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Abstract. Sonic anemometers are the principal instruments
in micrometeorological studies of turbulence and ecosystem
fluxes. Common designs underestimate vertical wind mea-
surements because they lack a correction for transducer shad-
owing, with no consensus on a suitable correction. We rean-
alyze a subset of data collected during field experiments in
2011 and 2013 featuring two or four CSAT3 sonic anemome-
ters. We introduce a Bayesian analysis to resolve the three-
dimensional correction by optimizing differences between
anemometers mounted both vertically and horizontally. A
grid of 512 points (∼±5◦ resolution in wind location) is
defined on a sphere around the sonic anemometer, from
which the shadow correction for each transducer pair is de-
rived from a set of 138 unique state variables describing
the quadrants and borders. Using the Markov chain Monte
Carlo (MCMC) method, the Bayesian model proposes new
values for each state variable, recalculates the fast-response
data set, summarizes the 5 min wind statistics, and accepts
the proposed new values based on the probability that they
make measurements from vertical and horizontal anemome-
ters more equivalent. MCMC chains were constructed for
three different prior distributions describing the state vari-
ables: no shadow correction, the Kaimal correction for trans-
ducer shadowing, and double the Kaimal correction, all ini-
tialized with 10 % uncertainty. The final posterior correction
did not depend on the prior distribution and revealed both
self- and cross-shadowing effects from all transducers. Af-
ter correction, the vertical wind velocity and sensible heat
flux increased ∼ 10 % with ∼ 2 % uncertainty, which was
significantly higher than the Kaimal correction. We applied

the posterior correction to eddy-covariance data from vari-
ous sites across North America and found that the turbulent
components of the energy balance (sensible plus latent heat
flux) increased on average between 8 and 12 %, with an aver-
age 95 % credible interval between 6 and 14 %. Considering
this is the most common sonic anemometer in the AmeriFlux
network and is found widely within FLUXNET, these results
provide a mechanistic explanation for much of the energy im-
balance at these sites where all terrestrial/atmospheric fluxes
of mass and energy are likely underestimated.
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1 Introduction

The eddy-covariance technique has become the most com-
monly used method for measuring the ecosystem exchange
of mass and energy with the atmosphere. It is fundamen-
tal to the global network of flux towers that are central to
quantifying terrestrial carbon sinks and sources (Baldocchi,
2003), to hydrological studies accounting for evapotranspi-
ration and sublimation (Biederman et al., 2014; Reba et al.,
2012), and to the energy balance through the turbulent fluxes
of sensible and latent heat (Welch et al., 2015; Anderson and
Wang, 2014). There is a growing consensus within the mi-
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Figure 1. Photograph of the 2011 experiment with two CSAT3
sonic anemometers mounted vertically and two horizontally. The
cardinal u, v, and w axes are shown in light blue near one of the
vertical instruments. Figure from Frank et al. (2013).

crometeorology and ecosystem flux communities that many
sonic anemometers, the core instrument for all modern eddy-
covariance systems, systematically underestimate the verti-
cal wind component (Frank et al., 2016; Horst et al., 2015;
Kochendorfer et al., 2012). The ramifications for this are that
all vertical fluxes (i.e., carbon dioxide, water vapor, latent
heat, sensible heat, momentum) are similarly underestimated
for any ecosystem. This underestimate is roughly consistent
with the persistent energy balance closure problem across
flux sites (Leuning et al., 2012; Stoy et al., 2013; Wilson et
al., 2002), where a vast majority are assumed to be system-
atic biased towards low turbulent fluxes of sensible and latent
heat.

Horst et al. (2015) and Frank et al. (2016) have shown that
the error in at least two non-orthogonal sonic anemometer
designs can be traced to transducer shadowing that remains
uncorrected in the anemometer’s firmware. In both studies,
shadowing was described a priori by theoretical formulations
based on the wind tunnel tests of Kaimal (1979), yet there
was no consensus on a correction. A shortcoming in the use
of formulations derived for single transducer pairs in lami-
nar flow to describe turbulent flow distortions around more
complex geometries (Fig. 1) is that shadowing between all
transducers and structures cannot be accurately represented

or incorporated. A second problem is that in turbulent flow
fields there are few standards available to use as a calibration
reference. Advancements in Bayesian techniques (Gelman et
al., 2014) have created the potential to resolve both of these
issues by incorporating prior knowledge of transducer flow
distortions with a model that evaluates the omnidirectionality
of a sonic anemometer to produce a posterior 3-D correction.

To quantify a 3-D correction of the CSAT3 sonic
anemometer, we reanalyze data from field experiments con-
ducted by Frank et al. (2013, 2016), where wind measure-
ments from non-orthogonal anemometers mounted vertically
and horizontally were significantly different. We develop a
Bayesian hierarchical model to evaluate three hypotheses:

1. A 3-D shadowing correction based solely on wind loca-
tion can make a non-orthogonal sonic anemometer om-
nidirectional.

2. This correction increases vertical wind measurements
more than expected from single transducer shadowing
because it accurately represents all shadowing between
transducers.

3. In ecosystems where these instruments are deployed,
the application of this correction will result in signif-
icantly higher Bayesian credible intervals for the tur-
bulent components of the energy budget and improved
surface energy budget closure.

2 Methods

2.1 Reanalysis of field experiments

We reanalyze data from field campaigns conducted by Frank
et al. (2013, 2016). To summarize them, experiments were
conducted in 2011 and 2013 where multiple sonic anemome-
ters were deployed in a horizontal array at 24.5 m height
on the Glacier Lakes Ecosystem Experiments Site (GLEES)
AmeriFlux scaffold above a subalpine forest in southeast-
ern Wyoming, USA (Frank et al., 2014). The anemometers
were initially mounted vertically, oriented west, arranged
south to north, staggered up and down, and located 0.50 m
center-to-center from each other (Fig. 1). Periodically, some
of the anemometers were rotated 90◦ around their u axis
and mounted horizontally. In this study we focus only on the
CSAT3 sonic anemometer (Campbell Scientific, Inc., Logan,
UT, USA) during times when both vertically and horizontally
mounted anemometers were present (Table 1). All anemome-
ters were operated with firmware version 4.0. It is conven-
tional to describe the three dimensions of a sonic anemome-
ter as the u, v, and w axes. To reduce confusion in describ-
ing horizontal anemometers, we refer to cardinal u, v, and
w, where the measurements have been rotated to west–east
(u), south–north (v), and down–up (w), which are consis-
tent with u, v, and w for vertically mounted anemometers.
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Table 1. Summary of the subset of data from Frank et al. (2013, 2016) reanalyzed in this study listing the four CSAT3 anemometers (A–D),
their location within the five-position horizontal array, and whether they are mounted horizontally (∗). Because processing the Bayesian
model is extremely intensive, only 5 % of the available data were reanalyzed.

Position Number of 5 min periods

Dates 1 2 3 4 5 Available Reanalyzed

5–19 July 2011 A∗ B – C D∗ 2520 126
19–26 July 2011 A B∗ – C∗ D 1992 100
9–16 August 2011 B∗ A – D C∗ 1974 98
16–22 August 2011 B A∗ – D∗ C 1620 81
26–30 July 2013 A∗ – B – – 906 46
23–27 August 2013 – – A – B∗ 1050 52
6–24 September 2013 – – B D∗ – 498 25

Finally, because our Bayesian model is computationally in-
tensive, we reanalyze a subset of only 5 % of the available
data (see Sect. 2.3).

2.2 The Bayesian model

Bayesian statistics is based on Bayes’ theorem (Bayes and
Price, 1763), which in modern applications relates the poste-
rior probability of a model parameter conditioned on data to
the product of the likelihood of the data and the prior prob-
ability of that parameter (Gelman et al., 2014). In essence,
the prior represents an initial educated guess or belief in
the value of a model parameter; the likelihood is the prob-
ability of observing the data if they were deterministically
generated from a model; and the posterior is an updated
belief in the model parameter considering each the prior,
the model, and the data. Analytical evaluation of the pos-
terior is rarely possible, as is in our case; thus the poste-
rior is commonly estimate through the Markov chain Monte
Carlo (MCMC) method, Gibbs sampling (Appendix A1), and
the Metropolis–Hastings algorithm (Kruschke, 2010). The
framework of our Bayesian model is to divide the sphere
around the sonic anemometer into approximately equal grid
points and to define a prior probability distribution of the 3-
D shadowing correction for each transducer pair at each lo-
cation. Then, the model proposes new corrections for each
grid point, recalculates the fast-response data set, summa-
rizes new 5 min wind statistics, determines the probability
that the updated measurements from vertical and horizontal
anemometers are more equivalent using the proposed correc-
tion versus the old one (i.e., the Metropolis–Hastings ratio,
which is Eq. A13 evaluated for the proposed versus old cor-
rection), and finally accepts/rejects the proposal probabilisti-
cally from this ratio to construct the posterior correction. The
model recursively adjusts the distribution that generates the
proposals to achieve between 25 and 50 % acceptance rates,
which are theoretically optimal (Gelman et al., 2014). We de-
fine a grid of 512 points (∼±5◦ resolution of wind location)
on a sphere around each of the three transducer pairs of the
sonic anemometer. Neglecting the upper and lower mount-

ing arms that extend back into the electronics housing and
support block, the CSAT3 is symmetrical on either side of a
transducer pair, between the upper and lower hemispheres,
and for each of the three transducer pairs. To pool data and
reduce computations, we make these assumptions of symme-
try to describe all 1536 points from a set of 138 unique state
variables.

