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Abstract. Previous studies have shown that longwave (LW)
spectral fluxes have unique merit in climate studies. Using
Atmospheric Infrared Sounder (AIRS) radiances as a case
study, this study presents an algorithm to derive the entire
LW clear-sky spectral fluxes from spaceborne hyperspectral
observations. No other auxiliary observations are needed in
the algorithm. A clear-sky scene is identified using a three-
step detection method. The identified clear-sky scenes are
then categorized into different sub-scene types using infor-
mation about precipitable water, lapse rate and surface tem-
perature inferred from the AIRS radiances at six selected
channels. A previously established algorithm is then used
to invert AIRS radiances to spectral fluxes over the entire
LW spectrum at 10 cm−1 spectral interval. Accuracy of the
algorithms is evaluated against collocated Clouds and the
Earth’s Radiant Energy System (CERES) observations. For
nadir-view observations, the mean difference between outgo-
ing longwave radiation (OLR) derived by this algorithm and
the collocated CERES OLR is 1.52 Wm−2 with a standard
deviation of 2.46 Wm−2. When the algorithm is extended for
viewing zenith angle up to 45◦, the performance is compara-
ble to that for nadir-view results.

1 Introduction

Broadband outgoing longwave radiation (OLR) obtained by
the Earth Radiation Budget Experiment (ERBE; Barkstrom,
1984) and Clouds and the Earth’s Radiant Energy System
(CERES; Wielicki et al., 1996) has been extensively used
in climate studies for 3 decades. The physical quantity di-
rectly measured by the ERBE or CERES instruments is ac-

tually a convolution between broadband upwelling radiance
at a given viewing zenith angle (VZA) and the spectral re-
sponse function (SRF) of the broadband radiometer on the
ERBE or CERES. Then the broadband upwelling radiance
is inferred through deconvolution of the measurement, and,
subsequently, it is converted to broadband flux (e.g., Loeb
et al., 2005; Kato and Loeb, 2005). In order to reliably de-
rive the broadband flux, a variety of auxiliary information
needs to be used to define the scene type for each instrument
footprint. Such auxiliary information includes, but is not lim-
ited to, surface temperature, lapse rate, precipitable water
and cloud macroscopic properties (e.g., cloud fraction, cloud
emissivity). For the case of CERES, such auxiliary informa-
tion is obtained from other satellite measurements such as the
Moderate Resolution Imaging Spectroradiometer (MODIS)
and Special Sensor Microwave Imager (SSM/I) as well as
operational analysis (Loeb et al., 2005).

The integrand of broadband OLR, the spectral flux, is
not available from the broadband flux measurements such
as ERBE or CERES because of the nature of broadband ra-
diometer in these measurements. However, the spectral flux
can provide critically valuable information for the climate
model diagnostics. In particular, comparing modeled and ob-
served spectral flux can expose compensating biases in the
simulated radiation budget by the climate model that oth-
erwise cannot be exposed from broadband flux diagnostics
alone (Huang et al., 2006, 2013, 2014). Similarly, spectral
cloud radiative forcing can also help expose compensating
biases from different bands (Huang et al., 2013, 2014).

Currently there are several operational hyperspectral
sounders in space that measure spectral radiances in thou-
sands of infrared (IR) channels, for example, Atmospheric
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Infrared Sounder (AIRS; Aumann et al., 2003) since 2002,
Infrared Atmospheric Sounding Interferometer (IASI; Hilton
et al., 2012) since 2006 and Cross-track Infrared Sounder
(CrIS; Han et al., 2013; Strow et al., 2013) since 2011. Each
of these sounders can acquire several million spectra per day.
A series of studies published in recent years (Huang et al.,
2008, 2010, 2014; Chen et al., 2013) have established al-
gorithms to estimate observation-based spectral flux from
the AIRS radiances using the scene type information from
collocated CERES footprints. Specifically, spectral angular
distribution models (ADMs) for each AIRS channel have
been constructed for the scene types defined for the CERES
SSF (single-satellite footprint) data set and then applied to
AIRS radiances to derive spectral flux at each AIRS channel.
The spectral ADMs are trained from synthetic AIRS radi-
ances, and the meteorological fields from the ECMWF ERA-
Interim reanalysis (Dee et al., 2011) that are used to generate
the synthetic radiances. A principal component-based mul-
tivariate linear regression scheme is then used to estimate
spectral flux over the spectral bands not covered by the AIRS
instrument. The end product is spectral flux at 10 cm−1 in-
terval over the entire longwave (LW) spectrum. The spec-
tral flux derived from this method has been extensively com-
pared with the collocated CERES OLR, and the agreement
is robustly consistent across different scene types and over
different spatial and temporal scales, from footprint level to
gridded data, and from monthly means to annual means and
interannual variations (Huang et al., 2008, 2010, 2014; Chen
et al., 2013).

