for assessing how the under-
determinedness affects specific state variables. The state er-
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Table 2. Propagated state error covariance matrix for the first reference case, assuming measurement errors of 5 % for backscatter and 20 %
for extinction and a priori covariance as described in Sect. 6 and Table 3.

Median Geometric Total number RRI IRI
radius SD concentration

Median radius 0.0027 −0.0083 −55.2 −0.0036 −0.0004
Geometric SD −0.0083 0.032 134 0.014 0.0024
Total number concentration −55.2 134 1.30e6 43.0 2.29
RRI −0.0036 0.014 43.0 0.010 0.0018
IRI −0.0004 0.0024 2.29 0.0018 0.0003

Table 3. Propagated uncertainties (standard deviations) for state variables and selected additional variables derived from the state variables,
shown for the reference cases described in Table 1. The uncertainties are shown as absolute value for all variables with relative uncertainty
in parenthesis for the size distribution variables. The propagated uncertainties (Eq. 9) depend on assumed measurement errors of 5 % for
backscatter and 20 % for extinction and depend on a priori covariance as described in the text. The assumed a priori uncertainty and the
requirements described in the ACE white paper (also 1 standard deviation) are listed for comparison.

Retrieval ACE Prior Case 1: Case 2: Case 3: Case 4: Case 5:
state requirement uncertainty propagated propagated propagated propagated propagated
variables uncertainty uncertainty uncertainty uncertainty uncertainty

Median – 0.30 µm 0.05 µm 0.07 µm 0.18 µm 0.04 µm 0.04 µm
radius (46 %) (47 %) (88 %) (41 %) (31 %)

Geometric SD – 0.6 0.18 (12 %) 0.20 (13 %) 0.50 (20 %) 0.11 (7 %) 0.10 (6 %)

Total number 100 % (vertically 20 000 cm−3 1142 cm−3 1074 cm−3 61 cm−3 1035 cm−3 13 712 cm−3

concentration resolved) (103 %) (98 %) (122 %) (94 %) (68 %)

Real refractive 0.02 (column) 0.19 0.10 0.06 0.04 0.14 0.13
Index

Imaginary ref. index – 0.050 0.018 0.018 0.005 0.024 0.024

Derived variables

Effective 10 % (column) 0.05 µm (29 %) 0.06 µm (23 %) 0.80 µm (50 %) 0.05 µm (31 %) 0.04 µm (23 %)
radius

Effective 50 % (column) 0.11 (68 %) 0.14 (61 %) 0.83 (65 %) 0.07 (41 %) 0.06 (36 %)
variance

SSA (532 nm) 0.02 (vertically 0.10 0.10 0.06 0.08 0.08
resolved)

ror covariance matrix, Ŝ, is propagated from the measure-
ment error covariance matrix Sε and a priori covariance ma-
trix Sa using the Jacobian matrix, J, by

Ŝ=
(

JTSε−1J+S−1
a

)−1
. (9)

Table 2 shows Ŝ for the first reference case as an example.
The diagonal elements in the covariance matrix are the vari-
ance terms, and their square roots are the standard deviations.
These standard deviations, which we will also call the prop-
agated uncertainties, are shown in Table 3 for the five ref-
erence cases. Table 3 also shows the prior uncertainty from
the a priori covariance matrix. Comparing the propagated un-
certainty with the prior uncertainty shows how the measure-
ments constrain the retrieval beyond the prior knowledge. For
the size distribution parameters, the assigned prior standard
deviations are 0.3 for the median radius, 0.6 for the geometric

standard deviation, and 20 000 for the total number concen-
tration. In each of the reference cases, the propagated uncer-
tainty values from Table 3 for these three variables represent
a significant reduction in the standard deviation by 40–87 %
for the median radius, 17–84 % for the geometric standard
deviation, and 31–99 % for the total number concentration.
The measurements also reduce the prior standard deviation
of the RRI significantly, by a factor of 26–79 % from the
prior standard deviation of 0.19. For IRI, there is a reduc-
tion of 52–90 % from the prior standard deviation of 0.05.
So, the measurements constrain knowledge of all of the state
variables beyond the prior knowledge.

Since the prior covariance matrix was defined rather con-
servatively in this study, the reduction from the prior un-
certainty may be less useful than comparing to uncertainty
values defined in terms of a desired goal. Part of the mo-
tivation of this study is to determine the extent to which a
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3β + 2α lidar system can meet the requirements outlined in
the ACE satellite white paper (https://acemission.gsfc.nasa.
gov/documents/Draft_ACE_Report2010.pdf, last access: 22
October 2015). These draft ACE requirements, shown in
Table 3, in some cases specify retrieval precisions defined
with respect to a vertically resolved profile with resolution
of 1.5 km in the free troposphere and 500 m in the boundary
layer. These include the total number concentration with a
retrieval precision (one standard deviation) to within 100 %
(relative) and SSA to within 0.02 (absolute). Other ACE
draft requirements are specified for column-equivalent val-
ues. These include RRI to within 0.02 (absolute), effective ra-
dius to within 10 % (relative) and effective variance to within
50 % (relative). The ACE satellite is planned to include both
a multi-wavelength lidar and multi-wavelength, multi-angle
polarimeter. The requirements reflect the expectation that
both instruments will be used in a combined retrieval, but this
measurement configuration is out of the scope of the current
sensitivity study.

Some of the ACE requirements are stated in terms of the
effective radius, effective variance, and SSA, quantities that
are not part of the nominal set of state variables described
above; however, they are directly related to the state variables
and can be derived from them. In general, if a secondary vari-
able, z, can be expressed as some function of the state vari-
ables, x,

z= F(x) , (10)

then the random error of the secondary variable can be calcu-
lated using the state error covariance matrix Ŝ and the partial
derivatives of the secondary variable with respect to the state
variables.

σz =

√∑
i

∑
j

Ŝij
∂z

∂xi

∂z

∂xj
(11)

For our purpose, the variable z can represent either the ef-
fective radius, effective variance, or SSA.

The effective radius and effective variance can be calcu-
lated for a monomodal log-normal size distribution using
Eqs. (6) and (7). The functional dependence of SSA, which
is the ratio of the scattering efficiency to the total extinction
efficiency, can be obtained using Mie theory. Then the prop-
agated uncertainties for these quantities can be obtained us-
ing Eq. (11) with partial derivatives that are calculated either
analytically or using finite differencing on the output of the
Mie code from Bohren and Huffman (1983). The propagated
uncertainties for the effective radius, effective variance, and
SSA are also shown in Table 3.

As with the signal DOF, the propagated errors for the state
vector elements and for effective radius, effective variance,
and SSA are regime dependent, varying over different parts
of the state space. In the Supplement, there are figures sim-
ilar to Fig. S4 but which show five state variables as well
as the derived variables, effective radius, effective variance,

and SSA. These illustrate the ease with which the sensitiv-
ity metrics can be calculated for the whole state space, but
since some of the states represented in these slices may not
be particularly realistic, it can be hard to interpret the results.
Therefore, the five reference cases in Table 1 were designed
to provide a focus for understanding the regime dependence
more easily.

