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Abstract. The differential mobility particle sizer (DMPS) is

designed for measurements of particle number size distribu-

tions. It performs a number of measurements while scanning

over different particle sizes. A standard assumption in the

data-processing (inversion) algorithm is that the size distri-

bution remains the same throughout each scan. For a DMPS

deployed in an urban area this assumption is likely to be vio-

lated most of the time, and the resulting size distribution data

are unreliable. To improve the reliability, we developed a new

algorithm using a statistical model in which the problematic

assumption was replaced with more realistic smoothness as-

sumptions, which were expressed through Gaussian process

prior probabilities. We tested the model with data from a

twin DMPS located at an urban background site in Helsinki

and found that it provides size distribution data which are

much more realistic. Furthermore, particle number concen-

trations extracted from the DMPS data were compared with

data from a condensation particle counter. At 10 min resolu-

tion, the correlation for a period of 10 days was 0.984 with

the new algorithm and 0.967 with the old one. Moreover, the

time resolution was improved, and at 30 s resolution we ob-

tained positive correlations for 89 % of the scans. Thus, the

quality of the inverted data was clearly improved.

1 Introduction

There is no direct way of measuring the size distribution of

fine particles. To get information on the size distribution, mo-

bility particle size spectrometers (Wiedensohler et al., 2012)

select in turns particles of various electrical mobilities, and

for each electrical mobility the number of particles in some

volume is counted. To obtain the size distributions, the de-

pendence of electrical mobilities on particle sizes is utilised.

However, the electrical mobility depends also on the particle

charge, so various combinations of particle size and charge

give the same electrical mobility, and the inference of the ac-

tual particle size distribution is not trivial. The algorithms

which have been developed for this purpose are generally

known as inversion algorithms. The task can be split into

two parts: determination of the transfer function, which gives

the detection probabilities of particles in the sampled air, and

the actual inversion. In this study we focused on the latter

part. Further we restrict ourselves to considering differential

mobility particle sizers (DMPSs) which differ from scanning

mobility particle sizers (SMPSs) by changing the selected

electrical mobility in discrete steps.

A DMPS typically performs a few tens of measurements

while scanning over a wide range of electrical mobilities.

Each measurement takes several seconds, and a typical wait-

ing time between the measurements is around 10 s. Thus,

each scan takes 5 to 10 min. The inversion must be based

on some assumption about the time evolution of the aerosol

during the scan. The simplest and most commonly used as-

sumption is that the particle size distribution stays constant

during each scan. In remote areas, where the particle size dis-
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Figure 1. Size distributions from 2 March 2015 according to the

old inversion algorithm, which assumes stationary particle size dis-

tributions during each scan.

tribution changes slowly most of the time, this assumption is

reasonable most of the time. However, when a DMPS is de-

ployed in a city with numerous nearby sources and a turbu-

lent wind flow, this assumption is often far from the truth, and

many of the derived particle size distributions are unreliable.

Let us illustrate this with an example using inverted data from

the twin DMPS (comprises two DMPSs) at the SMEAR III

(Station for Measuring Ecosystem–Atmosphere Relations)

station in Helsinki (Järvi et al., 2009) on 2 March 2015. The

particle size distribution fluctuated substantially during day-

time (Fig. 1), but at night-time there were periods without

fluctuations. For these night-time periods, the particle size

distribution was a rather smooth function of size, but in day-

time unrealistically narrow peaks are present in the inverted

data. In particular, the scan from 11:00 to 11:10 UTC+2 h is

problematic, because of the strong, narrow peaks at 13 and

30 nm (Fig. 2). Single-charged particles of these two sizes

are measured almost simultaneously in the two DMPSs, so

the peaks at these sizes are most likely caused by a brief con-

centration peak. At 26 nm dN/dlog10Dp appears to be low

(Fig. 2; see also the light-blue spot close to the middle of

Fig. 1), although the raw data indicate that the concentration

was already elevated when the DMPS measured particles at

this size. However, a fraction of the particles in the 30 nm bin

will be detected in the measurement centred at 26 nm, and,

assuming a stationary particle size distribution, the 30 nm

particles were very abundant also during this measurement.

Thus, assuming a stationary particle number size distribu-

tion, most of the particles detected in this measurement be-

longed to the 30 nm bin. Additionally, double-charged 39 nm

particles contributed somewhat to the particle count. As a re-

sult, a small value was assigned to dN/dlog10Dp at 26 nm.
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Figure 2. Three particle number size distributions from 2 March

2015 according to the old inversion algorithm, which assumes sta-

tionary particle size distributions during each scan.