The aforementioned series of studies took a shortcut by
relying on the scene type information from the collocated
CERES data set. The other hyperspectral sounders such as
CrIS and IASI also fly with imagers such as the Visible
Infrared Imaging Radiometer Suite (VIIRS) and Advanced
Very High Resolution Radiometer (AVHRR), respectively.
These imagers provide information needed for scene type
classification. However, to apply information from these im-
agers, the near-simultaneous observations as well as the col-
location strategy are required to overcome the differences
in observational area and time period (Huang et al., 2008;
O’Carroll et al., 2012; Wang et al., 2013). The rich infor-
mation contained in the hyperspectral radiances naturally
leads to a hypothesis that all information needed for defining
scene types might be already contained in the spectral radi-
ances. Therefore, a scientifically intriguing question to ask
is, can we directly estimate spectral flux from such obser-
vations of hyperspectral radiances without relying on auxil-
iary observations and thus avoid the trouble of collocation
strategy and reduction of samples? To follow this line of
thinking, this study explores ways of defining scene types
and sub-scene types from hyperspectral measurements such
as AIRS radiances, and then evaluates the spectral flux de-
rived in this manner. As a first step, this study focuses on
clear-sky scene types; i.e., only non-cloud parameters (pre-
cipitable water, lapse rate and surface temperature) are con-

sidered in the definition of sub-scene types. This effort aims
to estimate longwave spectral flux and broadband OLR di-
rectly from AIRS Level 1 calibrated radiances over each indi-
vidual single footprint. This approach is different from other
studies such as Dessler et al. (2008), Moy et al. (2010) and
Susskind et al. (2012), which fed temperature and humid-
ity fields from AIRS Level 2 retrievals (defined for three-
by-three AIRS footprints) or even the Level 3 monthly grid-
ded data set into a radiative transfer model to compute the
clear-sky OLR. Huang et al. (2008, 2010, 2014) and Chen
et al. (2013) have demonstrated that such direct estimate of
spectral flux from AIRS radiances is feasible, and the esti-
mated OLR highly agree with the collocated CERES OLR.
Furthermore, the merit of the spectral flux in testing climate
models also warrants a feasibility study of deriving spectral
flux (preferably over the entire longwave spectrum) from the
hyperspectral satellite observations. All these facts have mo-
tivated the study presented in this article.

The rest of this paper is organized as follows. Section 2
describes the data set and forward model used in this study.
Clear-sky detection, sub-scene type classification and the
derivation of spectral flux for the case of nadir-view obser-
vations are described in Sect. 3. Section 4 validates the over-
all algorithm mentioned in Sect. 3. Section 5 discusses per-
formances of the algorithm in other viewing zenith angles
within ±45◦. Conclusions and further discussion are then
presented in Sect. 6.

2 Data sets and forward model

The data sets and forward model used in this study are
identical to those used in Huang et al. (2008) and Chen et
al. (2013). Below is a brief depiction of the relevant features
of the data and forward model.

AIRS is an infrared grating array spectrometer aboard
NASA’s Aqua satellite launched in 2002 (Aumann et al.,
2003). It measures radiances across three bands – 2181.5–
2665.2, 1217.0–1613.9 and 649.6–1136.6 cm−1 – with a
spectral resolving power (λ/1λ) of ∼ 1200, which con-
verts to approximate full width at half maximum (FWHM)
resolutions of ∼ 0.5 cm−1 at 650 cm−1 and ∼ 2.0 cm−1 at
2500 cm−1. The near-IR band is not used to derive spectral
fluxes over 10–2000 cm−1. It scans from −49 to 49◦ across
the track with 13.5 km ground footprints at the nadir view.
This study uses AIRS Level 1B calibrated radiances in the
entire year of 2004.

For the purpose of validation, broadband OLR and sub-
scene type information from the Aqua CERES SSF Edition 3
are used. The strategy to collocate CERES and AIRS ob-
servations at the footprint level is the same as described in
Huang et al. (2008). CERES nadir-view field of view (FOV)
is ∼ 20 km at the surface. The CERES SSF algorithm em-
ploys a MODIS-imagery-based algorithm to detect clear-sky
footprints (Geier et al., 2003). A CERES field of view is clas-
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sified as a clear-sky scene if the coincident MODIS pixel-
level cloud coverage within the FOV is less than 0.1 %. The
total precipitable water (TPW) in the CERES SSF data set is
retrieved from the SSM/I (Goodberlet et al., 1990). Its lapse
rate (1T ) is derived from the GEOS Data Assimilation Sys-
tem (DAO, 1996). Surface skin temperatures (Ts) are esti-
mated from MODIS clear-sky 11 µm radiance (Minnis et al.,
2004). The CERES SSF algorithm uses 1T , Ts and TPW to
define sub-scene types of clear-sky observations. Thus, the
OLR can be inverted using appropriated broadband ADM
and measured broadband radiances (Loeb et al., 2005; Kato
and Loeb, 2005). The uncertainty of inverted CERES OLR is
about 1 % (Loeb et al., 2007).