In our mathematical notation, we use uppercase and lower-
case subscripts to distinguish variables as scalars, vectors, or
matrices. Uppercase subscripts are part of the variable name,
denote the dimensionality of the variable, and describe the
coordinate system. For example, MS×T is a two-dimensional
matrix with dimensions S and T , which correspond to sonic
and transducer coordinates; since there are three dimensions
for both coordinate systems, this is a 3× 3 matrix. One up-
percase subscript by itself denotes a vector in that coordinate
system. Lowercase subscripts denote indexing for variables
that are defined for multiple times or replicate anemome-
ters; these are essentially multidimensional arrays. When the
same letter appears as both an uppercase and lowercase sub-
script, this refers to the cth element of dimension C.

We test three prior corrections: no shadow correction,
the Kaimal correction (Kaimal, 1979; Frank et al., 2016;
Horst et al., 2015), and a doubling of the Kaimal correc-
tion (Frank et al., 2016). The Kaimal correction is defined as
UTt = (1−0.16+0.16θ/70) ÚTt for θ ≤ 70◦ and UTt = ÚTt
for θ > 70◦, where UT and ÚT are the measured and cor-
rected wind velocities in transducer coordinates and θ is the
angle between the wind and the transducer acoustic path, t .

The model predicts the standard deviation of the data in
cardinal coordinates, σC, which is defined during each 5 min
period, f , for each replicate sonic anemometer, i (Fig. 1),
from a normal distribution with mean σ̂C and standard devi-
ation ε (Eq. 1).

σCc,f,i ∼N
(
σ̂Cc,f,i ,ε

−2
)

(1)

The predicted mean is constructed in several steps. First, the
state variable for the 3-D correction in transducer coordi-
nates, αT, is defined for each grid point, g. Here it does not
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matter if each grid point is independent or that they linked
together through symmetry. αT is given a normal prior proba-
bility distribution with mean equal to the prior correction, P ,
evaluated for each transducer pair for wind blowing through
the longitude, λ, and latitude, ϕ, associated with each grid
point and with a predefined standard deviation equal to 0.1,
or ±10 % uncertainty (Eq. 2).

αTt,g ∼N
(
P(t,g),0.1−2

)
(2)

The 3-D correction is applied to every 20 Hz sample, j , of
the original measured wind velocity data in transducer co-
ordinates, UT. The nominal predictor variable, h, selects the
corresponding grid point that occurs with every 20 Hz sam-
ple. The corrected 20 Hz wind velocity in transducer coordi-
nates is ÚT (Eq. 3).

ÚTf,i,j = UTf,i,j ·αTh (3)

The non-orthogonal data are transformed via matrix mul-
tiplication into orthogonal sonic coordinates, ÚS (Eq. 4).

ÚSf,i,j =MS×T ÚTf,i,j (4)

The matrix, MS×T , is specific to the CSAT3 geometry
(Eq. 5).

MS×T =


−

4
3

2
3

2
3

0
2
√

3
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2
√

3
2

3
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3

2

3
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3

2

3
√

3

 (5)

=

 −1.333 0.667 0.667
0 1.155 −1.155

0.385 0.385 0.385


For the model to predict data simultaneously from both

vertical and horizontal anemometers, a final corrected time
series data set is produced in cardinal coordinates, ÚC

ÚCf,i,j = NC×SoÚSf,i,j (6)

The matrix NC×S is straightforward (Eq. 7), and the nominal
predictor variable, o, selects the orientation of every 20 Hz
sample.

NC×So =



 1 0 0
0 1 0
0 0 1

 , o= 1 (i.e., vertical) 1 0 0
0 0 −1
0 1 0

 , o= 2 (i.e., horizontal)

(7)

Using the corrected time series data in cardinal coordi-
nates, the model calculates the average correction along the

three dimensions, βC, for the 5 min standard deviation data
for each anemometer (Eq. 8).

βCf,i =

√√√√ 1
J−1

J∑
j=1

(
ÚCf,i,j −

1
J

J∑
j=1

ÚCf,i,j

)2

√√√√ 1
J−1

J∑
j=1

(
UCf,i,j −

1
J

J∑
j=1

UCf,i,j

)2
(8)

Equation (8) is equivalent to the ratio of the standard de-
viation of ÚC divided by the standard deviation of UC, eval-
uated during each 5 min period for each sonic anemometer.
The reference condition for every 5 min period, σ̃C, is a state
variable representing the “true” standard deviation of wind
velocity. It is assigned a uniform prior probability distribu-
tion that generously includes the true value by allowing each
σ̃C to range from 0 to the maximum of all UC measurements
(Eq. 9).

σ̃Cc,f ∼ Unif(0,max(UC)) (9)

Finally, the model predicts the mean for the standard devi-
ation data as the reference divided by the average correction
(Eq. 10).

σ̂Cf,i =
σ̃Cf

βCf,i
(10)

To complete the Bayesian model definition, the model er-
ror is a state variable which is assigned a prior probability
distribution with a gamma distribution (Eq. 11).

ε ∼ 0(1, b́) (11)

The variance of the gamma distribution, b́, is assigned the
same variance as the prior distribution for σ̃C which is a uni-
form distribution (Eq. 12).

b́ =

√
12

max(UC)− 0
(12)

Distributions are defined where normal distributions are
θ ∼N(a, b) with expected value E(θ)= a and variance
var(θ)= 1/b2, gamma distributions are θ ∼ 0(a, b) with
E(θ)= a/b and var(θ)= a/b2, and uniform distributions
are θ ∼Unif(a, b) with E(θ)= (a+ b)/2 and var(θ)= (b−
a)2/12.

2.3 Analysis

Our Bayesian analysis was conducted using R (version 3.2.2,
R Core Team, 2015) within RStudio (version 0.99.486, RStu-
dio Team, 2015). We constructed an MCMC chain of 10 000
steps for each of the three priors. Because the Bayesian
model estimates are relative and not an absolute correction
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Table 2. Increase inH+LE (sum of the turbulent components of the energy balance, i.e., sensible and latent heat flux) at various sites across
North America after applying shadow correction to the CSAT3 time series data.

Percent change after
applying shadow correction

Posterior correction
Site Coordinates Dates Height (m) Kaimal correction mean±SD∗

Yuma, AZ, 33◦5′ N 6–15 June 8.25 5.1 % 9.8± 2.3 %
USA 114◦32′W 2008 [5.1, 14.8 %]
Yuma, AZ, 33◦5′ N 5–14 June 2.00 4.5 % 9.4± 2.8 %
USA 114◦32′W 2009 [3.1, 16.1 %]
Fraser, CO, 39◦53′48.23′′ N 5–14 April 27.50 5.6 % 9.9± 1.4 %
USA 105◦53′33.87′′W 2015 [7.4, 12.2 %]
Fraser, CO, 39◦53′48.23′′ N 5–14 April 6.40 6.8 % 11.6± 1.2 %
USA 105◦53′33.87′′W 2015 [9.4, 13.9 %]
Beltsville, MD, 39◦1′51.23′′ N 16–31 July 4.00 5.5 % 10.4± 2.1 %
USA 76◦50′39.40′′W 2014 [6.3, 14.8 %]
Glacier Peak, WY, 41◦22′52′′ N 28 August– 3.20 5.3 % 11.3± 3.1 %
USA 106◦15′47′′W 8 September 2015 [4.6, 19.2 %]
Agua Salud, 9◦13′31.65′′ N 6–16 November 5.00 4.7 % 8.1± 1.6 %
Panama 79◦45′36.41′′W 2015 [5.3, 10.8 %]

SD: standard deviation; ∗ [95 % credible interval].