A few studies have addressed this issue of possible size

distribution changes happening during a scan. Voutilainen

and Kaipio (2001) presented an algorithm based on the

Kalman filter. They let the particle size distribution change

in discrete steps at each measurement based on the obser-

vation and a random walker. Subsequently, a smoother and

a non-negativity constraint were applied. The algorithm was

applied to synthetic data, and it reproduced a slowly varying

size distribution well. Voutilainen and Kaipio (2002, 2005)

parametrised the size distribution and replaced the random

walker by estimations of the time evolution based on an

aerosol model which took coagulation and condensation into

account. The underlying assumption is that the DMPS con-

tinuously samples from the same aerosol, which changes in

time due to these processes. Also this assumption is generally

invalid in a city. Although the algorithm by Voutilainen and

Kaipio (2005) was also shown to adjust to abrupt changes in

the aerosol within a couple of minutes, it was not designed

for use in urban locations.

In this work, we developed a new inversion algorithm for

processing DMPS data from locations with fluctuating par-

ticle number concentrations. The particle number size dis-

tribution was modelled as a function of time and particle

size using a Gaussian process (GP) model (Rasmussen and

Williams, 2006). Assumptions of smoothness in both dimen-

sions were incorporated through a GP prior. We tested our

new algorithm with data from the twin DMPS at the urban

background station SMEAR III in Helsinki. For periods with

considerable fluctuations, the time resolution and the relia-

bility of the derived particle number size distribution were

substantially improved. A demo version of our algorithm is

provided in the Supplement.
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2 Methods

2.1 Quantification of particle size distributions

Particle size distributions are usually described by the

dN/dlog10Dp, although it is not a distribution function

in a mathematical sense. N is the product of the total

particle number concentration and the cumulative distribu-

tion function of the particle diameters (Hinds, 1999). Thus,

dN/dlog10Dp is the product of the concentration and the

probability density function on the logarithmic scale.

2.2 DMPS

The DMPS comprises a neutraliser (bi-polar charger), a dif-

ferential mobility analyser (DMA), and a condensation par-

ticle counter (CPC). In the neutraliser, ionising radiation en-

sures that the particles in the sampled air reach the equilib-

rium charge distribution. This charge distribution is known

and depends on the particle size. In the DMA, the voltage

and airflow are adjusted to select particles with a certain elec-

trical mobility Z =
qCc

3πηDp
, where q is the charge; Dp is the

mobility (Stokes’) diameter; Cc is the Cunningham slip cor-

rection factor, which depends on Dp; and η is the dynamic

viscosity of the air. So Z depends on two particle properties:

Dp and q = ze, where z is an integer and e is the elementary

charge. The particles selected by the DMA flow to the CPC

which counts them. Usually, the flows are kept constant and

the DMPS scans over a few tens of discrete DMA voltages in

order to select particles of different electrical mobilities. At

each of these voltages, a measurement is performed with the

CPC.

2.3 Transfer function

The transfer function T (Dp,U) is defined as the probability

that a particle of diameter Dp will be detected in the CPC

when the DMA voltage is U . This probability is the product

of the following three probabilities:

– PDMA, the probability that the particle is selected by the

DMA (Stolzenburg, 1988; Mamakos et al., 2007);

– PPen, the probability that the particle penetrates all sam-

pling lines without being deposited (Wiedensohler et al.,

2012);

– PCPC, the detection probability for particles reaching

the CPC.

The DMA is designed to select particles with electric mo-

bilities in a narrow band. The electric mobility depends on

Dp and the number z of charges. The probability of a certain

number z of charges depends on the particle size, i.e. on Dp.

Thus, PDMA can be described as a function of Dp and the

DMA voltage U . Diffusion is the main reason for deposition

of particles in the sampling lines, and the particle diffusiv-

ity depends on the particle size, so PPen is also a function

of Dp. PCPC is close to unity (1) for most particles, but for

the smallest particles it is lower. During a measurement i the

DMA voltage is kept at a constant value Ui . We will define

Ti(Dp)= T (Dp,Ui). Ti has a few clear peaks and is zero

for the rest of the interval. The largest peak is for the diam-

eter which gives the selected electrical mobility Z when the

number of charges z equals 1 or−1. The sign depends on the

polarity of the DMA voltage. A second peak is observed for

the diameterDp, which gives the same electrical mobility for

a particle with double charge. This peak is smaller than the

first one, because particles are less likely to carry two charges

than one charge. Triple-charged particles cause a third peak,

which is smaller than the second peak, and subsequent peaks

are even smaller.

2.4 Inversion algorithm based on a GP model

A GP, or Gaussian random field, is a stochastic process that

can be used to define probability distributions over functions,

and it is a generalisation of the multivariate normal (Gaus-

sian) distribution (O’Hagan, 1978; Rasmussen and Williams,

2006). It is defined by a mean and a covariance function,

which determine the properties, such as the smoothness and

variability of the process. GPs are widely used for interpo-

lation and to model coloured (spatially correlated) noise in

spatial statistics (Gelfand et al., 2010), and they have ob-

tained increasing interest also in, e.g., statistics and machine

learning due their good interpolation and smoothing proper-

ties as well as convenient marginalisation and conditioning

properties (see Sect. 2.5.2) (Rasmussen and Williams, 2006;

Vanhatalo et al., 2010).