Recall that the differences between cases 1, 2, and 3 are re-
lated to the size distribution. The size distribution for Case 3
is a coarse mode with a larger particle size, larger geometric
standard deviation, and smaller total number concentration
than cases 1 and 2. Compared to Case 1 or 2, Case 3 has
larger propagated relative uncertainty of the effective radius,
50 % uncertainty compared to 23 and 29 %, and also of to-
tal number concentration, 122 % compared to 98 and 103 %,
mostly due to the increase in the geometric standard devia-
tion. For the most part, we found increasing relative uncer-
tainties for the size distribution parameters for increasing ge-
ometric standard deviations (with some exceptions, as can be
seen in the figures in the Supplement). However, compared
to Case 1, Case 3 has smaller uncertainties on the complex
refractive index and SSA, although the complex refractive
index did not change between cases.

Case 4 has the same size distribution as Case 1, but the
complex refractive index corresponds to a more absorbing
aerosol. There are only minor differences in the size distri-
bution uncertainties, but the uncertainties on the complex re-
fractive index and SSA increase, suggesting less sensitivity
in the retrieval to the complex refractive index of absorbing
aerosols.

Case 5 is identical to Case 4 except that it has a very
large total number concentration. Although such a large total
number concentration in a real-world measurement scenario
would mean greatly increased signal-to-noise ratio (SNR),
the measurement errors for this study are defined as constant
percentages, so the SNR effect is not reflected in this study.
Instead, total number concentration behaves essentially as a
scaling variable in the retrieval, and therefore most of the
propagated uncertainties are very similar for Case 5 com-
pared to Case 4. The exception is the uncertainty in the to-
tal number concentration itself, which decreases from 94 to
68 %.

Comparing the propagated uncertainties to the ACE re-
quirements, note that ACE calls for an uncertainty on the col-
umn total number concentration of 100 %. The uncertainties
in Table 3 show that the 3β+ 2α retrieval already meets this
requirement even for vertically resolved measurement lev-
els in the absorbing aerosol cases and meets it or is very
close to meeting it in the non-absorbing fine-mode cases.
The coarse-mode case has the largest total number concen-
tration uncertainty, 122 %, but is still reasonably close to the
column uncertainty target. Note that a requirement on the
column uncertainty is less restrictive than a requirement on
vertically resolved measurement levels. This study focuses
only on the sensitivities of single-level retrievals, but full pro-
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Table 4. Propagated uncertainties for Case 1, expressed as absolute values and percentage (for the size distribution parameters) for three
different theoretical instrument configurations with different backscatter and extinction uncertainties. The last column repeats the draft
requirements from the ACE white paper as in Table 3 for reference.

Retrieved variables 10 % / 30 % 5 % / 20 % 5 % / 10 % ACE draft requirement

Total number 1677 cm−3 1142 cm−3 700 cm−3 –
concentration 152.4 % 103.7 % 63.6 % 100 %

Effective 0.07 µm 0.05 µm 0.03 µm –
radius 41.0 % 28.6 % 17.2 % 10 % (column)

Effective 0.15 0.11 0.08 –
variance 93.1 % 67.7 % 49.7 % 50 % (column)

Real refractive index 0.12 0.10 0.07 0.02 (column)

Single scattering 0.12 0.10 0.07 0.02
albedo (532 nm)

file retrievals are also possible (Kolgotin and Müller, 2008)
which optimize the use of simultaneous information content
from multiple related vertical levels. If an aerosol layer ex-
tends across multiple measurement levels, then a profile re-
trieval which combines measurements from multiple levels
within the column would include proportionately more mea-
surement information content (since the noise in the mea-
surements is mostly uncorrelated and the aerosol properties
are correlated), and so the uncertainty would be reduced,
compared to a single-level retrieval. In the future, we will
perform sensitivity studies for such a retrieval system.

The uncertainties on the vertically resolved effective vari-
ance are 36 and 41 % for the absorbing cases, which already
meets the proposed ACE column requirement of 50 %. The
non-absorbing fine-mode and coarse-mode cases have ef-
fective variance uncertainties of 61 to 68 %, not very much
larger than the ACE column requirement.

The requirement of 10 % column uncertainty for the effec-
tive radius is not met for any of the five illustrated cases on
a vertically resolved basis; the propagated uncertainties are
2 to 3 times larger for the three fine-mode cases and 5 times
larger for the coarse-mode case. A factor of 2 or 3 may be
recoverable by a profile retrieval which uses multiple verti-
cally resolved measurement levels simultaneously, assuming
the aerosol properties are correlated across several levels.

The propagated uncertainty on the real refractive index is
2 to 7 times the proposed ACE column requirement, in this
case smallest for the coarse-mode case and worst for the two
absorbing fine-mode cases.

The proposed ACE requirement for SSA is 0.02 on a ver-
tically resolved basis. The propagated uncertainties for all
four cases are 3 to 5 times larger than this proposed require-
ment, which may be sufficient for distinguishing extreme
cases such as intense biomass burning plumes and also may
be reducible to some extent by a profile retrieval.

7 Performance assessment for varying measurement
errors

It should perhaps be mentioned that the ACE requirements
are not necessarily finalized and the values quoted here are
draft requirements. Similarly, the instrument performance
used for the results described above is only approximate
based on a best-guess estimate of realistic targets for a space-
based lidar system, based on the technology used for the air-
borne HSRL-2. Since the motivation for this study is to de-
termine what retrieval performance is possible from a lidar-
only microphysical retrieval, it is useful to briefly explore
the retrieval uncertainties as a function of instrument perfor-
mance. Table 4 accordingly shows the propagated uncertain-
ties, using reference Case 1, for three different instrument
configurations with different measurement uncertainties for
backscatter and extinction. The first measurement configura-
tion assumes that the uncertainties are larger than previously
described, 10 % for aerosol backscatter and 30 % for aerosol
extinction. The second of the three configurations in Table 4
is a repetition from Table 3, with uncertainties of 5 and 20 %
on aerosol backscatter and extinction, respectively. The third
theoretical instrument configuration is more ambitious, with
assumed uncertainty 5 % on aerosol backscatter and 10 % on
aerosol extinction. Comparing the first and second scenarios,
when the measurement uncertainties are allowed to increase
as described, the retrieval uncertainties increase by a factor
of 20–50 %. Comparing the second and third scenarios, when
instead the extinction measurement uncertainty is decreased
by half, then the retrieval uncertainties all decrease by ap-
proximately 30–40 %. In the third scenario, the draft ACE
requirement for vertically resolved total number concentra-
tion is met; the requirement for column effective variance
is met even on a vertically resolved basis, and the vertically
resolved effective radius uncertainty is less than twice the
column requirement. However, the real refractive index and
SSA uncertainties are still large compared to the ACE draft
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Table 5. State correlation matrix derived from the covariance matrix shown in Table 2, showing the correlations between retrieved variables
for Case 1, assuming measurement errors of 5 % for backscatter and 20 % for extinction and a priori uncertainties from Table 3.