(see discussion in Sect. 4.1), we normalized each chain. This
was done in post-processing by dividing αT by the average
of αT after each time one of the 138 state variables was up-
dated within each MCMC step. We inspected each chain us-
ing trace plots, removed the first 500 steps for burn-in, and
kept 1 out of every 140 steps to eliminate autocorrelation
between steps for most grid points (even after reducing to
138 state variables, a few of these were estimated from rel-
atively fewer data, which unavoidably led to high autocor-
relation between steps). This reduced each MCMC chain to
68 steps. We conducted several preliminary Bayesian analy-
ses and used trace plots and tests for autocorrelation to de-
termine that 10 000 steps was sufficient for convergence for
most of the 138 state variables defining αT. Most of these
parameters required little or no thinning to reduce autocor-
relation between steps and could have remained as MCMC
chains with 1000–10 000 steps. Yet, since the goal was to
create a complete 3-D correction, we decided to thin all state
variables equally. Even though diagnostic tests showed that
all parameters, including those with high autocorrelation, ap-
peared to converge within 10 000 steps, it is possible that
these chains are still too short for proper convergence. One
safeguard against this is confirming that the results from the
three chains all result in similar posterior distributions (see
Sect. 3.3).

Because each MCMC chain was based on a different
prior, they are not replicate chains from the same Bayesian
analysis. Instead, these are three separate solutions for the
posterior correction. But after considering the results (see
Sect. 3.3) and recognizing that, apart from normalization, the
prior had minimal influence on the solution, we combined

the three priors to create a single chain containing 204 in-
dependent samples of the posterior correction. We rescaled
the correction to be absolute by forcing the condition that
the correction will not change, on average, equatorial wind
measurements (i.e., (u2

+v2)1/2; see discussion in Sect. 4.1).
This was done by (1) applying the normalized correction to
the time series of vertically mounted anemometers, (2) calcu-
lating the corrected 5 min standard deviations for equatorial
winds, (3) performing linear regression without an intercept
(i.e., model the average change in equatorial winds solely as
a scaling factor) between the corrected and uncorrected stan-
dard deviations, (4) repeating this for each of the 204 pos-
terior samples, and (5) determining the average of the 204
regression slopes. We divided all values in the normalized
3-D correction by this average scaling factor to produce our
final posterior correction.

Computation of the Bayesian model was extremely in-
tensive: completion of the three chains took upwards of
2 months of continuous computer processing (Windows 7,
Intel® Core™ i7-3630QM CPU @ 2.40 GHz processor, 1 TB
solid-state hard drive, 20 GB RAM). During beta testing we
attempted to estimate the 3-D correction independently for
all grid points and all transducer pairs, with a single MCMC
chain requiring a half year to complete. Likewise, we inves-
tigated increasing the number of grid points to obtain bet-
ter resolution around the sphere as well as increasing the
amount of sonic anemometer data used from the Frank et
al. (2013, 2016) data sets. In both cases we desired an order-
of-magnitude better resolution or more data, but the time re-
quired to complete a single MCMC chain quickly made these
improvements impractical. Instead, we determined that 512
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grid points and 5 % of the original data were optimal consid-
ering these processing constraints.

There is a slight distinction to be made between the prior
corrections – which are defined as a function, αT (λ,ϕ), of
the true longitude and latitude of the wind – and the posterior
correction, which is a function, αT

(̃
λ, ϕ̃

)
, where∼ represents

the uncorrected sonic anemometer measurement of wind lo-
cation. This distinction means the posterior correction can
be applied directly to the uncorrected raw data, whereas the
prior should be applied iteratively (i.e., start with the uncor-
rected observed wind, determine the correction, update the
wind measurement, determine the new wind location, update
the correction, etc.). To directly compare the prior and poste-
rior corrections, we also present our posterior correction with
the wind locations recursively adjusted to approximate the
true longitude and latitude. For these analyses, we smoothed
the posterior spatially across the grid points with a spheri-
cal spline fit (Wahba, 1981) using R package mgcv (Wood,
2006).

We quantified the impact of shadowing on measurements
of the standard deviations of winds in the three dimensions
and the sensible heat flux (H ). This was done iteratively
(i.e., for each of the 204 posterior samples) by (1) apply-
ing the posterior correction to the raw data of vertically
mounted anemometers, (2) calculating the 5 min measure-
ments, and (3) performing linear regression without an inter-
cept between the corrected and uncorrected measurements.
The 204 regression slopes were combined to form a distri-
bution describing the relative change in each of these mea-
surements due to shadowing. For H , the data were planar-
fit-rotated (Lee et al., 2004), time-lag-adjusted, and vapor-
flux-corrected (Massman and Lee, 2002) using ancillary data
from the GLEES AmeriFlux site (Frank et al., 2014).

Finally, we quantified the impact of the 3-D correction on
the sum of the turbulent components of the energy balance
(i.e., sensible and latent (LE) heat flux) at various sites across
North America (Table 2). Each site featured a CSAT3, a
fast-response hygrometer, and ancillary meteorological data.
Measurements of LE were calculated similar to H but in-
cluding the Webb–Pearman–Leuning correction (Webb et al.,
1980). The impact of the 3-D correction was quantified as a
distribution similar to above, except compiled from 30 min
time periods.

2.4 Validation experiment

We conducted a validation experiment of the posterior 3-D
correction at the Colorado State University, Agricultural Re-
search Development and Education Center (ARDEC), Fort
Collins, CO, USA (40◦39′7.9′′ N, 104◦59′45.7′′W), from 7
to 14 October 2016. Three CSAT3 sonic anemometers were
mounted on an east–west boom 2 m above a pasture of short
grass and ∼ 36 m south of a mature corn field. Typical winds
at this site are from the north, so in this experiment we refer
to cardinal u, v, and w, where the measurements have been
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Figure 2. Uncorrected measurements of the 5 min standard devia-
tion of wind (σ ) along the cardinal (a, b) u, (c, d) v, and (e, f) w

axes are not equivalent between vertically and horizontally mounted
CSAT3 sonic anemometers. Data from an ideal 3-D anemometer
would have similar percent errors between a horizontal and a ver-
tical anemometer (b, d, f) to those found between two anemome-
ters mounted vertically (a, c, e). The data are from 2011 and 2013
field experiments at the GLEES AmeriFlux site (Frank et al., 2016,
2013). The 2011 data in panels (b), (d), and (f) are randomly paired
between the two anemometers in different orientations. Results are
summarized as root mean square error (RMSE).

rotated to north–south (u), west–east (v), and down–up (w).
One anemometer (S/N 0869) was vertically mounted in the
center of the boom and aimed north; a second (S/N 1560)
was 0.62 m to the east, horizontally mounted (i.e., 90◦ rota-
tion around its u axis), and aimed north; and a final instru-
ment (S/N 2385) was 0.58 m to the west and mounted askew
(Fig. S1 in the Supplement). The askew mounting is unique
to this validation experiment and can be defined with the unit
vectors u (pointing south), v (pointing east), and w (point-
ing up) as uaskew = 2/3u− 1/3v− 2/3w, vaskew = 2/3u+

2/3v+ 1/3w, and waskew = 1/3u− 2/3v+ 2/3w. All wind
velocity measurements were converted from sonic to cardinal
coordinates, and all tilt angles were measured with a digital
level to 0.1◦ precision such that any mounting imperfections
were taken into account. Data were measured at 20 Hz on
a CR3000 micrologger (Campbell Scientific, Inc.). In post-
processing, both the Kaimal correction and the posterior 3-D
correction were applied to the 20 Hz data. Data were summa-
rized every 5 min as the standard deviation of wind velocity
along the cardinal directions, σu, σv , and σw. Differences be-
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Figure 3. The Kaimal correction, one of three priors tested in this study, for the (a) A, (c) B, and (e) C transducer pairs, each represented by
a white dot, of a CSAT3 sonic anemometer accounts for self-shadowing but not cross-shadowing between transducers. The same correction
expressed in sonic anemometer coordinates (b) u, (d) v, and (f) w shows that, for near-equatorial winds, minimal correction is required for
the horizontal wind components, while significant correction and instability exist in the vertical wind component w. Longitude and latitude
are relative to the u axis (Fig. 1).

tween anemometers are presented as root mean square of the
relative error (RMSE) between measurements from the ma-
nipulated anemometers and the vertically mounted one.

3 Results

3.1 No correction

Without any shadow correction applied, measurements be-
tween a vertically and a horizontally mounted anemome-
ter were different, which becomes clear when the variance
between two vertical anemometers is taken into account
(Fig. 2b, d, f vs. a, c, e). The RMSE in the 5 min standard
deviation of wind along all cardinal dimensions (u, v, and
w) combined was 9.4 % between a vertical and a horizontal
anemometer, whereas the same metric between two vertical
anemometers was 3.9 %. The largest discrepancy was along
the cardinal v axis, where the RMSE increased from 3.7 to
11.1 % when comparing vertical and horizontal anemometers
(Fig. 2c vs. d).