Let us define a latent function f (t,u)= log(dN/du),

where t is time and u= log10Dp. We use the Bayesian for-

malism and express our prior belief about its smoothness

through a GP prior. Thus, the posterior, which is proportional

to the product of the prior and the likelihood, is a probability

distribution of f .

2.4.1 Likelihood function

Each measurement i provides a count yi of particles, so the

Poisson distribution Poi(yi |λi)= exp(−λi)
λ
yi
i

yi !
is suitable for

each factor of the likelihood

p(y|f )=
∏
i

exp(−λi)
λ
yi
i

yi !
. (1)

The rate parameter λi is obtained by integrating the product

of dN/dlog10Dp and the transfer function Ti . In terms of f

and u defined above,

λi =Q

∞∫
−∞

ti,end∫
ti,begin

exp(f (t,u))Ti(10u)dtdu, (2)

where Q is the sample flow rate and ti,begin and ti,end are

the beginning and end times of measurement i. If f (t,u)
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does not fluctuate much during each measurement (which has

much shorter duration than a scan), the following approxima-

tion holds:

λi ≈ Vi

∞∫
−∞

exp(f (ti,u))Ti(10u)du, (3)

where Vi is the volume of sampled air and ti is the middle

of the time interval between ti,begin and ti,end. Because Ti has

a few clear peaks and is zero for the rest of the interval, the

integral can be well approximated by a sum. Let Ti,j equal

the integral of Ti over the peak centred at size ui,j , and let

fi,j = f (ti,ui,j ). Then

λi ≈ Vi
∑
j

exp(fi,j )Ti,j . (4)

The number of peaks to consider in this sum depends on the

size of the selected particles. When the DMA selects parti-

cles with high electrical mobility (meaning very small par-

ticles), Ti,2� Ti,1, because these particles have very small

probability of carrying two charges. On the other hand, for

particles with diameters of a few hundred nanometres, mul-

tiple charges are common, and we considered particles with

up to six charges (following the custom of the old inversion

algorithm).

2.4.2 Prior

The particle number size distribution is assumed to be

a smooth function of the particle size, and it is assumed to

vary smoothly over time. These properties are modelled by

giving a GP prior for the latent function

f (t,u)∼ GP(µ(t,u),k(u,u′)k(t, t ′)), (5)

where µ(t,u) is the mean function and k(u,u′)k(t, t ′)

is the covariance function such that k(u,u′)=

Cov(f (t,u),f (t,u′)) and k(t, t ′)= Cov(f (t,u),f (t ′,u)).

We assume that the mean function is constant, µ(t,u)=

µ, so that it represents the average of f and give it a Gaus-

sian prior µ∼N(0,σ 2
µ). This implies that the prior can be

written as f (t,u)∼ GP(0,σ 2
µ+ k(u,u

′)k(t, t ′)). The covari-

ance function along the particle size follows the Matérn co-

variance function with 5/2 degrees of freedom (Rasmussen

and Williams, 2006):

k(u,u′)= σ 2

(
1−

√
5|u− u′|

lu
+

5|u− u′|2

3l2u

)
e−
√

5|u−u′|/lu , (6)

where σ 2 governs the magnitude of process variation and lu
governs the autocorrelation length of the GP along the par-

ticle size dimension. The covariance function along the time

domain is exponential:

k(t, t ′)= e−|t−t
′
|/lt , (7)

where lt is the autocorrelation length of the GP along the time

dimension. The Matérn and exponential covariance functions

lead to a stationary process in particle size and time di-

mension. The exponential covariance function corresponds

to a continuous-time autoregressive model of order one and

is mean-square continuous, but not mean-square differen-

tiable (see, e.g., Rasmussen and Williams, 2006). The Matérn

covariance function with 5/2 degrees of freedom is twice

mean-square differentiable, for which reason our construc-

tion leads to a process that is smoother along the particle size

than time dimension.

The prior variance of mean σ 2
µ = 10, leading to rela-

tively flat (vague) prior distribution. The covariance func-

tion parameters, θ = {σ, lt , lu}, are given weakly informa-

tive half Student t priors (Gelman, 2006) so that σ, lt , lu ∼

Student t+(ν = 4, s2), which is the Student t distribution

scaled and restricted to positive values. The scale parameters

s2 are 3, 0.01 days, and 0.25.