The European Centre for Medium-range Weather Fore-
casting (ECMWF) ERA-Interim reanalysis (Dee et al., 2011)
is used in this study as well. It has a spatial resolution of 1.5◦

latitude by 1.5◦ longitude and 37 vertical levels up to 1 hPa.
Similar to Huang et al. (2008) and Chen et al. (2013), the
forward radiative transfer model used here is the MODerate
resolution atmospheric TRANsmission code (MODTRAN,
version 5; Anderson et al., 2007). MODTRAN 5 is used
to compute synthetic AIRS radiances and outgoing spectral
fluxes at the top of atmosphere (TOA). MODTRAN 5 of-
fers a spectral resolution as fine as 0.1 cm−1 (higher than
AIRS spectral resolution). Compared with AIRS observa-
tions, MODTRAN 5 replicates AIRS brightness tempera-
tures over 650–1600 cm−1 with a mean difference of∼ 0.2 K
(the AIRS noise equivalent delta temperature (NEDT) be-
ing 0.51 K over this band) (Anderson et al., 2007). AIRS ra-
diances are generated by convoluting MODTRAN 5 output
and tabulated spectral response functions of AIRS channels
(Strow et al., 2006). The TOA spectral fluxes are computed
using a three-point Gaussian quadrature (Clough and Iacono,
1995).

3 Algorithm for estimating clear-sky LW spectral flux:
the case of nadir view

The algorithm for estimating clear-sky LW spectral flux from
nadir-view AIRS spectral radiances consists of three steps.
The first step is to use radiance alone to decide whether an
AIRS spectrum can be considered as a clear-sky spectrum or
not (usually referred as clear-sky detection). The second step
is to classify the sub-scene type of a clear-sky spectrum us-
ing radiance information alone. The third step is to invert the
AIRS radiances to spectral flux over the entire LW spectrum.

3.1 Clear-sky detection

3.1.1 Algorithm design

Detecting clear-sky scenes from IR radiance alone is usually
done by applying a sequence of tests (Amato et al., 2014,
and references therein). We use three tests in sequence for
this purpose. Test 1 is a spatially inhomogeneous test com-

monly referred as the “golden-arches” test, proposed first by
Coakley and Bretherton (1983). For a given AIRS footprint
and four adjacent AIRS footprints, if the standard deviation
of brightness temperatures at a window channel 963.8 cm−1

(hereafter denoted as BT963.8) is smaller than a predeter-
mined threshold value C1, the footprint passes test 1. For
the footprint that passes the golden-arches test, test 2 is a
bi-spectral test, namely the brightness temperature differ-
ence between two narrow bands, one being an 8 µm band
(BT8, 1121.0–1223.6 cm−1) and the other being an 11 µm
band (BT11, 888.7–994.1 cm−1). Test 2 utilizes the spectrally
dependent feature to distinguish cloudy spectrum and clear-
sky spectrum, because the 11 µm band is sensitive to water
clouds and ice clouds, while the 8 µm band has weak wa-
ter vapor absorption lines, and the BT8–BT11 difference has
been widely used for this purpose (e.g., Ackerman and Stra-
bala, 1994). If the BT8–BT11 difference of an AIRS spec-
trum is less than a predetermined value C2, the spectrum
passes test 2. Test 3 is a threshold test to compare the BT963.8
with the surface temperature at the ground footprint interpo-
lated from 6-hourly ERA-Interim reanalysis, termed TsERA–
BT963.8. BT963.8 is used as a surrogate of surface tempera-
ture in Chen and Huang (2014) because this channel has lit-
tle atmospheric absorption in the case of clear sky. If TsERA –
BT963.8 of an AIRS spectrum is smaller than a predetermined
value C3, the spectrum passes test 3. Only when a spectrum
passes all three tests do we deem it to be a clear-sky spec-
trum. Note that, though ERA-Interim reanalysis is used in
this study, in future operational applications the reanalysis
surface temperature can be replaced by the surface tempera-
ture from operational analysis.