3.2 The Kaimal prior correction

The Kaimal correction is symmetrical with respect to each
sonic transducer path (Fig. 3a, c, e). Yet the same correction
when viewed in sonic coordinates reveals unique responses
for u, v, and w (Fig. 3b, d, f). For small latitude winds, the
corrections are small for u and v measurements, while those
for w are higher yet unstable around the Equator (see dis-
cussion in Sect. 4.2). When the Kaimal correction was ap-
plied to the vertically mounted anemometers, there were mi-
nor increases in the 5 min standard deviations of u and v (0.8
and 2.9 %), while the increases for w(5.6 %) and H (5.5 %)
were more substantial. This correction explained some of
the differences between vertically and horizontally mounted
anemometers (Fig. 4), where the RMSE for all cardinal di-
mensions combined was 6.2 %, or 1.60 times greater than the
same error between two vertical anemometers. The discrep-
ancy along the cardinal v axis decreased to 6.6 %, or 1.86
times greater than the same error for two vertical anemome-
ters, though some bias is still apparent (Fig. 4c vs. d). While
the Kaimal correction is only one of three priors tested in
our Bayesian model, it is perhaps the most accepted algo-
rithm currently available to correct transducer shadowing in
the CSAT3.
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Figure 4. Kaimal-corrected measurements (i.e., one of three priors
tested) of the 5 min standard deviation of wind (σ ) along the cardi-
nal (a, b) u, (c, d) v, and (e, f) w axes are more equivalent between
vertically and horizontally mounted sonic anemometers. The per-
cent errors between a horizontal and a vertical anemometer (b, d, f)
are smaller for all three cardinal dimensions than they were for the
uncorrected data (Fig. 2) and are more similar to those found be-
tween two anemometers mounted vertically (a, c, e). The data are
from 2011 and 2013 field experiments at the GLEES AmeriFlux
site (Frank et al., 2016, 2013). The 2011 data in panels (b), (d), and
(f) are randomly paired between the two anemometers in different
orientations. Results are summarized as RMSE.

3.3 The Bayesian model

Figure 5 illustrates the approach of the Bayesian model. The
model initializes the 512 grid points with a prior, in this
case the Kaimal correction. No matter the transducer pair
or vertical versus horizontal mounting, the 3-D corrections
for all cases are identical but rotated versions of a com-
mon correction based on 138 unique state variables. For a
single instantaneous wind, the simultaneous corrections for
all six combinations of transducer pairs and mounting ori-
entations will be different. As the MCMC chains progress,
the Bayesian model will continuously adjust each of the 138
unique state variables so that measurements from the verti-
cally and horizontally mounted anemometers are most sim-
ilar based on the univariate conditional posterior probabil-
ity distribution (Eq. A13). Much of the predictive power of
the model comes from resolving the inconsistencies along
the cardinal v axis (Fig. 2d), where vertically and horizon-
tally mounted anemometers are likely to be most dissimi-
lar. Specifically, a vertically mounted CSAT3 should mea-

sure reasonably correct cross winds, which must flow across
the entire transducer and support structure of a horizontally
mounted CSAT3.

Each MCMC chain was initialized with the mean of each
prior, yet after convergence their posterior corrections were
remarkably similar regardless of the choice of prior correc-
tion, with one peculiarity (Fig. 6). There was a clear linear
relationship between the prior correction averaged across all
512 grid points (1.000 for no correction, 1.040 for the Kaimal
correction, and 1.080 for the double-Kaimal correction) and
the magnitude of the posterior correction (1.030, 1.064, and
1.098, respectively) that relates to the Bayesian model esti-
mating a relative and not absolute correction (see discussion
in Sect. 4.1). The posterior correction is more than an esti-
mate of the optimal solution, as it intrinsically accounts for
the uncertainty of the correction at each of the 512 grid points
(Fig. 7). Whereas each prior was defined with 10 % uncer-
tainty (Eq. 2), much of the posterior correction has much
lower standard deviations, especially around the transducers
where values were as low as 2.5 % (Fig. 7a). These uncer-
tainties can be expressed in sonic coordinates for the u, v,
and w components, which in general show that the posterior
correction is most certain for winds along each of those axes
(Fig. 7b–d), with the uncertainty along the w measurement
ranging from 2.7 to 18.3 %.

Figure 8 illustrates the completion of the Bayesian model
where the same posterior correction is applied to all trans-
ducer pairs and both mounting orientations. For every instan-
taneous wind, application of these six different corrections
ultimately results in the 5 min standard deviations of wind
along the cardinal u, v, and w axes being most similar be-
tween the two mounting orientations.

3.4 The posterior correction

The posterior correction for each transducer pair is presented
in Fig. 9. These results take into account the recursive ad-
justment to the wind locations and have been smoothed with
a spherical spline. Significantly more self-shadowing and
cross-shadowing around the transducers are visible than for
the Kaimal prior (Fig. 9a, c, e vs. Fig. 3a, c, e, in locations
near all transducers). These results are more certain (i.e., low
standard deviations when compared to the original 10 % as-
signed to the prior) near the transducers, poorly constrained
near the Equator (Fig. 7a), and independent of the choice of
prior correction (Fig. 6). Transforming the posterior correc-
tion into sonic coordinates reveals that, similar to the Kaimal
prior, minimal u and v correction is required for small lati-
tude winds (Fig. 9b, d vs. 3b, d). But the impact of the ad-
ditional transducer shadowing impacts w measurements far
more than was predicted (Fig. 9f vs. Fig. 3f), where the pos-
terior was fairly certain for latitudes greater than ±13.5◦

(Fig. 7d); the high uncertainty for near-equatorial wind is
discussed in Sect. 4.2. The posterior-corrected CSAT3 was
the most omnidirectional between vertically and horizontally
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Figure 5. The Kaimal correction, one of three priors tested in this study, evaluated among 512 cells for the (a, d) A, (b, e) B, and (c, f) C
transducer pairs of the CSAT3 sonic anemometer mounted either in the (a–c) typically vertical or (d–f) experimentally horizontal orientations.
Though the correction is identical relative to all transducer pairs, the same instantaneous wind results in different corrections depending on
the transducer pair and the orientation.

mounted anemometers (Fig. 10), where the RMSE for all car-
dinal dimensions combined was 5.3 %, or 1.36 times greater
than the same error between two vertical anemometers. The
discrepancy along the cardinal v axis was further reduced to
4.4 %, which is only 1.20 times greater than the same error
for two vertical anemometers, and the bias has been removed
(Fig. 10d vs. 4d). When the posterior correction was applied
to the vertically mounted anemometers, there were similar
increases to the Kaimal correction in the 5 min standard de-
viations of u and v (0.6± 0.8 [−1.0, 2.2] %, 2.7± 0.7 [1.5,
4.1] %, mean± standard deviation [95 % credible interval],
Fig. 11a–b). But compared to the Kaimal correction, the in-
creases in w (10.6± 1.7 [7.6, 13.9] %) andH (9.9± 1.6 [7.2,
12.6] %) were substantial and significantly higher (Fig. 11c–
d). We provide the MCMC chain for the final posterior cor-
rection in the Supplement as a tool for researchers to eval-
uate in other sonic anemometer studies, to examine the un-
certainty in ecosystem flux measurements, and to investigate
surface energy balance closure.

3.5 Turbulent components of the ecosystem energy
balance across a continent

We applied the posterior correction to various sites across
North America that deploy the CSAT3 in their eddy-
covariance instrumentation (Table 2). The estimated increase
in H+LE at these sites ranged from 8.1 to 11.6 % with
an average standard deviation and 95 % credible interval of
±1.9 % and 6.1–13.8 %, respectively. For all but one site, the

increase inH+LE was significantly higher than the increase
due to the Kaimal correction. At the 2 m Yuma, AZ site, the
lack of significance is related to anomalously low instanta-
neous wind latitudes for which the w correction is most un-
certain (Fig. 7d).