2.5 Implementation

2.5.1 Data from the SMEAR III station in Helsinki

We used data from the urban background station SMEAR

III (Järvi et al., 2009). In some wind directions, traffic emis-

sions affect the sampled aerosol substantially (see the map

in Fig. 3). The particle size distributions were measured with

a twin DMPS (two DMPSs running in parallel). Each DMPS

used a Hauke-type DMA and a butanol CPC from TSI. In

each scan, DMPS-1 performed 15 measurements in the size

range 3–40 nm using a short DMA (10.9 cm) and CPC model

3025, and DMPS-2 performed 30 measurements in the range

15–820 nm using a long DMA (28 cm) and CPC model 3010.

Following the custom used with the old inversion algorithm,

we discarded the first three DMPS-2 measurements due to

high uncertainty in the transfer function and thereby reduced

the size range to 23–820 nm. The measurements varied in

duration from 5.6 to 70.2 s in DMPS-1 and from 4.8 to 9.2 s

in DMPS-2. The longest measurements were for the smallest

particle sizes. Between consecutive measurements, there was

a lag time of about 12 s, which was needed for the voltage

change and for flushing the sampling tube between the DMA

and the CPC. The time stamps of individual measurements

were not recorded until recently, so we had to reconstruct

them. The uncertainty of the reconstructed time stamps are

estimated to be 2 s at the end of a scan and less than that at

the beginning of a scan.

We got the transfer function from the old inversion algo-

rithm used at University of Helsinki. For each measurement

i, we integrated the transfer function Ti for each peak sep-

arately to get the values Ti,j in Eq. (4). However, as men-

tioned in the description of the likelihood, we ignored some

of its minor peaks, and therefore the number of terms in-

cluded in the sum in Eq. (4) varied from one to six. We

ignored peaks for which Ti,j < αTi,1, where α was chosen

Atmos. Meas. Tech., 9, 741–751, 2016 www.atmos-meas-tech.net/9/741/2016/
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Figure 3. Neighbourhood of the SMEAR III station.

as 10−4 for DMPS-1, and 10−3 for DMPS-2. Furthermore,

we used the common assumption that the concentration of

particles larger than 1 µm is negligible (Wiedensohler et al.,

2012). With these choices, we got about 130 training inputs

xi,j = (ti,ui,j ) for each scan as illustrated in Fig. 4.

In our pre-processing of the data we also had to recon-

struct the particle counts in all measurements by multiply-

ing the saved concentrations, sample flows, and durations of

measurements. We rounded the results of this multiplication

to get integer counts. This reconstruction may be affected

by rounding errors, which, however, are of secondary impor-

tance.

We processed data from 26 February to 7 March 2015

in batches of eight scans. After fitting the model to the

data, for the post-processing we defined a grid with 5 s

time resolution and 59 points covering diameters from 3

to 1000 nm. For this grid, we calculated expected val-

ues and variance of f (E[f ] and Var[f ]). In our poste-

rior approximation (Sect. 2.5.2) dN/dlog10Dp = dN/du=

exp(f ) is log-normally distributed, so E[dN/dlog10Dp] =

exp(E[f ] + 0.5Var[f ]). By numerical integration over the

particle size we obtained expected values for the particle

number concentration. To estimate the uncertainties of these

concentrations, for each time point we first drew a sample of

200 size distributions from the posterior and calculated par-

ticle number concentrations based on these, and then we cal-

culated 80 % posterior intervals for the particle number con-

centration. Consecutive batches were overlapping each other,

having two scans in common. The post-processed results

from the individual batches were merged. For the 10 min in

the middle of the overlap, the merged results were calculated

as weighted averages with the weights gradually changing

from one batch to the next one.

We did all calculations on a normal desktop computer. For

each batch the model fitting took about 2 min, and another

2 min were spent on the post-processing. The sampling of

Time [hh:mm] UTC+2h
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D
p
 [
m
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DMPS-1
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Figure 4. Training inputs for the scan on 2 March between 11:00

and 11:10 UTC+2 h. For clarity we put Dp instead of u on the

vertical axis (y axis).

size distributions was the most time-consuming part of the

post-processing.

Independent measurements of particle number concentra-

tions were obtained with a CPC (TSI 3787 water CPC),

which detected particles larger than 5 nm. The time resolu-

tion fluctuated a bit and was approximately 5 s. These data

were only used for evaluating the results obtained with our

inversion algorithm.