We used 4 months of collocated AIRS and CERES nadir-
view observations in 2006 to empirically determine the
threshold values used in the three tests (i.e., C1, C2 and C3).
In other words, we use the clear-sky footprint identified by
CERES as the “ground truth” and decide the threshold val-
ues based on collocated AIRS observations accordingly. The
4 months used for this purpose are January, April, July and
October of 2006. A total of ∼ 1.56 million collocated ob-
servations are available for this training purpose. We first
categorize the observations into four groups: daytime ocean,
nighttime ocean, daytime land and nighttime land. Then for
each group, the threshold value is defined as the value suit-
able for describing 95 % of qualified observations. An ex-
ample of how to decide C1 is given in Fig. 1. Each panel
plots the histogram of the standard deviation based on the
BT963.8 of the clear-sky AIRS footprint and four adjacent
AIRS footprints. Only 5 % of clear-sky observations in each
panel have a standard deviation larger than the value denoted
by the dashed line, which is then assigned as the value of C1.
The value of C2 is decided in a similar manner. Water va-
por continuum absorption is important for the AIRS channel
at 963.8 cm−1. Such absorption is dominated by humidity in
the planetary boundary layer, which is highly correlated with
surface temperature. Therefore, we divide observations fur-
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Table 1. Threshold values used in the clear-sky tests. Details of threshold definitions and the ways to determine them can be found in
Sect. 3.1.

Thresholds Daytime ocean Nighttime ocean Daytime land Nighttime land

C1 (K) 0.62 0.61 2.17 1.650
C2 (K) −1.39 −1.38 −2.04 −0.510
C3 (K) 2.47 (TsERA < 280 K)

3.12 (280–285 K)
3.61 (285–290 K)
3.61 (290–295 K)
3.95 (295–300 K)
5.49 (> 300 K)

2.29(TsERA < 280 K)
3.12 (280–285 K)
3.11 (285–290 K)
3.54 (290–295 K)
4.13 (295–300 K)
5.82(> 300 K)

1.24 (TsERA < 290 K)
1.49 (290–295 K)
3.28 (295–300 K)
3.99 (300–305 K)
5.31 (305–310 K)
5.76 (> 310 K)

2.28 (TsERA < 260 K)
5.41 (260–270 K)
5.61 (270–275 K)
6.72 (275–280 K)
7.36 (280–285 K)
8.25 (> 285 K)

Table 2. The performance of clear-sky detection algorithm. FN (false negative) is the percentage of CERES clear-sky observations misclas-
sified as cloudy sky by the algorithm. FP (false positive) is the percentage of CERES cloudy-sky observations misclassified as clear sky by
the algorithm. Merit function is the overall success rate compared to the CERES algorithm in terms of distinguishing clear- vs. cloudy-sky
observations. Steps 1–3 are defined in detail in Sect. 3.1.

Ocean Land Near global (81◦ S–81◦ N)

FN (%) FP (%) Merit FN (%) FP (%) Merit FN (%) FP (%) Merit
function (%) function (%) function (%)

Step 1 4.8 19.7 81.3 6.2 33.1 71.1 5.4 22.4 79.1
Steps 1+ 2 9.7 14.1 86.2 10.0 19.2 82.2 9.8 15.2 85.3
Steps 1+ 2+ 3 13.9 10.0 89.8 14.0 15.4 84.8 13.9 11.1 88.7

ther into different subgroups based on the value of TsERA , and
the value of C3 is determined for each subgroup accordingly.
Table 1 summarizes the threshold values for C1, C2 and C3
derived in this manner.

3.1.2 Performance of the clear-sky test algorithm

We assess the performance of the clear-sky test algorithm
using collocated CERES and AIRS nadir-view observations
in the entire year of 2004 (4.48 million observations in to-
tal). The performance is summarized in Table 2. The false-
negative (FN) rate refers to the percentage of collocated
CERES clear-sky observations that have been classified as
cloudy-sky observations by our algorithm. The false-positive
(FP) rate refers to the percentage of collocated CERES
cloudy-sky observations that have been classified as clear-
sky observations by our algorithm. The merit function refers
to the percentage of successful classifications by our algo-
rithm for all cloudy- and clear-sky footprints. The definition
of FN, FP and merit function follows Amato et al. (2014). It
can be seen that, although using three tests together increases
the rate of false negative, such an approach is also effective
in reducing the false-positive rate. Given that the number of
cloudy-sky observations is ∼ 9–10 times more than that of
clear-sky observations, using three tests together can achieve
a better accuracy than using one of the tests alone. As far as
the FN and FP rates are concerned, this algorithm is compa-
rable to other clear-sky detection algorithms that are based