3.6 Validation of the posterior correction

The validation experiment was conducted during excellent
fall weather with no precipitation, where winds averaged
2.0± 1.2 m s−1, maximum sustained gusts were 7.8 m s−1,
38 % of the winds were from the northeast (45◦) to north-
northwest (337.5◦), 25 % of the winds were from the
southeast (135◦) to south (180◦), and during the other
times there were some occasional westerly winds. Results
are summarized in Table 3. The RMSE differences be-
tween a horizontally mounted anemometer and a vertically
mounted anemometer were large (12.6–16.5 %) for uncor-
rected measurements. Applying the Kaimal correction to
these anemometers reduced the RMSE differences in σu
and σv (8.5 and 11.4 %) but increased the difference in σw
(17.5 %). Compared to the uncorrected data, the average pos-
terior correction decreased the RMSE differences in all di-
rections, though only the reduction in σv (8.0–12.2 %) was
statistically lower (i.e., 95 % credible interval). Compared
to the Kaimal correction, the average posterior correction
was larger for σu but lower for σv and σw, with the reduc-
tion in σw (11.8–15.9 %) being statistically lower than with
the Kaimal-corrected data. The RMSE differences between
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Figure 6. The A transducer pair correction evaluated among 512 cells for the three prior corrections tested in this study: (a) flat, (c) Kaimal,
and (e) double Kaimal, with their corresponding unnormalized posterior corrections (b), (d), and (f), respectively. All posteriors have similar
relative topography. They differ in absolute scaling, where priors with higher absolute magnitude result in posteriors with higher absolute
magnitude, which is apparent from the different colorings.

an askew-mounted anemometer and a vertically mounted
anemometer were small/moderate for σu and σv (6.7 and
11.3 %) and large for σw (14.7 %) for uncorrected measure-
ments. Applying the Kaimal correction to these anemometers
reduced the RMSE differences in all directions (4.4–13.5 %).
The standard deviations for the RMSE differences using the
posterior correction were higher for the askew manipulation
(1.5–2.4 %) than they were for the horizontal manipulation
(1.1–1.3 %). Compared to the uncorrected data, the average
posterior correction increased the RMSE difference for σu
(8.6 %) but decreased the differences for σv and σw (10.3

and 13.9 %), though none of these changes were statistically
significant. Compared to the Kaimal correction, the average
posterior correction increased the RMSE differences for all
directions, with the differences in σu (6.2–11.6 %) and σv
(7.2–13.5 %) being statistically larger.
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Figure 7. Standard deviations of the posterior correction for (a) the A transducer pair and the wind velocities (b) u, (c) v, and (d) w. When
compared to the standard deviation of the prior which was defined as 0.1, the transducer correction is more certain in regions with higher
topography (Fig. 6). The results in CSAT3 sonic coordinates reflect both the uncertainty in the transducer correction plus cancelation and
amplification of errors due to the coordinate transformation. The posterior correction for u, v, and w is most certain for winds along the u,
v, and w axes, respectively.

Table 3. Results of a validation experiment of CSAT3 sonic anemometers at ARDEC, CO, showing the relative error in 5 min standard
deviation of wind (σ ) along the cardinal u, v, and w axes between a vertical instrument and one mounted horizontal and one mounted askew.
All anemometers were compared uncorrected, with the Kaimal correction, and with the posterior correction.

RMSE in σ between a
manipulated and vertical anemometer (%)

Manipulation Cardinal Uncorrected Kaimal Posterior correction
measurement correction mean±SD∗

Horizontal σu 12.6 % 8.5 % 10.5± 1.3 %
[8.4, 13.4 %]

σv 16.5 % 11.4 % 9.8± 1.1 %
[8.0, 12.2 %]

σw 15.0 % 17.5 % 13.4± 1.1 %
[11.8, 15.9 %]

Askew σu 6.7 % 4.4 % 8.6± 1.5 %
[6.2, 11.6 %]

σv 11.3 % 6.0 % 10.3± 1.7 %
[7.2, 13.5 %]

σw 14.7 % 13.5 % 13.9± 2.4 %
[9.9, 19.4 %]

RMSE: root mean square error; SD: standard deviation; ∗ [95 % credible interval].
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Figure 8. The posterior correction evaluated for the (a, d) A, (b, e) B, and (c, f) C transducer pairs of the CSAT3 sonic anemometer mounted
either in the (a–c) typically vertical or (d–f) experimentally horizontal orientations. The correction is identical relative to all transducer pairs
and is constructed from 512 cells with 138 unique values. The Bayesian model adjusts these values to simultaneously correct the same
instantaneous wind measured from different transducer pairs and orientations in order to produce similar cardinal u, v, and w wind statistics
(Fig. 10).

4 Discussion

4.1 An omnidirectional standard

Perhaps the most important shortcoming in almost every
sonic anemometer study is the lack of a standard wind mea-
surement to compare against. A fundamental problem is that
the principle of sonic measurements (Barrett and Suomi,
1949; Kaimal and Businger, 1963) involves the observer ef-
fect; i.e., it is virtually impossible for sonic transducers to ob-
serve air parcels without influencing them (Buks et al., 1998).
Thus, any method that relies on a sonic anemometer mea-
surement as an absolute standard is flawed to an extent. And
while we are justified to believe that some sonic anemome-
ter measurements are more accurate that others (Frank et
al., 2016), it is tenuous to choose any sonic anemometer
measurement as a standard. Then, what are the alternatives?
Wind tunnels are extremely useful (Horst et al., 2015; van
der Molen et al., 2004), yet it is debatable that such lami-
nar or quasi-laminar calibrations are transferrable to turbu-
lent field conditions (Hogstrom and Smedman, 2004). And,
while other new technologies such as Doppler Lidar exist
(Sathe et al., 2011; Dellwik et al., 2015), their application
as a field reference standard has been limited.

What we address is the general problem of determining a
calibration given an unknown standard or nothing to compare
against. Whether this problem exists in medicine (Lu et al.,
1997), acoustics (MacLean, 1940; Monnier et al., 2012), or

micrometeorology with respect to calibrating sonic anemom-
etry in turbulent flow fields, all approaches have a com-
monality of testing the relative consistency of a response to
unknown signals. In our situation, we hold the 3-D sonic
anemometer to an omnidirectional standard of relative con-
sistency and contend that the correction that best achieves
this standard is statistically the most likely 3-D calibration.
A CSAT3 without any 3-D shadow correction is clearly not
omnidirectional (Fig. 2) as measurements depend on the in-
strument’s orientation. A CSAT3 with the Kaimal transducer
shadow correction is better at meeting this standard (Fig. 4).
However, the posterior 3-D correction is remarkably effec-
tive in making the CSAT3 omnidirectional (Fig. 10). Because
the posterior correction closely achieves the omnidirectional
standard, we support our first hypothesis and argue that it is
the most accurate correction, in general, for the three dimen-
sions of the CSAT3. Whether or not the posterior correction
reveals meaningful information regarding vertical winds and
turbulent fluxes is another matter discussed below.

A consequence of the omnidirectional standard is that
implicitly this produces only relative results. Indeed, our
Bayesian posterior has no meaning in an absolute sense with-
out the additional constraint that equatorial winds should be
unchanged by the correction. We do not specify the 3-D cor-
rection at any of the grid points, nor we do we specify a ref-
erence or true condition for the standard deviation of wind
during any 5 min period. Because of this, the parameter es-
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Figure 9. The posterior correction for the (a) A, (c) B, and (e) C transducer pairs, each represented by a white dot, of a CSAT3 sonic
anemometer accounts for both self-shadowing and cross-shadowing between transducers. The same correction expressed in sonic anemome-
ter coordinates (b) u, (d) v, and (f) w shows that, for near-equatorial winds, minimal correction is required for the horizontal wind compo-
nents, while even more correction exists in the vertical wind component w than was present with the Kaimal correction (Fig. 3f). Longitude
and latitude are relative to the u axis (Fig. 1).

timates for σ̃C and αT only have meaning relative to each
other. This issue is confounded by the choice of prior distri-
butions, which vary dramatically in shape but produce simi-
lar posteriors except for differences in their absolute magni-
tudes (Fig. 6); i.e., higher magnitude priors produce higher
magnitude posteriors. Which absolute magnitude is correct?
Without specifying an absolute standard, the answer is none
of them. To facilitate comparison and combination of the
posteriors, we normalized the three MCMC chains.

There is a clear need to specify an absolute standard to
reference our results. Without one, our normalized posterior
correction reduced the 5 min standard deviations for equato-
rial winds (i.e., the u–v plane) by 7 %. Does this make phys-
ical sense? No. The idea that equatorial winds should not be
changed is consistent with the expectation that the CSAT3
accurately measures equatorial winds, something that has
been demonstrated in both wind tunnels and field campaigns
(Yahaya and Frangi, 2004; Friebel et al., 2009). Even the
Kaimal correction, which is an absolute correction, predicts
< 0.1 % error in our measurements of equatorial winds. Be-
cause the omnidirectional standard is only relative, we im-
pose an additional absolute standard by defining the aver-
age correction for equatorial winds to be 0, which is simply
achieved by scaling the normalized posterior correction by

7 %. While there certainly is some leeway in this constraint,
if the normalized posterior correction were scaled by any-
thing other than 7± 1.4 % then the correction to horizontal
winds would be significantly different (95 % credible inter-
val) than both 0 and the Kaimal correction (Fig. 11a–b) and
would run counter to our belief that the CSAT3 makes rea-
sonably accurate measurements of horizontal winds.