Median Geometric Total number RRI IRI
radius SD concentration

Median radius 1 −0.88 −0.92 −0.67 −0.47

Geometric SD −0.88 1 0.65 0.78 0.72

Total number −0.92 0.65 1 0.37 0.11
concentration

RRI −0.67 0.78 0.37 1 0.93

IRI −0.47 0.72 0.11 0.93 1

Table 6. Correlation matrix of the retrieved variables for Case 2, assuming the same measurement errors of 5 % for backscatter and 20 % for
extinction and a priori uncertainties listed in Table 3.

Median Geometric Total number RRI IRI
radius SD concentration

Median radius 1 −0.97 −0.97 0.23 0.51

Geometric SD −0.97 1 0.88 −0.14 −0.42

Total number −0.97 0.88 1 −0.38 −0.62
concentration

RRI 0.23 −0.14 −0.38 1 0.95

IRI 0.52 −0.42 −0.62 0.95 1

requirements. This level of precision and accuracy may be
difficult to achieve with a satellite lidar.

Recall that the proposed ACE system consists of both
a multi-wavelength HSRL and a multi-wavelength, multi-
angle polarimeter. The current sensitivity study addresses
only the lidar. A combined retrieval with both lidar and po-
larimeter will certainly have higher information content par-
ticularly pertaining to aerosol absorption, and a better chance
of meeting all of the draft ACE requirements. To quantita-
tively assess the information content of this more compli-
cated system, a full column retrieval using a combined lidar-
plus-polarimeter forward model would be required, which is
outside of the scope of the current paper.

Based on the current study, it seems likely that a 3β+ 2α
lidar-only system with measurement errors similar to those
studied here will have trouble retrieving SSA to the target
level of uncertainty and that additional information content
must be provided, such as from coincident passive (sun-
photometer or polarimeter) measurements at more wave-
lengths or, when additional measurements are not available,
then from a priori constraints.

8 Correlation matrix

Besides the diagonal variance elements, the state error co-
variance matrix includes off-diagonal terms that describe the
interaction between pairs of state variables in the retrieval.
Prior similar sensitivity studies for other systems do not ex-
plicitly address the off-diagonal terms of the propagated ma-
trix (Xu and Wang, 2015; Knobelspiesse et al., 2012), but
these terms give critical information about retrieval perfor-
mance. To illustrate, Tables 5 and 6 give the state error corre-
lation matrix for Case 1 and Case 2, respectively. These can
be easily converted from the state error covariance matrices,
like the one given in Table 2 for Case 1. The correlation ma-
trices show that there is some correlation between all pairs of
variables, with the highest correlations between the real and
imaginary parts of the complex refractive index and between
the total number concentration and median radius. The cor-
relations have a complicated regime dependence, illustrated
in Figs. 5, S9, and S10. Although cases 1 and 2 vary only a
small amount in median radius and geometric standard devi-
ation, there is a significant increase for Case 2 in the magni-
tude of the correlations between size distribution variables.
For Case 2, the correlation is −0.97 between the median ra-
dius and total number concentration and also between the
median radius and geometric standard deviation.
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Figure 5. The a posteriori correlation between retrieved total num-
ber concentration and median radius is here shown as a 2-D slice
through the five-variable state space. The complex refractive index
is held fixed at 1.470–0.00325i, the total number concentration is
held fixed at 1001 cm−3, and the dependence on median radius and
geometric standard deviation is depicted. Symbols show the values
of median radius and geometric standard deviation for cases 1 (cir-
cle), 2 (square), and 3 (triangle), which also have the same complex
refractive index as the illustrated slice.

High magnitude correlations between the retrieved vari-
ables indicate the potential for cross-talk between these pa-
rameters. Cross-talk can cause additional error in the re-
trieved parameters that is not reflected in the variance terms,
due to non-unique solutions which have compensating errors.
In an ideal case with no cross-talk, the forward model evalu-
ated at the true state would produce output equal to the mea-
surements (ignoring measurement error), while the forward
model evaluated using an incorrect state vector should pro-
duce output that does not agree with measurements. How-
ever, in the case of compensating errors or cross-talk, an in-
correct solution may also reproduce the measurements if, for
example, an error in the median radius that tends to produce
larger backscatter and extinction values were compensated
by an error in the total number concentration that tends to
produce smaller values. Such compensating errors make it
impossible for the measurements to distinguish between the
true state and the erroneous state.

The cause of the cross-talk can broadly be described as a
lack of sensitivity in the measurements. The cross-talk be-
tween total number concentration and median radius occurs
because particles significantly smaller than the shortest mea-
sured wavelength (355 nm) contribute little to observed op-
tical properties. Therefore, the measurements can be insen-
sitive to the difference between large numbers of very small
particles and smaller numbers of larger particles. This prob-
lem and a partial remediation are examined in more detail
in Sect. 9. The cross-talk between the real and imaginary in-
dex of refraction is related to a relative lack of sensitivity
to absorption in the lidar measurements. Probably the best
remedy for this latter problem is to incorporate additional in-
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Figure 6. Histograms showing the total number concentration value
for all solutions in the gridded LUT (i.e., without interpolation) that
match the backscatter and extinction coefficients of Case 1 within
measurement errors of 5 % for backscatter and 20 % for extinction.
The total number concentration value for Case 1 is marked with a
dashed line. Red histogram bars show solutions from the full grid-
ded LUT. Blue histogram bars show solutions from the modified
LUT, which excludes size distributions that have a significant con-
tribution from particles of smaller than 50 nm radius.

formation content into the retrieval, preferably in the form of
additional coincident measurements, as from a polarimeter
on the same platform.

9 Cross-talk between size parameter and total number
concentration

Taking measurement error into account, there are always
multiple solutions that reproduce the measurements to within
the measurement error. This is not a concern when the solu-
tions are clustered around the true solution, but it can be a
significant issue in the case of cross-talk or compensating er-
rors as discussed above. Figures 6 and 7 show histograms
of the number of solution states in the gridded LUT that re-
produce the backscatter and extinction values of Case 1 to
within the prescribed error bars (5 % for backscatter coef-
ficient and 20 % for extinction coefficient). Figure 6 shows
the total number concentration and Fig. 7 shows the me-
dian radius, respectively. Note that although the peaks of
the histograms do not exactly match the specified values for
Case 1 (indicated by dashed lines), the solutions are clustered
around those values.

In contrast, Figs. 8 and 9 illustrate the set of solutions from
the gridded LUT that match Case 2 within the measurement
error bars (shown in red). Figure 8 shows that this set of so-
lutions covers an enormous range in total number concentra-
tion. The range of total number concentration for these solu-
tions is much larger than indicated by the propagated stan-
dard deviation shown in Table 6. Cases 1 and 2 have similar
propagated standard deviations; the problem with Case 2 is
only evident in the near-unity correlation value between to-
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Figure 7. Histograms showing the median radius for all solutions
in the gridded LUT that match the backscatter and extinction coef-
ficients of Case 1 within measurement errors of 5 % for backscatter
and 20 % for extinction. The dashed line indicates the median radius
for Case 1. Red and blue are as in Fig. 6.
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Figure 8. Like Fig. 6 but for Case 2.

tal number concentration and median radius, shown in Ta-
ble 6. The very high correlation indicates that the solutions
with very large total number concentrations are those solu-
tions that also have very small median radii. Very small par-
ticles contribute little to extinction or backscatter at the lidar
wavelengths. So, large numbers of very small particles can
be included in the retrieved solution without significantly af-
fecting the agreement with the measurements; therefore, the
measurements by themselves are not sufficient to determine
if these very small particles are actually present.