2.5.2 Inference

Given the model description and data, we approximate the

posterior distribution (Gelman et al., 2013) of f (t,u) as

follows. Let y = {y1, . . .,yn}
T denote the n counts of par-

ticles at times of measurement t = {t1, . . ., tn}
T; let f =

{f T
1,·, . . .,f

T
n,·}

T denote all the latent variables needed to de-

fine the likelihood; and let u= {uT
1,·, . . .,u

T
n,·} denote the cor-

responding log particle sizes. Here, f i,· = {fi,j }j :Ti,j>αTi,1
and ui,· = {ui,j }j :Ti,j>αTi,1 denote all the latent variables and

sizes corresponding to time ti for which Ti,j is greater than

the threshold αTi,1. Due to the marginalisation property of

GP, the prior for the latent variables is f |t,u,θ ∼N(0,K),

where Kl,m = Cov(fl,fm). The conditional posterior of the

latent variables, given the hyperparameters, is then

p(f |y, t,u,θ)∝N(f |0,K)5ni=1p(yi |f ), (8)

where p(yi |f )= Poi(yi |Vi
∑
j exp(fi,j )Ti,j ). Motivated by

the Laplace approximation in other GP applications (Ras-

mussen and Williams, 2006; Vanhatalo et al., 2010, 2013),

we approximate the conditional posterior with a second-

order Taylor expansion of logp(f |y, t,u,θ) around the

mode f̂ = arg maxfp(f |y, t,u,θ), which gives a Gaussian

www.atmos-meas-tech.net/9/741/2016/ Atmos. Meas. Tech., 9, 741–751, 2016
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approximation:

p(f |y, t,u,θ)≈ q(f |y, t,u,θ)=N(f |f̂ ,6), (9)

where 6−1
=−∇∇ log(p(f |y, t,u,θ))|

f=f̂
is the Hessian

of the negative log-conditional posterior at the mode. The

mode f̂ is found by a modification of a Newton al-

gorithm. The aim is to maximise 9(f )= logp(y|f )+

logp(f |t,u,θ), for which the basic Newton iteration is

f new
= f old

− (∇∇9)−1
∇9 (10)

= f old
+ (K−1

+W)−1(∇ logp(y|f old)−K−1f old), (11)

where W=−∇∇ logp(y|f old). We initialised the optimi-

sation with f = 0. Direct calculation of the inverse of 6 =

K−1
+W might be numerically unstable, so we used the form

6−1
= L

(
I+LTWL

)−1
LT, (12)

where LLT
=K is the Cholesky decomposition of the co-

variance matrix. Moreover, the likelihood is not a log-

concave function of f , for which reason 6 may not be posi-

tive definite at early iteration steps far from mode f̂ . In fact,

in our experience this is the usual case. For this reason we

check whether I+LTWL is positive definite and, if not, make

the Newton iteration

f new
= f old

+ (K−1
+ W̃)−1(∇ logp(y|f old)−K−1f old), (13)

where W̃l,m =max(Wl,m,0) if l =m and W̃l,m = 0

otherwise. Here, the implementation uses the nu-

merically more stable form (K−1
+ W̃)−1

=K−

KW̃1/2
(
I+ W̃1/2KW̃1/2

)−1
W̃1/2K obtained using the

Sherman–Morrison–Woodbury lemma (Rasmussen and

Williams, 2006).

The hyperparameters, θ , are set to their ap-

proximate maximum a posterior (MAP) estimate

θ̂ = arg maxθq(y|t,u,θ)p(θ), where q(y|t,u,θ) is the

approximate marginal likelihood of the hyperparameters,

q(y|t,u,θ)≈ p(y|t,u,θ)=

∫
p(y|f )p(f |t,u,θ)df . (14)

The integral on the right-hand side is not analytically

tractable, for which reason we use the Laplace approximation

a second time. We form a second-order Taylor expansion of

9(f ) around f̂ so that9(f )≈9(f̂ )− 1
2
(f −f̂ )T6−1(f −

f̂ ). Now the marginal likelihood can be approximated with a

Gaussian integral over f multiplied by a constant

q(y|t,u,θ)= exp(9(f̂ ))∫
exp

(
−

1

2
(f − f̂ )T6−1(f − f̂ )

)
df . (15)

The logarithm of the marginal likelihood is then (see Ap-

pendix A of Vanhatalo et al., 2010)

logq(y|t,u,θ)

=−
1

2
f̂ TK−1f̂ + logp(y|f̂ )−

1

2
log(|K||6|) (16)

=−
1

2
f̂ TK−1f̂ + logp(y|f̂ )−

1

2
log

(
|I+LTWL|

)
. (17)

The MAP estimate of the hyperparameters can now be

searched for by maximising logq(y|t,u,θ)+ logp(θ).

It is possible to analytically solve the gradients of

logq(y|t,u,θ) with respect to θ (see Rasmussen and

Williams, 2006), which allows the use of gradient-based op-

timisation. We used the scaled conjugate gradient method

available in the Matlab toolbox GPstuff (Vanhatalo et al.,

2013) and optimised the hyperparameters on a log scale.