Figure 1. Histogram of the standard deviations of 963.8 cm−1

brightness temperatures for an AIRS clear-sky footprint and four
adjacent AIRS footprints. The clear-sky information from collo-
cated CERES observation is used. The histograms for daytime
ocean, daytime land, nighttime ocean and nighttime land are plot-
ted separately. One hundred bins are used in each panel. The black
dashed line denotes the 95 % percentile and corresponds to the value
of C1 shown in Table 1.

on IR spectral radiances alone (e.g., Table 4 in Amato et
al., 2014). The number of clear-sky AIRS footprints detected
by this algorithm is nearly two times the number of clear-
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Table 3. Accuracy of the sub-scene type classification algorithm described in Sect. 3.2. The statistics are based on collocated nadir-view
AIRS and CERES observations in 2004. “Occ.” and “Acc.” in the Table denote occurrence and accuracy, respectively. The sub-scene type is
coded as a three-digit number. The first digit refers to TPW, the second one refers to 1T and the last refers to Ts, as defined in the table. The
definition of sub-scene types here is identical to the LW discrete intervals in Loeb et al. (2005).

Sub-scene TPW Occ. Acc. Sub-scene 1T Occ. Acc. Sub-scene Ts Occ. Acc.
type (cm) (%) (%) type (K) (%) (%) type (K) (%) (%)

1– – 0–1 16.3 63.1 –1– < 15 32.9 70.5 – –1 < 270 1.24 99.8
2– – 1–3 55.0 86.8 –2– 15–30 65.8 85.1 – –2 270–290 24.7 98.2
3– – 3–5 25.7 82.0 –3– 30–45 1.29 48.4 – –3 290–310 73.1 93.2
4– – > 5 3.0 53.8 –4– > 45 0.002 16.7 – –4 310–330 0.98 22.1

– –5 > 330 0.0 –

Overall 100 80.7 100 79.8 100 93.8

Figure 2. Number of AIRS footprints that are misclassified as clear-
sky footprints as a function of cloud fraction and cloud top pres-
sure. The cloud information is from the collocated CERES SSF data
product.

sky footprints from the collocated CERES SSF data set. The
overwhelming majority of misclassified footprints are those
with cloud top pressure≥ 900 hPa and cloud fraction≤10 %,
as shown in Fig. 2. In other words, for footprints with low
cloud and very small cloud fraction, the IR-alone detection
algorithm has difficulty distinguishing it from the clear-sky
footprint, which is consistent with previous IR-based clear-
sky detection results. As shown later in Fig. 6 and the re-
lated discussion, the OLR estimated for these misclassified
footprints is indeed similar to the collocated CERES OLR,
largely because of the very limited cloud fraction in the foot-
prints.

3.2 Sub-scene type classification

The second step in the overall algorithm is to classify the
sub-scene types of clear-sky observations identified by the al-
gorithm described in Sect. 3.1. The sub-scene types adopted

here are largely similar to the discrete intervals defined by
Table 3 in Loeb et al. (2005), which depend on the TPW, sur-
face temperature (Ts) and lapse rate (1T ) defined as the tem-
perature difference between the surface and 300 hPa above it.
Similar to Chen and Huang (2014), here BT963.8 is used as a
surrogate of surface temperature.1T is inferred from bright-
ness temperature differences of two AIRS channels: 963.8
and 748.6 cm−1 (hereafter denoted as 1BT963.8−748.6). A
quick estimate of TPW is obtained by a lookup table ap-
proach proposed by Chen and Huang (2014), which makes
use of double difference of two pairs of AIRS channels as
well as BT963.8 and 1BT963.8−748.6 to construct the lookup
table. Table 3 lists the accuracy of this algorithm based on the
collocated AIRS and CERES observations in 2004 and the
comparison with the auxiliary information of TPW, Ts and
1T in the CERES SSF data set. It can be seen that, though
this estimate method is solely based on AIRS radiances, the
accuracy is 80 % or even higher.

3.3 Estimate of fluxes from radiance measurements

The last component in our algorithm is to invert spec-
tral fluxes from the AIRS radiances. Huang et al. (2008)
adopted the same sub-scene type classification as in Loeb
et al. (2005) for inverting AIRS radiance to spectral flux.
Therefore, the algorithm in Huang et al. (2008) can be used
here without further modification. Specifically, the spec-
tral radiance (IAIRS(θ) at each viewing zenith angle θ ) is
first converted to spectral flux (FAIRS) over each AIRS
channel using a pre-calculated anisotropic factor RAIRS(θ)