This situation emphasizes the value of examining the
cross-terms of the propagated error matrix. The regime de-
pendence of this situation is complex and the problem can be
detected only by studying the correlation matrix or else by
examining the distribution of solutions for a given retrieval.

A resolution of the cross-talk can be achieved by adding
an additional constraint on either the total number concen-
tration or the radius using a priori information. For example,
it is probably unrealistic to allow total number concentra-

Figure 9. Like Fig. 7 but for Case 2. The inset box shows the blue
histograms (reduced solution set) with an expanded y axis scale for
better readability.

tions up to 40 000 cm−3. However, it is not clear how one
would determine a realistic upper bound on the total number
concentration. We argue that a better solution is to constrain
the radius of the particles. After all, the limitation of the li-
dar measurements is a lack of sensitivity to particles much
smaller than the smallest lidar wavelength; it is not a limita-
tion on the sensitivity to large total number concentrations.
To approximate such a constraint, we repeated the retrieval
for cases 1 and 2 using a limited version of the LUT, where
some solutions are disallowed depending on the size of parti-
cles in the size distribution. The blue histograms in Figs. 6–9
illustrate the solutions for which 80 % or more of the parti-
cles in the size distribution are larger than 50 nm radius. As
seen in the blue histograms, limiting the retrieval to larger
particles improves the cross-talk problem for Case 2, and the
solutions are now much better constrained around the truth
solution.

A radius of 50 nm is proposed for the cutoff value based on
the sensitivity of the lidar measurements and on the naturally
occurring lower bound of the atmospheric aerosol accumula-
tion mode. Typically aerosol size distributions are described
in terms of three or four size modes, depending on whether
one is examining the number- or mass-based size distribu-
tion (Seinfeld and Pandis, 2006). Most particles, on a num-
ber basis, exist in the ultrafine diameter size range of a few
nanometers up to a few hundred nanometers, with two dis-
tinct modes: the nucleation mode (D < 10 nm) and the Aitken
mode (10 nm <D < 300 nm). Nucleation-mode particles are
fresh aerosols created via gas-to-particle nucleation, while
the Aitken mode encompasses directly emitted particles and
particles that have grown via coagulation or gas-to-particle
condensation. Meanwhile, on a mass basis, the aerosol size
distribution is dominated by two larger modes (with the ul-
trafine particles contributing almost negligible mass): the ac-
cumulation mode (100 nm <D < 2.5 µm; consisting of direct
particle emissions, coagulation of smaller particles, and gas-
to-particle condensation of sulfates, nitrates, and organics)
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and the coarse mode (2.5 µm <D < 50 µm; consisting of par-
ticles formed via mechanical processes such as wind-blown
dust or sea salt). Atmospheric photo-oxidation and cloud pro-
cessing can also affect these modes and cause both the num-
ber and mass size distributions to shift toward larger sizes, as
is often seen for cloud processed marine aerosol (Hoppel et
al., 1986).

Clearly, if an Aitken or nucleation mode with large num-
ber concentration does exist, limiting the size range of the
retrieval introduces the possibility of bias in total number
concentration. However, it is important to realize that even
if it is known from external sources (such as in situ measure-
ments) that an observation is occurring in a region of sig-
nificant new particle production, lowering the cutoff radius
will not resolve the systematic error in the retrieval, since the
measurements cannot distinguish between large numbers of
very small particles and smaller numbers of larger particles.
Therefore, we think it is sensible to limit the particle size in
the retrievals to reflect the measurement sensitivity to larger
sized particles. This strategy also has the benefits of making
the constraint explicit and leading to a clear and understand-
able interpretation of the results. In this case, the retrieval
should not be described as a retrieval of total aerosol number
concentration but rather as a retrieval of accumulation-mode
and coarse-mode aerosols, more accurately reflecting the re-
trieval sensitivities.

This strategy has heritage in existing retrievals. In inver-
sion with regularization (Müller et al., 1999), the under-
determination of the retrieval is addressed by putting strong
constraints on the window of particle sizes that are con-
sidered, effectively limiting the minimum particle radius to
50 nm (Veselovskii et al., 2002). However, in that retrieval
the limit varies from case to case and even from one solu-
tion to another within the set of solutions that are averaged
for a particular retrieval, with the minimum radius being any-
thing between 50 and 500 nm. Since we argue that the need
for a minimum particle radius cutoff is related to the limited
sensitivity of the measurements to very small particles, we
believe that a single cutoff would be more consistent with
our understanding of the retrieval sensitivities. In any case,
it is important to recognize that the size cutoff amounts to
prior information supplementing the information content of
the measurements; explicitly describing the prior information
is essential to understanding and evaluating retrieval systems
and their products.

To investigate the potential for bias associated with the
particle size cutoff, it is useful to examine how much of an
effect the Aitken mode would have on the backscatter and
extinction measurements. For this exercise, we start with a
retrieval case similar to an actual measurement described by
Müller et al. (2014) from the NASA Langley HSRL-2 on 17
July 2012, from TCAP, and then add on a simulated mode
with particle radius of 15 nm (diameter= 30 nm) and vary-
ing number concentration. For the purpose of this exercise,
we limit the simulated Aitken mode to a narrow mode width
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Figure 10. The effect on the backscatter coefficient (solid lines) and
extinction coefficient (dashed lines) of a narrow Aitken mode with
median radius= 15 nm, s= 1.48, and varying number concentra-
tion, expressed as a fraction backscatter and extinction measured in
a typical observation by HSRL-2 on 17 July 2012 during the TCAP
campaign.

(s= 1.48). For the complex refractive index of the simulated
Aitken mode, we used values given by Costabile et al. (2013).
Figure 10 shows the result of this numerical experiment, and
demonstrates that even for 40 000 cm−3 of simulated Aitken
particles, the maximum effect on the measurements is less
than 2 % for the 355 nm backscatter measurement and less
for other wavelengths and for the extinction (i.e., compared
to the actual backscatter and extinction measurements for the
TCAP case). Two percent is not a significant effect on the
measurements. Given that it is significantly smaller than the
assumed measurement errors for this sensitivity study, it is
fair to say that the measurements are not sensitive to this
mode. (For airborne HSRL-2 measurements with 5-minute
averaging such as were used by Müller et al. (2014), the
effect on backscatter is about the same size as the random
errors and significantly smaller than the extinction random
errors.) For number concentrations larger than 40 000 cm−3,
the effect of the simulated Aitken mode is of course larger
due to the linear dependence of backscatter and extinction
coefficients on total number concentration. For these parti-
cles, it would require a number concentration of approxi-
mately 106 cm−3 to have a significant impact on the measure-
ments. Examples of measured Aitken and nucleation-mode
number concentrations include values of about 13 000 cm−3

for each of the two modes from a case of new particle for-
mation in an urban environment described by Cheung et
al. (2013) and a maximum of 50 000 cm−3 of particles with
radii less than 5 nm for a case of new particle formation in an
agricultural region (Mozurkewich et al., 2004). For this latter
case, since the particles are much smaller, the effect on the
backscatter and extinction is smaller than the 40 000 cm−3

of 15 nm radius particles simulated above, so it seems rea-
sonable to suggest that number concentrations of particles in
this size range would rarely be large enough to significantly
affect the lidar measurements.
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Figure 11. The effect on the backscatter coefficient (solid lines)
and extinction coefficient (dashed lines) of 1000 cm−3 particles in
a narrow mode (s = 1.48) with varying median radius, expressed as
a fraction of the backscatter and extinction measured in a typical ob-
servation by HSRL-2 on 17 July 2012 during the TCAP campaign.
The dotted line indicates the 50 nm particle radius cutoff discussed
in the text.