After finding θ̂ and constructing the Gaussian approxima-

tion for the conditional posterior p(f |y, t,u, θ̂), we can use

these approximations to calculate the (approximate) poste-

rior predictive distribution of f (t,u) at any {t,u}. Due to

the marginalisation properties of a GP, the posterior predic-

tive mean and variance of f (t,u) can be calculated exactly

if we know the posterior mean and variance of f (Vanhat-

alo, 2010). Because we cannot solve these quantities exactly,

we approximate the posterior predictive mean as (Vanhatalo,

2010)

E[f (t,u)|y, t,u, θ̂ ] = kTK−1E[f |y, θ̂ ] ≈ kTK−1f̂

= kT
∇ logp(y|f̂ ), (18)

where k is a vector with elements kl = Cov(f (t,u),fl) and

the last equality comes from the fact that

∇

(
logp(y|f )+ logp(f |t,u, θ̂)

)
|
f=f̂

=∇ logp(y|f̂ )−K−1f̂ = 0. (19)

Similarly, the posterior predictive variance is approximated

as

Var[f (t,u)|y, t,u, θ̂ ]

= Var[f (t,u)] − kT
(

K−1
−K−1Cov[f |y, t,u, θ̂ ]K−1

)
k (20)

≈ Var[f (t,u)] − kT
(

K−1
−K−1

(
K−1
+W

)
K−1

)
k (21)

= Var[f (t,u)] − kT
(

K+W−1
)−1

k (22)

= Var[f (t,u)] − kT
(

W−WL(I+LTWL)−1LTW
)
k, (23)

where the first equality is given in Vanhatalo (2010) and

the last two are based on the Sherman–Morrison–Woodbury
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Figure 5. The size distribution obtained with the old inversion al-

gorithm and expected size distributions (new inversion) for a period

with little fluctuation on 26 February.

lemma and Eq. (12). Given the approximate posterior mean

and variance for f (t,u) at any {t,u}, it is natural to ap-

proximate the posterior distribution p(f (t,u)|y, t,u, θ̂)with

a Gaussian distribution with the above mean and variance.

The above-described Laplace approximation has been shown

to produce accurate estimates for the marginal likelihood

p(y|t,u,θ) and conditional posterior p(f |y, t,u,θ) in sev-

eral models with similar structure (Tierney and Kadane,

1986; Rue et al., 2009; Vanhatalo et al., 2010, 2013).

3 Results and discussion

We will evaluate the results from our algorithm both by look-

ing at some illustrative examples and by comparing result-

ing particle number concentrations for the whole period with

CPC data.

As a first test of the algorithm, let us consider periods with-

out fluctuations, meaning periods for which the old algorithm

performed well. As expected, for these periods our results

agree well with the results from the old algorithm. The only

clear difference is that we obtain smoother size distributions

with our new algorithm as in the example in Fig. 5. Espe-

cially, in the region below 20 nm the old algorithm gave an

uneven result due to low count statistics (ranging from 0 to 7

particles in each measurement). The smoother size distribu-

tions seem more plausible and were, indeed, obtained using

a proper description of the count statistics in the likelihood

function as described in Sect. 2.4.1 (the smoothness was also

affected by the prior).

In our next example (2 March 10:30–12:00 UTC+2 h) the

evolution of the size distribution was as shown in Fig. 6.

Clearly, the total particle number concentration fluctuated

a lot, and some changes in the size are also seen. At any

given time, dN/dlog10Dp changes smoothly as a function of

size. The variances in Fig. 7 reflect the distance in time and

Figure 6. Upper panel: expected size distributions on 2 March be-

tween 10:30 and 12:00 UTC+2 h. Lower panel: size distributions

for the same period obtained with the old inversion algorithm. The

ticks on the time axis (x axis) denote the beginnings of scans.

Figure 7. Posterior variance of f on 2 March between 10:30 and

12:00 UTC+2 h. The ticks on the time axis (x axis) denote the be-

ginnings of scans.

particle size to the nearest measurements: the further these

measurements are, the greater the variance is. In Fig. 4 we

showed the training inputs for one scan, and in Fig. 7 low-

variance areas appear around the training inputs of nine sub-

sequent scans.

The time evolution of the particle number concentrations

obtained with the DMPS agrees well with the CPC mea-

surements (Fig. 8), although the CPC generally shows lower

www.atmos-meas-tech.net/9/741/2016/ Atmos. Meas. Tech., 9, 741–751, 2016
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Figure 8. Particle number concentrations on 2 March between 10:30 and 12:00 UTC+2 h.