based on the spectral ADM for each sub-scene type; i.e.,
FAIRS = π · IAIRS(θ)/RAIRS(θ) (Huang et al., 2008). Then
a principle component-based multivariate prediction scheme
is used to estimate spectral fluxes over the spectral portion
(< 649.6, 1136.6–1217.0 and 1613.9–2000 cm−1) not cov-
ered by the AIRS instrument. Details can be found in Huang
et al. (2008). The performance of this radiance-to-flux algo-
rithm and its characteristics has been documented in detail in
Huang et al. (2008) and Chen et al. (2013).
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Figure 3. The mean differences between the predicted spectral
fluxes based on synthetic AIRS spectra and the directly computed
fluxes for different sub-scene types. The naming convention of sub-
scene types is defined in Table 3. The spectral flux is for every
10 cm−1 interval from 10 to 2000 cm−1. Spectral bands between
two pairs of dashed lines are covered by the AIRS instrument.

4 Validation of the overall algorithm

This section focuses on validation of the overall algorithm
in terms of its performance in estimating the spectral flux
over the entire longwave spectrum. The following parts 1–
3 examine the performance of the scene type classification
algorithm, and part 4 examines the overall performance of
the clear-sky detection and the scene type classification algo-
rithms.

1. We feed 6-hourly ERA-Interim reanalysis data to the
forward model to simulate clear-sky AIRS radiances
and apply our algorithm to estimate the spectral flux
(hereafter FAIRS-only). We then compare this spectral
flux with clear-sky spectral fluxes directly computed us-
ing the ECMWF ERA-Interim reanalysis with the same
forward model (hereafter FERA). This is an idealized
test because the forward modeling is assumed to be a
surrogate of reality. Specifically, 6-hourly ERA-Interim
reanalysis data from January, April, July and Octo-
ber 2004 are subsampled and interpolated onto the tra-
jectory of AIRS nadir-view observations. Then MOD-
TRAN 5 is used to generate synthetic AIRS radiances
and synthetic spectral flux FERA. Then FAIRS-only is de-
rived from synthetic AIRS radiances based on the scene
types determined from synthetic AIRS radiances alone,
instead of directly determined from ERA profiles as in
our previous works of Huang et al. (2008) and Chen et
al. (2013). In total 290 761 profiles are used, and the
number of profiles for each sub-scene type varies from
50 to 64 992. The averaged difference of the spectral
flux for each scene type, denoted as FAIRS-only–FERA,
at 10 cm−1 spectral interval is shown in Fig. 3. For the

window bands, the differences (FAIRS-only–FERA) are
generally within±0.03 Wm−2 per 10 cm−1. Exceptions
are seen for those sub-scene types with very dry atmo-
sphere above a hot surface. These circumstances make
it difficult for our radiance-based algorithm to faithfully
estimate the TPW. As shown in Table 3, the frequency of
occurrences for such scene types is small; e.g., hot sur-
face with temperature above 310 K is no more than 1 %.
Outside the window bands, the FAIRS-only–FERA differ-
ences are usually within ±0.02 Wm−2 per 10 cm−1.

2. For collocated AIRS and CERES clear-sky observations
in 2004, we use the algorithm to derive the spectral
flux and OLR (the summation of spectral flux) from
AIRS radiance (hereafter, OLRAIRS-only) and compare
it with the collocated CERES clear-sky OLR (here-
after OLRCERES). Upper panels in Fig. 4 show the
annual-mean daytime and nighttime difference between
OLRAIRS-only and OLRCERES. The differences are aver-
aged onto 2◦ latitude by 2.5◦ longitude grids from 80◦ S
to 80◦ N. Lower panels in Fig. 4 show the histograms
of OLRAIRS-only–OLRCERES differences for all collo-
cated AIRS and CERES clear-sky footprints. Figure 4a
and b show that the difference tends to be negative over
land areas (∼ 1–2 Wm−2) and positive over extratropi-
cal oceans (∼ 1–3 Wm−2). The rms (root-mean-square)
differences for Fig. 4a and b are 1.79 and 1.11 Wm−2,
respectively. Such a pattern and magnitude of the differ-
ences in Fig. 4a and b are comparable to the results us-
ing the scene type information directly from the CERES
SSF data set, as shown in Fig. 5a and b in Chen et
al. (2013). In terms of the statistics of the OLRAIRS-only–
OLRCERES difference for an individual footprint, the
daytime mean difference is 0.91 Wm−2 with a standard
deviation of 2.34 Wm−2 (Fig. 4c), and the nighttime
mean difference is 0.14 Wm−2 with a standard deviation
of 1.85 Wm−2 (Fig. 4d). These statistics are comparable
to those in Huang et al. (2008) and Chen et al. (2013).