As the particle radius gets larger, the sensitivity of the mea-
surements to these aerosols increases. Figure 11 shows the
effect as a fraction of backscatter and extinction (again using
the measurements from the TCAP case on 17 July 2012 as
a reference) of 1000 cm−3 of particles of varying median ra-
dius. At about 50 nm median radius, the approximate bound-
ary between the Aitken and accumulation modes, the effect
is a few percent to 10 % of the backscatter and extinction,
which is on the order of the measurement uncertainty. For
larger particles in the accumulation mode, the effect is a sig-
nificant portion of the measurements, reflecting that the mea-
surements have good sensitivity to the accumulation mode.
This suggests that a 50 nm radius is a reasonable cutoff to use
in retrievals, representing the approximate boundary where
the measurements have reasonable sensitivity. Of course, the
true sensitivity of the measurements depends on the number
concentration, but since N is unknown, a constant cutoff is a
good strategy.

It is worth pointing out that although it is true that lidar
measurements lack sensitivity to particles much smaller than
the smallest wavelength, they do not lack sensitivity to par-
ticles much larger than the longest wavelength, as is some-
times stated. For instance, it is not true that “pollens cannot
be observed with lidar systems” (Bockmann et al., 2005). See
Fig. 12 for an illustration of lidar measurements simulated by
Mie modeling for very large particles. At these large particle
sizes, a forward model for the lidar based only on the sin-
gle scattering Mie calculations is no longer applicable, but
this simple illustration serves to show that the backscatter
and extinction coefficients are much larger, not smaller, than
the benchmark observations of the lidar. The scattering ef-
ficiency of large particles is significant even at wavelengths
much smaller than the particle size and so the effect of laser
light scattering from large particles is easily seen using li-
dar. However, since the particle size dependence of the lidar
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Figure 12. The effect on the backscatter (red line) and extinction
(blue line) coefficients at 532 nm of a narrow mode (geometric stan-
dard deviation 1.1) of large particles (radius varies along x axis)
with number concentration 36 cm−3 and complex refractive index
1.57–i0.0037, using the same single scattering Mie modeling as
before. The backscatter and extinction coefficients of the modeled
coarse mode are in this case much larger than the benchmark values
measured by HSRL-2 on 17 July 2012 during the TCAP campaign.
The y axis is expressed as the coarse-mode backscatter or extinction
divided by the benchmark measurement.
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Figure 13. The a posteriori correlation between retrieved total num-
ber concentration and median radius is here, as a function of median
radius and geometric standard deviation, with the complex refrac-
tive index held fixed at 1.470–0.00325i and the total number con-
centration held fixed at 1001 cm−3. Similar to Fig. 5, but here num-
ber concentration is replaced by volume concentration as one of the
five independent state variables. Significant differences compared to
Fig. 5 can be seen for large effective radii, the upper right quadrant
of the figure. Symbols are as in Fig. 5.

measurements is not monotonic at large particle sizes and the
single scattering forward model is no longer applicable, mi-
crophysical retrievals of particle properties are challenged at
large particle sizes. See Gasteiger and Freudenthaler (2014)
for a further discussion of retrieval of large particle size from
multi-wavelength lidar.
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Table 7. Like Table 3, but using total volume concentration instead of total number concentration as a state variable, this table shows
propagated uncertainties (standard deviations) for state variables and selected additional variables derived from the state variables, shown
for the reference cases described in Table 1. The propagated uncertainties (Eq. 9), depend on assumed measurement errors of 5 % for
backscatter and 20 % for extinction and depend on a priori covariance as described in the text. The assumed a priori uncertainties are listed
for comparison.

Retrieval Prior Case 1: Case 2: Case 3: Case 4: Case 5:
state uncertainty propagated propagated propagated propagated propagated
variables uncertainty uncertainty uncertainty uncertainty uncertainty

Median radius 0.30 µm 0.05 µm (46 %) 0.07 µm (47 %) 0.17 µm (84 %) 0.05 µm (41 %) 0.04 µm (31 %)

Geometric SD 0.6 0.18 (12 %) 0.20 (13 %) 0.49 (20 %) 0.11 (7 %) 0.10 (6 %)

Total volume 500 µm3 cm−3 14 µm3 cm−3 34 µm3 cm−3 84 µm3 cm−3 13 µm3 cm−3 172 µm3 cm−3

concentration (104 %) (97 %) (115 %) (94 %) (68 %)

Real refractive 0.19 0.10 0.06 0.04 0.14 0.13
index

Imaginary ref. 0.050 0.018 0.018 0.004 0.024 0.024
index

10 Use of volume density kernels vs. number density
kernels

It is known from, for example, Veselovskii et al. (2004) that
performing the retrieval with higher-order kernels may re-
duce the retrieved uncertainties. It is straightforward to use
the volume size distribution instead of the number size dis-
tribution for f (r) in Eq. (1) as long as the kernels are also
represented in terms of volume concentrations. The analy-
sis presented above can be repeated using the total volume
concentration rather than total number concentration as one
of the five state variables, and the sensitivity analysis can
be repeated to assess the impact of switching kernels on the
information content of the measurements, due to a redefini-
tion of the state space and concomitant change in the null
space (the portion of the state variable space that cannot be
assessed using the measurements). Table 7 shows the prop-
agated uncertainties for the five state variables after making
this change, for the reference cases. Note that the differences
between Tables 7 and 3 are mostly insignificant except for
Case no. 3, the coarse-mode case. This is also reflected in
Fig. 13, which shows decreased correlation (cross-talk) be-
tween the total volume concentration and the median radius,
compared to the number-versus-radius correlation shown in
Fig. 5, but only in the upper right quadrant which corre-
sponds to the largest effective radii. In summary, the change
to the higher-order kernel reduces the measurement sensitiv-
ities for the case of large particles. It does not solve the prob-
lem of high correlation between the number concentration
and the median radius for the fine-mode cases as discussed
in Sect. 9. Note, as before, that any additional errors or in-
stabilities that are part of the retrieval will not be included
here, and it is possible that there are other considerations in
specific retrievals that might favor the use of volume kernels

over number kernels, such as the how the kernel functions
are integrated using orthogonal basis functions, as discussed
by Veselovskii et al. (2004).