4.2 Impact on vertical wind measurements and
sensible heat flux

Recent studies have questioned the accuracy of CSAT3 verti-
cal wind velocity measurements (Frank et al., 2013; Kochen-
dorfer et al., 2012), culminating with Horst et al. (2015) and
Frank et al. (2016), who identified the anemometer’s lack of
transducer shadowing correction as the root cause. Quanti-
fying the inaccuracy and determining how to fix this prob-
lem have been a challenge. While each of these studies esti-
mated different errors in w at their field sites (3.5 %, Horst
et al., 2015; 6–10 %, Frank et al., 2013; 5.5–12.5 %, Frank
et al., 2016; and 14 %, Kochendorfer et al., 2012), it was
not until Horst et al. (2015) proposed the application of the
Kaimal correction (Kaimal, 1979) that a mechanistic expla-
nation was used to quantify the underestimate. Whether or
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Figure 10. Posterior-corrected measurements of the 5 min standard
deviation of wind (σ ) along the cardinal (a, b) u, (c, d) v, and
(e, f) w axes are most equivalent between vertically and horizon-
tally mounted sonic anemometers than with either the uncorrected
(Fig. 2) or Kaimal-corrected data (Fig. 4). The percent errors be-
tween a horizontal and a vertical anemometer are small (b, d, f),
especially for the cardinal v dimension (d), and are similar to
those found between two anemometers mounted vertically (a, c, e).
The data are from 2011 and 2013 field experiments at the GLEES
AmeriFlux site (Frank et al., 2016, 2013). The 2011 data in pan-
els (b), (d), and (f) are randomly paired between the two anemome-
ters in different orientations. Results are summarized as RMSE. The
red lines are 95 % credible intervals.

not the Kaimal correction is sufficient is a matter of debate,
but it currently represents the best prior knowledge to explain
the CSAT3’s shortcomings.

Solely the fact that the posterior correction makes the
CSAT3 more omnidirectional does not imply that field mea-
surements of vertical wind and turbulent fluxes are impacted,
nor does this assure that these impacts would be due to any-
thing more than chance. Even with the uncertainty in the pos-
terior w correction explicitly quantified (Fig. 7d), it is diffi-
cult to foresee if w is significantly impacted without applying
the posterior correction to actual data. A powerful attribute
of the Bayesian analysis is that the posterior correction can
be applied to raw data to produce probability distribution es-
timates for w and H from which statistical inferences can
be made. Using GLEES data, Fig. 11c–d confirms that to
achieve an omnidirectional sensor (Fig. 10) with minimal
change to horizontal winds (Fig. 11a–b) the required correc-
tion will increase both w and H by an average of 10.6 and
9.9 %, which is significantly more (> 95 % credible interval)
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Figure 11. Though application of the Kaimal (dashed lines) and
posterior (solid lines) corrections results in similar changes to the
5 min standard deviations of wind (σ ) along the (a) u and (b) v axes,
application of the posterior correction results in significantly higher
(95 % credible interval) (c) winds along the w axis and (d) sen-
sible heat flux (H ). The dotted lines are an alternate formulation
of the Kaimal correction proposed by Wyngaard and Zhang (1985)
and used in Horst et al. (2015). Data are for vertically mounted
anemometers only.

than predicted by the Kaimal prior. We argue that this sig-
nificant increase in the vertical wind occurs because the pos-
terior correction more accurately accounts for all shadowing
between transducers (Fig. 9 vs. 3); therefore we support our
second hypothesis.

Also of note, there are instabilities in the prior and poste-
rior w corrections for near-equatorial winds that occur at lat-
itudes less than ±4◦ (six inflection points around the Equa-
tor, Figs. 3f and 9f). The mathematical cause for these in-
stabilities and the locations of the inflection points are de-
rived in Appendix A2, and unless the corrections for the three
transducers are exactly equal everywhere around the Equa-
tor these instabilities will exist. The existence of these insta-
bilities should cause concern for eddy-covariance measure-
ments. The ultimate impact of this phenomenon is difficult
to know, because, on one hand, w for latitudes less than ±4◦

are by definition very small, but, on the other, these eddies
constitute a large proportion of winds that exist under field
conditions, and their correction is currently unpredictable.
For example, at GLEES 30 % of winds occur at latitudes
within ±4◦ (unpublished analysis of Fig. 4 from Frank et
al., 2016). It is unknown how aggressively the correction for
these winds approaches ±∞ or if more inflection points ac-
tually occur. For all non-orthogonal geometries, not just the
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CSAT3, if any transducer shadowing occurs at the Equator,
there will be instabilities in the w correction.

4.3 Impact across global flux networks

Energy balance is a fundamental ecosystem concept where
the flow of available energy into an ecosystem influences the
microclimate, drives photosynthesis, and establishes trophic
levels among the biota (Odum, 1957; Fisher and Likens,
1973; Teal, 1962). Yet eddy-covariance studies of ecosys-
tem fluxes seldom delve into details of energy flow beyond
the generation of sensible and latent heat. It is often stated
that most eddy-covariance sites underestimate these turbu-
lent components of the energy balance by 10–20 % when
compared to the available energy (Wilson et al., 2002; Fo-
ken, 2008; Stoy et al., 2013; Leuning et al., 2012; Franssen
et al., 2010). Even when sites thoroughly account for lesser
components such as energy stored in the biomass or canopy
air, the turbulent energy can still be 1–14 % underestimated
(Heilman et al., 2009; Oliphant et al., 2004; Barr et al., 2006;
Wang et al., 2012). It is common for sites to deal with this
problem by forcing energy balance closure by increasing
H and/or LE (Heilman et al., 2009; Oliphant et al., 2004;
Twine et al., 2000; Scott et al., 2004) or even carbon fluxes
(Barr et al., 2006) by the percent of the energy imbalance. Is
there a mechanistic reason why so many sites believe their
turbulent fluxes are underestimated? While it is difficult to
generalize for every site, one similarity among these stud-
ies (Heilman et al., 2009; Oliphant et al., 2004; Barr et al.,
2006; Wang et al., 2012; Twine et al., 2000; Scott et al.,
2004) is they all feature a CSAT3, as do ∼ 60 % of all sites
in the AmeriFlux network (unpublished summary of 150
of the 228 sites where anemometer information was avail-
able, list accessed at http://ameriflux.lbl.gov/ in November
2015) and numerous sites distributed across the world within
FLUXNET (http://fluxnet.fluxdata.org/).

After applying the posterior correction to the CSAT3 at our
site, measurements of one of the energy balance components,
H , increased 9.9± 1.6 %, which is about twice the 5.5 %
increase predicted by the Kaimal correction (Fig. 11) (note
that the field experiments were conducted without a colo-
cated fast-response hygrometer; hence we do not estimate the
impact on LE at our site). However, we must consider that
our field site in Wyoming is unusual, with extreme wind and
turbulence, and where summer friction velocity (u∗) aver-
ages 0.6 m s−1 (Frank et al., 2016). While this made GLEES
a good location to conduct the turbulent field experiments
that led to the development of the posterior correction, do
our results lead to similar impacts on ecosystem fluxes else-
where? To answer this, we applied the posterior correction to
eddy-covariance measurements at various sites across North
America that employ the CSAT3 (Table 2). We found that
the sum of the turbulent components of the energy balance
(sensible plus latent heat flux) increased on average between
8 and 12 %, with the average 95 % credible interval being

6–14 %. At most sites this was significantly higher than ap-
plying the Kaimal correction. Thus, it is highly probable that
at flux sites that employ the CSAT3 sonic anemometer the
posterior correction will significantly increase the turbulent
components of the energy budget and explain much of the
ubiquitous energy imbalance problem; therefore we support
our third hypothesis.