3. We examine the statistics of OLRAIRS-only–OLRCERES
differences for each available clear-sky sub-scene type
in the data used in part 2. The results are summarized in
Fig. 5. The averaged daytime OLRAIRS-only–OLRCERES
differences for all sub-scene types are between −1.6
and 3.3 Wm−2 with a standard deviation no larger than
3.8 Wm−2. For the nighttime, the mean difference for
all sub-scene types varies from −0.7 to 2.2 Wm−2, and
the standard deviation is less than 2.5 Wm−2. Given that
the radiometric uncertainty of CERES OLR is about
1 % and the typical OLR value varies between 200 and
300 Wm−2, the mean differences (black line in Fig. 5)
are within or at least comparable to the radiometric un-
certainty of CERES OLR (red line in Fig. 5).

4. In addition to using collocated clear-sky observations
to evaluate the algorithm, we also apply the algorithm
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Figure 4. (a) Near-global distribution of annual-mean differences between daytime OLR derived from clear-sky AIRS nadir-view radiances
using the algorithm in this study and the collocated CERES clear-sky daytime OLR (OLRAIRS-only–OLRCERES). The data in 2004 are used
and averaged onto 2.5◦ longitude by 2◦ latitude grids. (b) Same as (a) but for annual-mean nighttime OLR differences. (c) The histograms
of daytime OLRAIRS-only–OLRCERES differences among all collocated AIRS and CERES nadir-view footprints. (d) Same as (c) but for
the histogram of nighttime OLRAIRS-only–OLRCERES differences. Fifty bins are used in both (c) and (d). The mean differences ± standard
deviations and number of observations are also labeled on the plot.

to all collocated AIRS and CERES nadir-view obser-
vations in the entire year of 2004 and obtain OLR
for all AIRS measurements that our algorithm deter-
mines to be clear-sky observations. The mean difference
is 1.52 Wm−2 and standard deviation is 2.46 Wm−2.
The figure is not shown here. We then compare the
OLR of those “false-positive” observations, i.e., foot-
prints identified as clear-sky scenes by our algorithm
but as cloudy-sky scenes by the CERES algorithm.
Figure 6 shows the histograms of OLR differences
(OLRAIRS-only–OLRCERES) of such cases of a false pos-
itive. The mean difference is 2.93 and 1.60 Wm−2 for
the daytime and nighttime, respectively. The standard
deviation is 2.3 Wm−2 for both cases. The mean OLR
for the cases shown in Fig. 6a and b is 288.7 and
279.0 Wm−2, respectively, which means the relative dif-
ference between OLRAIRS-only and OLRCERES is only
1.0 and 0.6 %. This suggests that, even though the al-
gorithm misclassifies such cloudy-sky observations as
clear-sky ones, the estimated OLR difference between
OLRAIRS-only and OLRCERES is only 1 % or less.

5 Applicability to other viewing zenith angles

The algorithm described above is for nadir-view AIRS ra-
diances. It can be extended to other viewing zenith angles
by taking the dependency of upwelling radiances on view-
ing zenith angles into account. Specifically, for the first two
steps depicted in Sect. 3, the threshold values and lookup
tables need to be adjusted in accordance with the viewing
zenith angles. The algorithm in the third component has al-
ready taken viewing zenith angle into account (Huang et al.,
2008), and thus no additional effort is needed. Since the ob-
jective of this study is to demonstrate the feasibility of the
algorithm, we summarize the performance of the algorithm
for other VZAs instead of describing all details as done for
the case of nadir-view observations. Figure 7a shows the suc-
cess rate for the algorithm to accurately classify cloudy and
clear-sky footprints as a function of the VZA, which still uses
the collocated CERES scene type information as the ground
truth. The algorithm performs consistently across all VZAs;
when the VZA increases from 0 to 45◦, the success rate
varies within 2 %. Figure 7b shows the differences between
OLRAIRS-only and OLRCERES for both daytime and nighttime
results. Both differences, 1.93–2.15 Wm−2 for daytime and
1.07–1.67 Wm−2 for nighttime, change little with respect to
the VZA.
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Figure 5. (a) Black line denotes the mean of daytime OLR difference (OLRAIRS-only–OLRCERES) for each sub-scene type. Ticked vertical
lines denote ±1σ (standard deviation). Red line is the uncertainty of OLRCERES (assuming 1 % of mean OLRCERES for all scene types).
Blue bars indicate the frequency of occurrence of each sub-scene type in percentage. (b) Same as (a) but for nighttime observations. The
numbers of daytime and nighttime observations are 1.86× 105 and 1.87× 105, respectively.