11 Summary and discussion

There is considerable interest in retrievals of aerosol size dis-
tribution parameters and absorption properties using multi-
wavelength HSRL or Raman lidar. While there have been
successful 3β+ 2α retrievals of some particle properties
(Müller et al., 2014; Veselovskii et al., 2016), there is also
well-justified concern that these retrievals are somewhat un-
derdetermined. In this study we have taken a rigorous look
at the information content of single-height-level 3β + 2α li-
dar measurements with respect to the microphysical parame-
ters of interest, using implementation-independent tools from
the field of OE, which allows for combining measurements,
measurement errors, and constraints within a single coher-
ent framework. By avoiding a retrieval and using the for-
ward model only (along with reasonable measurement un-
certainties and a conservative a priori covariance matrix) we
isolate the sensitivities of the measurements themselves for
a best-case aerosol scenario, a monomodal log-normal dis-
tribution of spherical particles with spectrally independent
complex refractive index. The choice of a simplified model
adds clarity to the understanding of the uncertainties in re-
trievals, since it allows for separately assessing the sensitivi-
ties and uncertainties of the measurements alone that cannot
be corrected by any potential or theoretical improvements
to retrieval methodology but must instead be addressed by
adding information content. Future work will be performed
using less-simplified models. For example, expanding to a
bimodal retrieval is straightforward. Equation (1) can be ex-
panded by simply adding the modes together. Then the Ja-
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cobian in Eq. (5) becomes a non-square matrix, with more
state variables than measurement variables; however, the fol-
lowing equations, Eqs. (8) and (9), do not require a square
matrix and therefore the sensitivity metrics can be calculated
straightforwardly. Nevertheless, even with a more complex
aerosol model, there will be additional retrieval-dependent
uncertainties that are related to mismatch between the as-
sumptions and the real-world aerosols and also to retrieval
methodology such as inversion technique. These uncertain-
ties are in addition to the uncertainties discussed in this study.
In contrast, actual retrievals generally benefit from using var-
ious constraints and a priori information that reduce the re-
trieval errors. A priori knowledge is intentionally minimized
in this study to focus on the measurement sensitivities, but in
general it will improve retrieval performance from this basic
level.

We find that the five 3β+ 2α lidar measurements provide
approximately four independent pieces of information to de-
scribe the aerosol microphysical state space, with only slight
regime dependence. Using reasonable lidar measurement un-
certainties, the retrieval uncertainties are closest to the pro-
posed ACE satellite precision requirements for the size dis-
tribution parameters, particularly the total number concentra-
tion, and worst for the complex refractive index, and provide
a reduction of the uncertainty from the conservative a priori
values for all five variables. We find that the total number
concentration and particle median radius can be affected by
cross-talk which increases the true uncertainty beyond the
propagated standard deviation, for some parts of the state
space, related to limited sensitivity of the lidar measurements
to particle radii smaller than about 50 nm. We recommend
limiting the radii in the retrieval to a range where the mea-
surements have greater sensitivity, to address the high cor-
relation between total number concentration and the particle
median radius.

In general, information about the state vector that is not
provided by the measurements comes from assumptions,
constraints, or other a priori information. Smoothing and reg-
ularization are examples of retrieval constraints, as is the idea
of limiting the minimum particle radius. Retrieval constraints
and assumptions can also be hidden or difficult to character-
ize. For specific retrieval methodologies, we would like to
emphasize the importance of explicitly describing any prior
information and constraints that affect retrieval results.

In this sensitivity study, only very conservative constraints
were used in order to pinpoint the sensitivity of the measure-
ments. To achieve better performance with a retrieval, three
strategies can be adopted either singly or in combination:

1. Add a priori information that constrains the retrieval us-
ing known information about the observed aerosol.

2. Reduce the measurement uncertainties.

3. Add additional measurements to the system.

One method to assign a priori covariance information is to
use aerosol classification from the lidar intensive parameters
(Burton et al., 2012) to infer what type of aerosol is present
and then assign prior variances for the state parameters that
are specific to that aerosol type. It has been demonstrated
that the lidar intensive parameters from an HSRL have suf-
ficient information content to categorize aerosol into broad
categories. Assigning a priori values based on these cate-
gories additionally requires representative information about
the microphysical properties of aerosols in each category
from in situ measurements or from modeling.

Reducing the measurement uncertainty involves either de-
signing the observing system to stricter requirements (to the
extent practical) or reworking the retrieval problem to make
more optimal use of the measurement information. For ex-
ample, a simultaneous profile retrieval that uses the 3β+ 2α
lidar information from the whole column with appropriate
constraints on the correlations between levels is likely to
have somewhat improved information content compared to
the baseline uncertainties for the level-by-level retrieval sys-
tem discussed in this work.

Finally, measurement information content can be in-
creased by adding more measurements to the system, for ex-
ample by combining coincident lidar plus polarimeter mea-
surements from the same platform. This combination is ex-
pected to add significantly more information content and re-
duce the need for constraints or a priori information

Research is ongoing into each of the three retrieval strate-
gies described above, aerosol-type-specific prior covariance
matrices, profile retrievals, and combined lidar plus po-
larimeter retrievals. Additional sensitivity studies for these
scenarios will be performed in the future.

The Supplement related to this article is available online
at doi:10.5194/amt-9-5555-2016-supplement.

Acknowledgements. Funding for this research came from the
NASA Aerosol/Clouds/Ecosystems project, NASA Earth Science
Division’s Remote Sensing Theory program, and NASA Radiation
Science Program.

Edited by: V. Amiridis
Reviewed by: two anonymous referees

Atmos. Meas. Tech., 9, 5555–5574, 2016 www.atmos-meas-tech.net/9/5555/2016/

http://dx.doi.org/10.5194/amt-9-5555-2016-supplement


S. P. Burton et al.: Information content of lidar aerosol microphysical retrievals 5573

References

ACE Science Working Group: Aerosol, Cloud and Ecosystems
(ACE) Proposed Satellite Mission, NASA, Study, 2010.

Ångström, A.: On the Atmospheric Transmission of Sun Ra-
diation and on Dust in the Air, Geogr. Ann., 11, 156–166,
doi:10.2307/519399, 1929.

Berg, L. K., Fast, J. D., Barnard, J. C., Burton, S. P., Cairns, B.,
Chand, D., Comstock, J. M., Dunagan, S., Ferrare, R. A., Flynn,
C. J., Hair, J. W., Hostetler, C. A., Hubbe, J., Jefferson, A.,
Johnson, R., Kassianov, E. I., Kluzek, C. D., Kollias, P., Lamer,
K., Lantz, K., Mei, F., Miller, M. A., Michalsky, J., Ortega, I.,
Pekour, M., Rogers, R. R., Russell, P. B., Redemann, J., Sed-
lacek, A. J., Segal-Rosenheimer, M., Schmid, B., Shilling, J. E.,
Shinozuka, Y., Springston, S. R., Tomlinson, J. M., Tyrrell, M.,
Wilson, J. M., Volkamer, R., Zelenyuk, A., and Berkowitz, C.
M.: The Two-Column Aerosol Project: Phase I – Overview and
impact of elevated aerosol layers on aerosol optical depth, J. Geo-
phys. Res.-Atmos., 90, 336–361, doi:10.1002/2015JD023848,
2015.