concentration. The reason for this difference is that the CPC

measurements are not corrected for particle losses in the sam-

pling lines. The peaks generally occur at the same time, al-

though a few of the peaks in the CPC data are not reflected

in concentrations obtained from the DMPS. For instance, the

peak at 10:49 UTC+2 h is only seen in the CPC data. At this

time, DMPS-1 measured 3 nm particles, and DMPS-2 mea-

sured particles with diameters of more than 500 nm. No clear

signs of an elevated concentration are seen in these measure-

ments, and thus no inversion algorithm will be able to repro-

duce this peak. In general, with the set-up of our twin DMPS,

peaks occurring during the last 3–5 min of a scan are often

not observed. On the other hand, when both DMPSs measure

in the range from 10 to 50 nm, fluctuations in the concentra-

tion are most likely observed and our algorithm is able to ex-

tract these fluctuating concentrations well. For instance, the

peak occurring around 11:03 UTC+2 h was well observed

by the twin DMPS. With the old inversion algorithm, this

peak was clearly a problem (as described in the Introduc-

tion), but with our new algorithm we obtained good agree-

ment with the CPC data. Some expected size distributions

are plotted together with the result of the old inversion algo-

rithm in Fig. 9. Obviously, our new algorithm provided size

distributions which are much more realistic, but we do not

know how close these estimates are to the actual size distri-

butions, because we have no size distribution data from other

instruments. In general, the size information during peaks is

limited because of the low number of DMPS measurements

available.

Even less size information is available for the brief

concentration peak occurring between 11:31:25 and

11:32:00 UTC+2 h. According to the CPC measurements,

the top of the peak occurred at 11:31:50 UTC+2 h, which

was during the waiting time in both DMPSs, so the peak is

not as high according to the DMPS measurements. The few

DMPS measurements which were affected by this concentra-
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Figure 9. Expected size distribution before, during, and after the

peak on 2 March at 11:03 UTC+2 h, and the result of the old inver-

sion algorithm for the scan between 11:00 and 11:10 UTC+2 h.

tion peak were all for particles in the size range 19 to 23 nm,

and these suggested higher dN/dlog10Dp at 19 nm than at

23 nm, although this difference could be due to temporal

fluctuation. Our algorithm gives the size distribution seen in

Fig. 10 at 11:31:45 UTC+2 h; as expected, dN/dlog10Dp
shows a decrease between 19 and 23 nm. The sampled size

distributions give examples of what the size distribution

may have looked like, and they have maxima between 13

and 20 nm. This seems reasonable given the available size

information and the general low values of dN/dlog10Dp
at the smallest diameters (Fig. 6). The accumulation mode

seen at diameters around 150 nm in Fig. 10 is due to the

smoothing in time. Figure 6 shows such a mode for about

half an hour around this time. Considering this accumu-

lation mode, our algorithm suggests that its concentration
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Figure 10. Expected size distribution with 95 % posterior intervals

and five size distributions sampled from the posterior for 2 March

at 11:31:45 UTC+2 h.

fluctuations are simultaneous with the fluctuations at smaller

sizes (see Fig. 6). This is caused by the smoothing in size.

Fast fluctuations are not observed when the DMPS measures

in the accumulation mode, so we do not expect them to

occur in the accumulation mode at other times either. The

accumulation mode particles have a long lifetime in the

atmosphere and may originate from distant sources, while

the particles smaller than 25 nm most likely originate from

nearby traffic emissions (Hussein et al., 2014). However,

we used a stationary covariance function with two length

scales lu and lt . Because of differences in lifetime and

origin, it would make more sense to use a non-stationary

covariance function with a long timescale at diameters of

a few hundreds of nanometres and a short timescale for

smaller particles. In practice, however, implementing such

a covariance function is not straightforward. With the current

covariance function, lt will be a compromise between the

actual timescales at different sizes. Thus, we expect too

much smoothing in the time dimension at small diameters

and, as noted above, too little at larger diameters.

To evaluate the performance for the processed 10-day pe-

riod, we compared mean particle number concentrations ob-

tained from the DMPS and the CPC data at 10 min and 30 s

resolution. At 10 min resolution the correlation between the

means from the two instruments was 0.984. For comparison,

when processing the DMPS data with the old inversion al-

gorithm, the obtained correlation (0.967) was twice as far

from 1 (i.e. from perfect correlation). At the higher time res-

olution we calculated correlations for each scan separately,

and Fig. 11 shows a histogram of these correlations. Clearly,

for most scans there is a good correlation, and our algo-

rithm extracts information of the time evolution, which was

lost with the old algorithm. However, for 11 % of the scans,

the correlation is negative, reflecting a disagreement between
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Figure 11. Histogram of correlations between 30 s mean particle

number concentrations obtained from the DMPS and the CPC. The

correlations are calculated for each scan separately.
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Figure 12. Particle number concentrations on 7 March between

10:30 and 11:00 UTC+2 h.

time evolutions obtained from the DMPS with our algorithm

and from the CPC. We have investigated all eight cases for

which the correlation is smaller than −0.75. In two cases the

concentration was almost constant according to both instru-

ments, and it seems that small fluctuations caused the nega-

tive correlation by chance. In the remaining cases, concentra-

tion changes not observed by the DMPS seem to be at least

part of the reason.