Figure 6. (a) and (b) are similar to Fig. 4c and d but for the AIRS
footprints classified as clear sky by the algorithm in this study,
while their collocated CERES footprints are identified as cloudy
sky. Mean ± standard deviation of the difference (OLRAIRS-only–
OLRCERES) is also given on the plot.

Figure 7. (a) Success rate of the algorithm in distinguishing clear-
sky and cloudy-sky footprints as a function of viewing zenith an-
gle (VZA). (b) The difference of OLRAIRS-only–OLRCERES as a
function of VZA. Ticked vertical lines denote the ±1σ (standard
deviation).
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The performance with respect to different VZAs here is
consistent with previous results in Huang et al. (2008) and
Chen et al. (2013), two studies that rely on the sub-scene
type information from the CERES SSF data set. The algo-
rithm in this study behaves robustly across the range of VZAs
for AIRS measurements. The other hyperspectral sounders
make observations over a similar range of VZAs. Therefore,
the robust performances here further assure the potential of
extending the algorithm to other hyperspectral sounding ob-
servations.

6 Conclusions and discussion

Using AIRS observation as an example, this study devel-
ops an algorithm based on spectral radiances to estimate
LW clear-sky spectral flux. The algorithm first detects clear-
sky spectrum by a three-step threshold test, i.e., the golden-
arches test for the spatial homogeneity, a bi-spectral test for
spectral features of clear-sky absorption and emission and
a single-channel thermal threshold test for an extra check
against surface temperature. Atmospheric and surface pa-
rameters (total precipitable water, lapse rate and surface tem-
perature) needed for categorizing sub-scene types are di-
rectly estimated using AIRS radiances at six channels and
the pre-constructed lookup tables. The accuracy of clear-sky
detection and sub-scene type classification as well as their
effect on clear-sky spectral flux derivation have been as-
sessed. When using CERES scene type information as the
ground truth, the algorithm can achieve an accuracy rate of
88.7 % for classifying nadir-view clear-sky and cloudy foot-
prints. Differences between OLR derived using the algo-
rithm and the collocated CERES OLR show no strong depen-
dence on the sub-scene types. The statistics of OLRAIRS-only–
OLRCERES obtained here are comparable to those in Huang
et al. (2008) and Chen et al. (2013), two studies that di-
rectly used the scene-type and clear-sky information from the
CERES data set. The algorithm performs consistently over
different viewing zenith angles.

The purpose of this study is to explore the additional value
of hyperspectral sounding measurements, i.e., by deriving
spectral flux directly from such observations as the spectral
fluxes that have been shown to have unique merit in cli-
mate model evaluations (Huang et al., 2006, 2013, 2014).
The broadband flux measured by CERES and its predeces-
sor ERBE has become a benchmark standard in the earth
observation community, as has the sophisticated and well-
validated multiple data-fusion approach used in the CERES
data product. It is not the intention of this study to produce
merely another set of broadband flux products. Instead, the
emphasis here is to derive the spectral flux, which can help us
understand the compensating biases in modeled broadband
radiation flux.

In general, the performance of the algorithm is more af-
fected by the accuracy of clear-sky detection than the rest of

the components. To use LW spectral observations alone to
detect clear sky is not easy, partially because it is difficult to
distinguish optically thin clouds or small fraction of clouds
within the field of view. In operational use, the accuracy of
clear-sky detection could be improved if other simultaneous
measurements, especially those made at higher spatial reso-
lutions, were available. A good example is the use of MODIS
imageries in the CERES SSF algorithm. Another example is
the use of microwave sounding observations to help the sur-
face parameter retrievals, which in turn helps the retrievals
of atmospheric parameters including the cloud vs. clear-sky
detection (Kahn et al., 2014).

While the algorithm presented in this study is only for
clear-sky spectra, it is conceivable that this algorithm can be
evolved for estimating spectral fluxes from cloudy-sky hy-
perspectral observations as well. In the case of cloudy-sky
spectra, the cloud parameters, especially cloud fraction and
cloud top height, will need to be considered in the definition
of sub-scene types. The rich information contained in hy-
perspectral radiances is likely sufficient to define sub-scene
types needed for the algorithm.

7 Data availability

The AIRS Level 1B data are downloadable from
NASA GES DISC (http://airsl1.gesdisc.eosdis.nasa.
gov/data/Aqua_AIRS_Level1/AIRIBRAD.005/, GES
DISC, 2016), and the Aqua CERES data were obtained
from NASA Atmospheric Science Data Center (https:
//eosweb.larc.nasa.gov/HORDERBIN/HTML_Start.cgi,
ASDC, 2016). The ECMWF ERA-Interim data are from
http://apps.ecmwf.int/datasets/data/interim-full-daily/
levtype=pl/ (ECMWF, 2016).
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