Are the results from this study applicable to the non-
orthogonal sonic anemometers produced by other manufac-
turers? Possibly. Frank et al. (2016) showed that the Applied
Technologies, Inc. A-probe shares a similar transducer ge-
ometry, a lack of a shadow correction algorithm, and simi-
lar differences between vertically and horizontally mounted
anemometers, so it would be reasonable to expect a similar
3-D correction for that instrument. But other manufacturers
do apply wake corrections in their firmware that are trace-
able to wind tunnel calibrations. Are these adequate? Maybe
not, as non-orthogonal anemometers from other manufactur-
ers have been implicated to erroneously measure the vertical
wind (Kochendorfer et al., 2012; Nakai et al., 2014; Nakai
and Shimoyama, 2012). Without details of the calibrations
or the wake corrections it is difficult to know. Regardless,
for any non-orthogonal sonic anemometer with vertically ori-
ented transducers, equatorial instabilities are likely to exist
(Appendix A2) that would be extremely difficult to charac-
terize with only a series of wind tunnel calibrations. One
benefit of our methodology is that it allows an independent
check on the sufficiency of these wake corrections. If such an
instrument failed to consistently measure three-dimensional
winds (i.e., it responds like Fig. 2), then our methodology
would estimate a posterior correction that could correct a
wake-corrected anemometer. Because ∼ 90 % of all Amer-
iFlux sites use non-orthogonal sonic anemometers (Frank et
al., 2013; Nakai et al., 2014), it would be appropriate to in-
vestigate this issue for all non-orthogonal sonic anemometer
designs.

4.4 The next step

While these results reveal much about the nature of shad-
owing in a non-orthogonal sonic anemometer, there is much
more to be done. First, due to the intense computational bur-
den of this analysis we never fully utilized our data. While we
only analyzed 5 % of the available data, limited the 3-D cor-
rection to approximately±5◦ resolution and only 138 unique
corrections, and terminated the Bayesian MCMC chains after
only 10 000 steps, it still took months of continuous process-
ing with extensive memory usage to produce these results.
Obviously there is an opportunity to adapt this analysis to
run on multiple cores or a supercomputer. As we developed
our analysis, it became apparent that with more data the stan-
dard deviations of the posterior distribution improved; we
foresee that with 20 times more data the uncertainty in the
posterior correction would be further reduced. Adaptation to
a high-performance computer will allow for a more precise
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grid, longer MCMC chains, and a lower standard deviation
of the posterior distribution.

Our results draw extensively on the symmetry of the
CSAT3, which fails to account for the upper and lower
mounting arms that extend back into the electronics hous-
ing and support block. We beta-tested our model to solve for
the 3-D correction independently for each transducer and for
all grid points around the sphere. We abandoned this because
winds at GLEES are fairly unidirectional, causing many of
the grid points to be poorly characterized. Plus with an order-
of-magnitude more unique grid points to solve, the computa-
tion took over 5 months to complete just one MCMC chain!
There is a middle ground between assuming symmetry and
pooling data; i.e., the correction for the A transducer pair
could be considered symmetrical along the u–w plane, and
the corrections for transducer pairs B and C are mirror im-
ages of each other. In addition to solving the problem with
fewer assumptions of symmetry, more experimental manipu-
lations should be tested. We only tested a 90◦ rotation along
the u axis, but there are limitless other manipulations that
would help characterize the shadowing around the entire 3-D
space surrounding an anemometer. Our model could easily
be adapted to handle different manipulations using Eq. (7).
This equation can be expanded to account for a limitless
number of manipulations within the same analysis.

Sonic anemometer corrections should be verified and val-
idated. There is an opportunity to statistically cross-validate
the posterior 3-D correction with subsets of the other 95 %
of available data; we decided against this because the 5 %
used was already partitioned equally throughout the full data
set; plus, analyzing multiple rounds of training and validation
data sets would take additional months of computation. In-
stead of a statistical cross-validation analysis, we conducted a
validation field experiment to determine (1) if our results are
reproducible and (2) if they can explain other manipulations.
From this, we first conclude that our results are reproducible.
In both our main experiments at GLEES and the valida-
tion experiment at ARDEC, there was improved agreement
between vertically and horizontally mounted anemometers
when using the posterior correction versus the Kaimal cor-
rection or no correction (Table 3). The largest differences be-
tween anemometers was for σv (11.1 and 16.5 %, Fig. 2d, Ta-
ble 3), which were reduced with the Kaimal correction (6.6
and 11.4 %, Fig. 4d, Table 3) and then further improved with
the posterior correction (4.4 and 9.8 %, Fig. 10d, Table 3).
In both analyses, the differences in σu were reduced with
either correction, but the best performance was the Kaimal
prior (Fig. 4b vs. 10b, Table 3). Finally, in both cases the dif-
ferences in σw were smallest using the posterior correction
(Fig. 4f vs. 10f, Table 3). Moreover, we justify our valida-
tion because it involved an independent data set that was col-
lected at a different field site, over radically different terrain
and vegetation, and using anemometers with different serial
numbers. We are less confident that our posterior correction
can explain all manipulations. The differences in σu and σv

between vertically and askew-mounted anemometers were
significantly better with the Kaimal correction (Table 3). It
is important to note, however, that these differences were
the smallest of all the comparisons (“Uncorrected” column
in Table 3); i.e., it may be inconsequential that the Kaimal
correction outperforms the posterior correction for measure-
ments that were fairly good to begin with. Meanwhile, the
difference in σw was large, though it is unclear if the poste-
rior correction makes this significantly better or worse (Ta-
ble 3). This lack of clarity means the askew manipulation
cannot be used to validate or falsify the posterior correction.
This is not surprising, because the posterior correction was
estimated without data from or knowledge of such a unique
manipulation, and, as it is, much of the posterior correction
contains a large uncertainty (Fig. 7a). Though the posterior
correction is too uncertain to explain the askew manipula-
tion, this does not mean our estimates of H+LE at various
field sites are flawed because these estimates account for the
fact that much of the posterior is uncertain. We expect that
expanding our Bayesian analysis to include data from more
manipulations, e.g., the askew example, would further con-
strain the regions of uncertainty found in the current posterior
correction.

Our results using the posterior correction (Fig. 10) show
that there is still unexplained residual error, though we ex-
pect some of this to be reduced with our suggestions above.
While Horst et al. (2015) showed that to a first order that
transducer shadowing is a function of the longitude and lati-
tude of the instantaneous wind, the impact of other covariates
such as wind velocity and turbulence may need to be consid-
ered. An advantage of performing our analysis in a Bayesian
framework is that the model can be expanded to incorporate
the effects of these covariates.

And finally, our posterior correction and methodology
should be compared to other independent analysis of sonic
anemometer shadowing such as wind tunnel data (Horst et
al., 2015) or an independent Doppler lidar system (Sathe et
al., 2011). Care should be taken when incorporating these re-
sults, as anemometers could respond differently under lami-
nar flow in a wind tunnel versus under turbulent field condi-
tions. Regardless, a key to resolving this problem will be to
embrace new technologies, new experimental designs, and
new analyses.

5 Conclusions

The non-orthogonal CSAT3 sonic anemometer produces dif-
ferent results (Fig. 2) when it is mounted horizontally in-
stead of vertically (Fig. 1). Assuming that the primary source
of this error is shadowing across the various transducers, a
Bayesian model can estimate a posterior correction (Fig. 8)
that ultimately makes measurements from vertically and hor-
izontally mounted anemometers most similar (Fig. 10). Even
when taking into account the uncertainty of the posterior
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correction (Fig. 7), the increases in vertical wind velocity
and sensible heat flux measurements are significantly larger
and are approximately twice the magnitude of the Kaimal
correction (Fig. 11). When this posterior correction is ap-
plied to various eddy-covariance sites across North America,
the turbulent components of the ecosystem energy balance
(sensible plus latent heat flux) increased between 8.1 and
11.6 %, with an average 95 % confidence that this increase
was between 6.1 and 13.8 % (Table 2). Considering this is
the most common sonic anemometer in the AmeriFlux net-
work and is found in all the regional networks that comprise
FLUXNET, these results have major implications for count-
less studies that use the eddy-covariance technique to mea-
sure terrestrial–atmospheric exchange of mass and energy.

6 Data availability

The data and source code are available at: https://doi.org/10.
2737/RDS-2016-0037.
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Appendix A

A1 Univariate conditional posterior distribution
functions for Gibbs sampling

For the univariate conditional posterior distribution functions
there is a distinction between independent grid points and
those linked together through symmetry. In the case of the
former, these functions can be evaluated for each unique grid
point, g, and for each transducer pair, t . In the case of the lat-
ter, g and t refer to the sets of all grid points and transducers
that share the same unique state variable for their shadow cor-
rection, and these functions can be applied to each of these
unique sets.