Let us illustrate this with an example (Fig. 12). For the

time interval 10:40–10:50 UTC+2 h, the correlation was

−0.87. The CPC measurements show that the concentra-

tion was higher after 10:45 UTC+2 h than before, and at

10:50 UTC+2 h it started decreasing. According to our anal-

ysis of the DMPS data, most of the particles had diam-

eters between 7 and 70 nm during this period, but parti-

cles in this range were not measured by the DMPS after
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10:45 UTC+2 h, so the slightly elevated concentration was

not observed. This elevation ended at 10:50 UTC, and the

counts during the following scan suggest a lower concentra-

tion, so our algorithm suggests a smooth decrease of the con-

centration in the time interval 10:45–10:50 UTC+2 h. Also

during the first 5 min of the scan (10:40–10:45 UTC+2 h)

we observe decreasing concentration according to the DMPS

and increasing concentration according to the CPC. How-

ever, it seems that our model fits that data well also dur-

ing this period, meaning that the counts y agree well with

the rate parameters λ (data not shown). If we specifically

consider the first 2 min of each of the scans in Fig. 12, the

CPC showed on average slightly lower concentration dur-

ing 10:40–10:42 UTC+2 h than during the other 2 min pe-

riods. However, comparing these three periods, one finds

that the DMPS counts were clearly highest during 10:40–

10:42 UTC+2 h. This gives some indication that the rela-

tively high concentration in the beginning of this scan is sup-

ported by the DMPS data. The negative correlation during

this scan seems to originate from the measurements rather

than from any problem in our inversion algorithm. Our in-

vestigation of other scans with negative correlations did not

suggest problems with the inversion either. So despite these

occasional negative correlations, it seems that our model ex-

tracts the information of the concentration time evolution

well from the available DMPS measurements.

The results above are based on a few simplifying as-

sumptions. We assumed that the particle concentration only

changes a little during each measurement. This is not nec-

essarily always the case, but the approximation in Eq. (3)

is correct at least at some point during the measurement.

For DMPS-2 most of the measurements are short (∼ 5 s),

and any error arising from this approximation can be consid-

ered as a minor error in the timing. For DMPS-1, each mea-

surement at the smallest sizes last around 1 min, but strong

fluctuations are rare at these sizes. In principle, we could

have split the time intervals into smaller pieces and summed

up their contribution, but the minor improvement would not

have justified the extra computational cost. We ignored parti-

cles larger than 1 µm, but with the chosen data this seems to

be a minor issue. We also ignored the uncertainties of sam-

ple and sheath flows, so our uncertainties are somewhat un-

derestimated. The sample flows affect the likelihood directly

through Eq. (2), and all flows affect the transfer function.

Other small inaccuracies in the transfer function may arise

from inaccurate determination of diffusional losses and dif-

fering charging probabilities of non-spherical particles, such

as agglomerates from diesel exhaust (Maricq, 2008).

In summary, our algorithm extracts well the time evolu-

tion of the particle number concentration from the available

DMPS data, and in the absence of fluctuations the obtained

size distributions fit well with results from the old algorithm.

During fluctuations, only little information about the parti-

cle sizes is available, and the uncertainties of the size distri-

butions are considerable. Due to a lack of independent size

distribution data, a quantitative evaluation of the size distri-

butions obtained for periods with fluctuation was impossible,

but there is no doubt that these size distributions are much

closer to the truth than the ones obtained with the old algo-

rithm.

In principle, this method should work for the SMPS as

well, but we expect the implementation to be more diffi-

cult. The continuous scan needs to be divided into a num-

ber of counting intervals. If the counting intervals are long,

the peaks of the transfer function will be much wider. On the

other hand, if the counting intervals are short, the number of

training inputs in our model will be high, and our algorithm

will be much slower.

4 Conclusions

We have developed a new algorithm (provided in the Sup-

plement) based on a Gaussian process model for process-

ing DMPS data, and we tested it with data from a twin

DMPS in an urban background location. Our algorithm de-

rives dN/dlog10Dp as a function of Dp and t based on

DMPS measurements and smoothness assumptions. Because

these assumptions are more realistic than the assumption of

a stationary aerosol, the derived size distributions are also

much more realistic. We compared particle number con-

centrations with independent CPC measurements and found

a good agreement.

The higher accuracy of the particle number size distribu-

tions can benefit studies of aerosols in urban locations and

other places with fluctuating size distributions. The higher

time resolution is useful, for instance, when attempting to

pinpoint sources, given that other data, such as wind obser-

vations, exist at a good time resolution. Particle number size

distributions at a high time resolution can be obtained with

other instruments as well, but this algorithm offers an im-

provement both for existing and future DMPS data without

any need to purchase new hardware.

The Supplement related to this article is available online

at doi:10.5194/amt-9-741-2016-supplement.
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