Bockmann, C.: Hybrid regularization method for the ill-posed in-
version of multiwavelength lidar data in the retrieval of aerosol
size distributions, Appl. Optics, 40, 1329–1342, 2001.

Bockmann, C., Miranova, C., Muller, D., Scheidenbach, L.,
and Nessler, R.: Microphysical aerosol parameters from
multiwavelength lidar, J. Opt. Soc. Am.-A., 22, 518–528,
doi:10.1364/JOSAA.22.000518, 2005.

Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of
Light by Small Particles, John Wiley, Hoboken, NJ, USA, p. 530,
1983.

Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Rogers, R.
R., Obland, M. D., Butler, C. F., Cook, A. L., Harper, D. B., and
Froyd, K. D.: Aerosol classification using airborne High Spec-
tral Resolution Lidar measurements – methodology and exam-
ples, Atmos. Meas. Tech., 5, 73–98, doi:10.5194/amt-5-73-2012,
2012.

Burton, S. P., Hair, J. W., Kahnert, M., Ferrare, R. A., Hostetler, C.
A., Cook, A. L., Harper, D. B., Berkoff, T. A., Seaman, S. T.,
Collins, J. E., Fenn, M. A., and Rogers, R. R.: Observations of
the spectral dependence of linear particle depolarization ratio of
aerosols using NASA Langley airborne High Spectral Resolution
Lidar, Atmos. Chem. Phys., 15, 13453–13473, doi:10.5194/acp-
15-13453-2015, 2015.

Chemyakin, E., Müller, D., Burton, S., Kolgotin, A., Hostetler,
C., and Ferrare, R.: Arrange and average algorithm for the
retrieval of aerosol parameters from multiwavelength high-
spectral-resolution lidar/Raman lidar data, Appl. Optics, 53,
7252–7266, doi:10.1364/AO.53.007252, 2014.

Chemyakin, E., Burton, S., Kolgotin, A., Müller, D., Hostetler,
C., and Ferrare, R.: Retrieval of aerosol parameters from
multiwavelength lidar: investigation of the underlying in-
verse mathematical problem, Appl. Optics, 55, 2188–2202,
doi:10.1364/AO.55.002188, 2016.

Cheung, H. C., Chou, C. C.-K., Huang, W.-R., and Tsai, C.-Y.:
Characterization of ultrafine particle number concentration and
new particle formation in an urban environment of Taipei, Tai-
wan, Atmos. Chem. Phys., 13, 8935–8946, doi:10.5194/acp-13-
8935-2013, 2013.

Costabile, F., Barnaba, F., Angelini, F., and Gobbi, G. P.: Identifi-
cation of key aerosol populations through their size and compo-

sition resolved spectral scattering and absorption, Atmos. Chem.
Phys., 13, 2455–2470, doi:10.5194/acp-13-2455-2013, 2013.

Donovan, D. P. and Carswell, A. I.: Principal component anal-
ysis applied to multiwavelength lidar aerosol backscatter
and extinction measurements, Appl. Optics, 36, 9406–9424,
doi:10.1364/AO.36.009406, 1997.

Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D.,
Deuzé, J. L., Ducos, F., Sinyuk, A., and Lopatin, A.: Statistically
optimized inversion algorithm for enhanced retrieval of aerosol
properties from spectral multi-angle polarimetric satellite obser-
vations, Atmos. Meas. Tech., 4, 975–1018, doi:10.5194/amt-4-
975-2011, 2011.

Gasteiger, J. and Freudenthaler, V.: Benefit of depolarization ra-
tio at λ= 1064 nm for the retrieval of the aerosol microphysics
from lidar measurements, Atmos. Meas. Tech., 7, 3773–3781,
doi:10.5194/amt-7-3773-2014, 2014.

Hair, J. W., Hostetler, C. A., Cook, A. L., Harper, D. B., Fer-
rare, R. A., Mack, T. L., Welch, W., Izquierdo, L. R., and Ho-
vis, F. E.: Airborne High Spectral Resolution Lidar for pro-
filing aerosol optical properties, Appl. Optics, 47, 6734–6752,
doi:10.1364/AO.47.006734, 2008.

Hasekamp, O. P., Litvinov, P., and Butz, A.: Aerosol proper-
ties over the ocean from PARASOL multiangle photopolari-
metric measurements, J. Geophys. Res.-Atmos., 116, D14204,
doi:10.1029/2010JD015469, 2011.

Hoppel, W., Frick, G., and Larson, R.: Effect of nonprecipitating
clouds on the aerosol size distribution in the marine boundary
layer, Geophys. Res. Lett., 13, 125–128, 1986.

Kaufman, Y. J., Gitelson, A., Karnieli, A., Ganor, E., Fraser, R.
S., Nakajima, T., Mattoo, S., and Holben, B. N.: Size distribu-
tion and scattering phase function of aerosol particles retrieved
from sky brightness measurements, J. Geophys. Res.-Atmos., 99,
10341–10356, doi:10.1029/94JD00229, 1994.

Knobelspiesse, K., Cairns, B., Mishchenko, M., Chowdhary, J., Tsi-
garidis, K., van Diedenhoven, B., Martin, W., Ottaviani, M., and
Alexandrov, M.: Analysis of fine-mode aerosol retrieval capabil-
ities by different passive remote sensing instrument designs, Opt.
Express, 20, 21457–21484, doi:10.1364/OE.20.021457, 2012.

Kolgotin, A. and Müller, D.: Theory of inversion with two-
dimensional regularization: profiles of microphysical particle
properties derived from multiwavelength lidar measurements,
Appl. Optics, 47, 4472–4490, doi:10.1364/AO.47.004472, 2008.

Mozurkewich, M., Chan, T.-W., Aklilu, Y.-A., and Verheggen, B.:
Aerosol particle size distributions in the lower Fraser Valley: ev-
idence for particle nucleation and growth, Atmos. Chem. Phys.,
4, 1047–1062, doi:10.5194/acp-4-1047-2004, 2004.

Müller, D., Wandinger, U., and Ansmann, A.: Microphysical parti-
cle parameters from extinction and backscatter lidar data by in-
version with regularization: theory, Appl. Optics, 38, 2346–2357,
doi:10.1364/AO.38.002346, 1999.