First, using Bayes’ theorem, the joint posterior distribu-
tion of the model parameters can be expressed as being pro-
portional to the product of the likelihood of the data and the
joint prior distribution of the model parameters (Eq. A1).

p (̃σC,αT,ε|σC)∝ p(σC |̃σC,αT,ε)p (̃σC,αT,ε) (A1)

Because the prior distributions for three model parameters
are independent, the joint prior distribution can be written as
the product of the individual probabilities (Eq. A2).

p (̃σC,αT,ε|σC)∝ p(σC |̃σC,αT,ε)p (̃σC)p (αT)p(ε) (A2)

The likelihood of the data is normally distributed (Eq. A3).

p(σC |̃σC,αT,ε)=
1
√

2πε
e

(
−

1
2ε2
(σC−σ̂C)

2
)

(A3)

Because σ̂C is a function of both σ̃C and αT, the like-
lihood is indeed a function of all three model parameters.
The individual prior distributions for σ̃C, αT, and ε are uni-
formly (Eq. A4), normally (Eq. A5), and gamma (Eq. A6)
distributed, respectively.

p (̃σC)=


1

max(UC)
, 0≤ σ̃C ≤max(UC)

0, otherwise
(A4)

p
(
αTt,g

)
=

1
√

2π (0.1)
e

(
−

1
2(0.1)2

(
αTt,g−P(t,g)

)2
)

(A5)

p(ε)= b́e−b́ε (A6)

Gibbs sampling for each model parameter is based on the
univariate conditional posterior distribution, which assumes
that all other model parameters plus the data are given (in the
case of sampling within a multidimensional array, all other
parameters within that array are given except the one at the
index being evaluated). For σ̃C the univariate conditional pos-
terior distribution can be expressed as a form of Bayes’ the-
orem (Eq. A7).

p
(
σ̃Cc,f |̃σC

−c,f
,αT,ε,σC

)
=
p
(
σ̃C,αT,ε|σC

)
p
(
σC
)

p
(
σ̃C
−f,c

,αT,ε,σC

) (A7)

The underbar denotes all elements within a multidimen-
sional array, while the notation σ̃C

−c,f
means all elements

of σ̃C except for σ̃Cc,f . On right side of Eq. (A7), both the
second term in the numerator and the denominator are as-
sumed given and can be omitted if the equal sign is changed
to a proportional sign. The first term in the numerator,
p
(
σ̃C,αT,ε|σC

)
, is the joint posterior distribution summed

across all parameters (Eq. A8).

p
(
σ̃C,αT,ε|σC

)
∝

3∏
c=1

F∏
f=1

(A8)

{[
I∏
i=1
p
(
σCc,f,i |̃σCc,f ,αT,ε

)]
p
(
σ̃Cc,f

)}
3∏
t=1

G∏
g=1

p
(
αTt,g

)
p(ε)

Assuming that all but σ̃Cc,f are given plus requiring that
the proposed value for σ̃Cc,f is within the valid range (i.e.,
p
(
σ̃Cc,f

)
is constant and can be omitted), Eq. (A7) simplifies

to Eq. (A9).

p
(
σ̃Cc,f |̃σC

−c,f
,αT,ε,σC

)
∝ (A9)

I∏
i=1
p
(
σCc,f,i |̃σCc,f ,αT,ε

)
Substituting in the likelihood from Eq. (A3) and simplify-

ing gives the univariate conditional posterior distribution for
σ̃Cc,f (Eq. A10).

p
(
σ̃Cc,f |̃σC

−c,f
,αT,ε,σC

)
∝ (A10)

e

(
−

1
2ε2

∑I
i=1

(
σCc,f,i−σ̂Cc,f,i

)2
)

The univariate conditional posterior distribution for αT can
be expressed as Bayes’ theorem (Eq. A11).

p
(
αTt,g |̃σC,αT−t,g,ε,σC

)
= (A11)

p
(
σ̃C,αT,ε|σC

)
p
(
σC
)

p
(
σ̃C,αT−t,g,ε,σC

)
Again, only the first term in the numerator must be evalu-

ated while assuming that all but αTt,g are given (Eq. A12).

p
(
αTt,g |̃σC,αT−t,g,ε,σC

)
∝ (A12)

3∏
c=1

F∏
f=1

I∏
i=1
p
(
σCc,f,i |̃σCc,f ,αT,ε

)
p
(
αTt,g

)
Substituting in both the likelihood of the data (Eq. A3)

and the prior distribution for αTt,g (Eq. A5) and simplify-
ing yields the univariate conditional posterior distribution for
αTt,g (Eq. A13).
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p
(
αTt,g |̃σC,αT−t,g,ε,σC

)
∝ (A13)

e

(
−

1
2ε2

∑3
c=1

∑F
f=1

∑I
i=1

(
σCc,f,i−σ̂Cc,f,i

)2
−

1
2(0.1)2

(
αTt,g−P(t,g)

)2
)

An important issue is that σ̂C is a function of αT and must
be evaluated for every proposed change to the 3-D correction.
This is computationally intensive and causes a bottleneck in
the analysis. Finally, the univariate conditional posterior dis-
tribution for ε can be expressed as Bayes’ theorem (Eq. A14).

p
(
ε|̃σC,αT,σC

)
=
p
(
σ̃C,αT,ε|σC

)
p
(
σC
)

p
(
σ̃C,αT,σC

) (A14)

Only the first term in the numerator must be evaluated
while assuming that all but ε are given (Eq. A15).

p
(
ε|̃σC,αT,σC

)
∝

3∏
c=1

F∏
f=1

I∏
i=1

p
(
σCc,f,i |̃σCc,f ,αT,ε

)
p(ε) (A15)

Substituting in the likelihood from Eq. (A3) and simplify-
ing yields the univariate conditional posterior distribution for
ε (Eq. A16)

p
(
ε|̃σC,αT,σC

)
∝ (A16)

ε−3FIe

(
−

1
2ε2

∑3
c=1

∑F
f=1

∑I
i=1

(
σCc,f,i−σ̂Cc,f,i

)2
−b́ε

)

A2 Instability in the w correction for near-equatorial
winds

For a CSAT3, the amount of correction applied to the verti-
cal wind velocity – expressed as the individual corrections
αA (λ,ϕ), αB(λ,ϕ), and αC(λ,ϕ) for the three transducer
pairs A, B, and C as functions of longitude, λ, and latitude,
ϕ – is

wcorrected

wuncorrected
=

2

3
√

3

[(
−

cosλ
2tanϕ

+

√
3

2

)
αA(λ,ϕ) (A17)

+

(
cosλ+

√
3sinλ

4tanϕ
+

√
3

2

)
αB (λ,ϕ)

+

(
cosλ−

√
3sinλ

4tanϕ
+

√
3

2

)
αC(λ,ϕ)

]
.

If the individual corrections for the three transducer pairs
never approach 0 or±∞, which is a safe assumption consid-
ering they are always around 1 (Figs. 3a, c, e and 9a, c, e),
the limit of this as the latitude approaches the Equator is

lim
ϕ→ 0

wcorrected
wuncorrected

=
1
3
(αA(λ,ϕ)+αB(λ,ϕ)+αC(λ,ϕ)) (A18)

+
2

3
√

3

[(
−

cosλ
2

)
αA(λ,ϕ)

+

(
cosλ+

√
3sinλ

4

)
αB(λ,ϕ)

+

(
cosλ−

√
3sinλ

4

)
αC(λ,ϕ)

]
lim
ϕ→ 0

1
tanϕ

.

This approaches ±∞ unless the terms associated with
the limit of the tangent exactly cancel. This is achieved if
αA(λ,0◦)= αB(λ,0◦)= αC(λ,0◦), which includes the spe-
cial case where αA(λ,0◦)= αB(λ,0◦)= αC(λ,0◦)= 1.
Based on our assumptions of symmetry with the
CSAT3, αB(λ,ϕ)= αA(60◦− λ,−ϕ) and αC(λ,ϕ)=

αA (60◦+ λ,−ϕ). Therefore, the w correction for near-
equatorial winds is unstable unless

αA
(
λ,0◦

)
=

1+
√

3tanλ
2

αA(60◦− λ,0◦) (A19)

+
1−
√

3tanλ
2

αA
(
60◦+ λ,0◦

)
.

This is satisfied by λ= 30, 90, 150, 210, 270, and
330◦. Equation (A19) shows that if the weighted average
of αA (60◦− λ,−ϕ) and αA (60◦+ λ,−ϕ) cancel αA(λ,0◦)
then the correction will be stable. This cannot be achieved if
the correction αA(λ,0◦) is monotonic within 0◦ ≤ λ≤ 90◦.
Because the w correction is symmetric every 30◦, any so-
lution besides λ= 30, 90, 150, 210, 270, and 330◦ will be
mirrored 12 times.
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The Supplement related to this article is available online
at doi:10.5194/amt-9-5933-2016-supplement.
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