Müller, D., Hostetler, C. A., Ferrare, R. A., Burton, S. P., Che-
myakin, E., Kolgotin, A., Hair, J. W., Cook, A. L., Harper, D.
B., Rogers, R. R., Hare, R. W., Cleckner, C. S., Obland, M.
D., Tomlinson, J., Berg, L. K., and Schmid, B.: Airborne Mul-
tiwavelength High Spectral Resolution Lidar (HSRL-2) obser-
vations during TCAP 2012: vertical profiles of optical and mi-
crophysical properties of a smoke/urban haze plume over the
northeastern coast of the US, Atmos. Meas. Tech., 7, 3487–3496,
doi:10.5194/amt-7-3487-2014, 2014.

www.atmos-meas-tech.net/9/5555/2016/ Atmos. Meas. Tech., 9, 5555–5574, 2016

http://dx.doi.org/10.2307/519399
http://dx.doi.org/10.1002/2015JD023848
http://dx.doi.org/10.1364/JOSAA.22.000518
http://dx.doi.org/10.5194/amt-5-73-2012
http://dx.doi.org/10.5194/acp-15-13453-2015
http://dx.doi.org/10.5194/acp-15-13453-2015
http://dx.doi.org/10.1364/AO.53.007252
http://dx.doi.org/10.1364/AO.55.002188
http://dx.doi.org/10.5194/acp-13-8935-2013
http://dx.doi.org/10.5194/acp-13-8935-2013
http://dx.doi.org/10.5194/acp-13-2455-2013
http://dx.doi.org/10.1364/AO.36.009406
http://dx.doi.org/10.5194/amt-4-975-2011
http://dx.doi.org/10.5194/amt-4-975-2011
http://dx.doi.org/10.5194/amt-7-3773-2014
http://dx.doi.org/10.1364/AO.47.006734
http://dx.doi.org/10.1029/2010JD015469
http://dx.doi.org/10.1029/94JD00229
http://dx.doi.org/10.1364/OE.20.021457
http://dx.doi.org/10.1364/AO.47.004472
http://dx.doi.org/10.5194/acp-4-1047-2004
http://dx.doi.org/10.1364/AO.38.002346
http://dx.doi.org/10.5194/amt-7-3487-2014


5574 S. P. Burton et al.: Information content of lidar aerosol microphysical retrievals

National Research Council: Earth Science and Applications from
Space: National Imperatives for the Next Decade and Beyond,
The National Academies Press, Washington, D.C., USA, 400 pp.,
2007.

Pérez-Ramírez, D., Whiteman, D. N., Veselovskii, I., Kolgotin, A.,
Korenskiy, M., and Alados-Arboledas, L.: Effects of system-
atic and random errors on the retrieval of particle microphysical
properties from multiwavelength lidar measurements using in-
version with regularization, Atmos. Meas. Tech., 6, 3039–3054,
doi:10.5194/amt-6-3039-2013, 2013.

Posselt, D. J. and Mace, G. G.: MCMC-Based Assessment of the Er-
ror Characteristics of a Surface-Based Combined Radar–Passive
Microwave Cloud Property Retrieval, J. Appl. Meteorol. Clim.,
53, 2034–2057, doi:10.1175/JAMC-D-13-0237.1, 2014.

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: The-
ory and Practice, Series on Atmospheric, Oceanic and Planetary
Physics, 2, edited by: Taylor, F. W., World Scientific, New Jersey,
USA, 2000.

Schuster, G. L., Dubovik, O., and Holben, B. N.: Angstrom expo-
nent and bimodal aerosol size distributions, J. Geophys. Res.,
111, D07207, doi:10.1029/2005jd006328, 2006.

Seinfeld, J. and Pandis, S.: Atmospheric Chemistry and Physics, A
Wiley-Inter Science Publication, John Wiley & Sons Inc, New
York, USA, 2006.

Twomey, S.: Introduction to the mathematics of inversion in remote
sensing and interative measurements, Elsevier Scientific Publish-
ing Company, Amsterdam, the Netherlands, 1977.

Veselovskii, I., Kolgotin, A., Griaznov, V., Müller, D., Wandinger,
U., and Whiteman, D. N.: Inversion with regularization for
the retrieval of tropospheric aerosol parameters from mul-
tiwavelength lidar sounding, Appl. Optics, 41, 3685–3699,
doi:10.1364/AO.41.003685, 2002.

Veselovskii, I., Kolgotin, A., Griaznov, V., Müller, D., Franke, K.,
and Whiteman, D. N.: Inversion of multiwavelength Raman li-
dar data for retrieval of bimodal aerosol size distribution, Appl.
Optics, 43, 1180–1195, 2004.

Veselovskii, I., Kolgotin, A., Müller, D., and Whiteman, D. N.: In-
formation content of multiwavelength lidar data with respect to
microphysical particle properties derived from eigenvalue anal-
ysis, Appl. Optics, 44, 5292–5303, doi:10.1364/AO.44.005292,
2005.

Veselovskii, I., Dubovik, O., Kolgotin, A., Lapyonok, T., Di Giro-
lamo, P., Summa, D., Whiteman, D. N., Mishchenko, M., and
Tanré, D.: Application of randomly oriented spheroids for re-
trieval of dust particle parameters from multiwavelength li-
dar measurements, J. Geophys. Res.-Atmos., 115, D21203,
doi:10.1029/2010JD014139, 2010.

Veselovskii, I., Dubovik, O., Kolgotin, A., Korenskiy, M., White-
man, D. N., Allakhverdiev, K., and Huseyinoglu, F.: Linear
estimation of particle bulk parameters from multi-wavelength
lidar measurements, Atmos. Meas. Tech., 5, 1135–1145,
doi:10.5194/amt-5-1135-2012, 2012.

Veselovskii, I., Goloub, P., Podvin, T., Bovchaliuk, V., Derimian, Y.,
Augustin, P., Fourmentin, M., Tanre, D., Korenskiy, M., White-
man, D. N., Diallo, A., Ndiaye, T., Kolgotin, A., and Dubovik,
O.: Retrieval of optical and physical properties of African dust
from multiwavelength Raman lidar measurements during the
SHADOW campaign in Senegal, Atmos. Chem. Phys., 16, 7013–
7028, doi:10.5194/acp-16-7013-2016, 2016.

Xu, X. and Wang, J.: Retrieval of aerosol microphysical properties
from AERONET photopolarimetric measurements: 1. Informa-
tion content analysis, J. Geophys. Res.-Atmos., 120, 7059–7078,
doi:10.1002/2015JD023108, 2015.

Atmos. Meas. Tech., 9, 5555–5574, 2016 www.atmos-meas-tech.net/9/5555/2016/

http://dx.doi.org/10.5194/amt-6-3039-2013
http://dx.doi.org/10.1175/JAMC-D-13-0237.1
http://dx.doi.org/10.1029/2005jd006328
http://dx.doi.org/10.1364/AO.41.003685
http://dx.doi.org/10.1364/AO.44.005292
http://dx.doi.org/10.1029/2010JD014139
http://dx.doi.org/10.5194/amt-5-1135-2012
http://dx.doi.org/10.5194/acp-16-7013-2016
http://dx.doi.org/10.1002/2015JD023108

	Abstract
	Introduction
	Methodology
	Case definitions
	Dependence of lidar intensive variables on aerosol microphysical parameters
	Degrees of freedom and averaging kernel matrix
	Propagated state uncertainties
	Performance assessment for varying measurement errors
	Correlation matrix
	Cross-talk between size parameter and total number concentration
	Use of volume density kernels vs. number density kernels
	Summary and discussion
	Acknowledgements
	References

