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Abstract. Automatic cloud classification has attracted more

and more attention with the increasing development of whole

sky imagers, but it is still in progress for ground-based cloud

observation. This paper proposes a new cloud classifica-

tion method, named bag of micro-structures (BoMS). This

method treats an all-sky image as a collection of micro-

structures mapped from image patches, rather than a col-

lection of pixels. It represents the image with a weighted

histogram of micro-structures. Based on this representation,

BoMS recognizes the cloud class of the image by a sup-

port vector machine (SVM) classifier. Five classes of sky

condition are identified: cirriform, cumuliform, stratiform,

clear sky, and mixed cloudiness. BoMS is evaluated on

a large data set, which contains 5000 all-sky images cap-

tured by a total-sky cloud imager located in Tibet (29.25◦ N,

88.88◦ E). BoMS achieves an accuracy of 90.9% for 10-fold

cross-validation, and it outperforms state-of-the-art methods

with an increase of 19%. Furthermore, influence of key pa-

rameters in BoMS is investigated to verify their robustness.

1 Introduction

Clouds play an important role in the hydrological cycle and

the energy balance of the atmosphere–earth surface system

because of the interaction with solar and terrestrial radiation

(Stephens, 2005). Cloud type is an important cloud macro-

scopic parameter and plays an essential role in meteoro-

logical research. Classification of cloud types is extensively

studied based on both satellites and ground-based weather

stations. Cloud classification is first investigated based on

satellite images (Ameur et al., 2004; Tahir, 2011; Hu et al.,

2015). Most of these methods apply texture features and clas-

sifier models to recognize cloud type. However, the informa-

tion provided by large-scale satellite images is not sufficient

enough. For example, these images have too low resolution

to capture detailed characteristics of local clouds; thin clouds

and earth surface are frequently confused in satellite images

because of their similar brightness and temperature (Riccia-

rdelli et al., 2008). By contrast, ground-based cloud observa-

tion can obtain more accurate characteristics for local clouds,

and ground-based cloud classification has attracted more and

more attention (Tapakis and Charalambides, 2013).

Traditionally, cloud type is generally classified by pro-

fessional observers in ground-based cloud observation. Hu-

man observation, however, is somewhat subjective and in-

consistent. For example, different observers may obtain dif-

ferent cloud types according to a same sky condition due

to different levels of professional skill. Nowadays ground-

based imaging devices, which take advantage of new em-

bedded hardware technology and digital image processing

techniques, are commonly applied for automated cloud ob-

servation. A number of sky-imaging systems have been de-

veloped in recent years (Tapakis and Charalambides, 2013).

Currently, there are two frequently referred imaging systems:

the first one is the whole-sky imager (WSI) series devel-

oped by the Scripps Institute of Oceanography, University

of California, San Diego. WSIs measure radiances at dis-

tinct wavelength bands across the hemisphere and retrieve

cloud characteristics (Shields et al., 1998; Kassianov et al.,

2005; Urquhart et al., 2015). The second one is the total-

sky imager (TSI) series, which are manufactured by Yan-

kee Environmental Systems, Inc. TSIs provide color images

for the daytime hemispheric sky conditions and derive frac-
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tional sky cover and other useful meteorological information

(Long et al., 2006; Calbo and Sabburg, 2008; Mantelli Neto

et al., 2010; Jayadevan et al., 2015). In addition, a number of

other ground-based sky imagers have also been developed in

other countries and institutes, such as the whole-sky camera

(Calbo and Sabburg, 2008; Heinle et al., 2010) and the total-

sky cloud imager (Li et al., 2011; Yang et al., 2012, 2015).

Most of these sky imagers capture sky conditions with red–

green–blue (RGB) color images named all-sky images, and

are successfully applied to estimate cloud cover. Automatic

cloud type classification, however, is still under development.

The modern cloud classification methods are often built

upon specific cloud characteristics with the help of cer-

tain machine learning models, such as k nearest neighbor

(KNN), artificial neural networks, and support vector ma-

chine. Singh and Glennen (2005) investigated most well-

known texture features for cloud classification, which recog-

nizes common digital images (without 180◦ field of view) to

five different sky conditions. These features include autocor-

relation, co-occurrence matrices, edge frequency, Law’s fea-

tures, and primitive length. They pointed out that no single

feature is sufficient enough. Calbo and Sabburg (2008) first

studied cloud classification for all-sky images. They repre-

sented a cloud image by statistical measurements of texture,

frequency characteristics of Fourier transform, and others.

However, this method achieves an accuracy of only 62%.

Afterwards, Heinle et al. (2010) categorized all-sky images

by KNN classifier based on a set of statistical features and

gray-level co-occurrence matrices (GLCMs). They divided

sky conditions into seven types and achieved high accuracy

for leave-one-out cross-validation. Kazantzidis et al. (2012)

improved the method of Heinle et al. (2010) by combining

traditional features and extra characteristics, such as solar

zenith angle, cloud coverage, and the existence of raindrops

in sky images. Recently, texture features based on salient lo-

cal binary patterns are applied for cloud classification, which

achieves competitive performance (Liu et al., 2013; Liu and

Zhang, 2015). Kliangsuwan and Heednacram (2015) pro-

posed a new technique called fast Fourier transform projec-

tion on the x axis. This method extracts features by project-

ing logarithmic magnitude of fast Fourier transform coeffi-

cients of a cloud image on the x axis in frequency domain.

Cheng and Yu (2015) presented a block-based cloud classifi-

cation method, which divides an image into multiple blocks

and identifies the cloud type for each block based on both

statistical features and distribution of local texture features.

The features, which represent a cloud image with a numer-

ical vector, are essential for cloud classification. The features

applied in literature for cloud classification can be roughly

divided into three categories: physical, spectral, and textural.

Physical features concern the physical properties of a sky

condition, such as brightness, temperature, whiteness, and

cloud coverage (Kazantzidis et al., 2012). Spectral features

describe the average color and tonal variation of a cloud

image (Heinle et al., 2010; Xia et al., 2015). Textural fea-

tures refer to the spatial distribution of pixel intensity within

a cloud image, i.e., homogeneity, randomness, and contrast

of the gray level differences of pixels (Singh and Glennen,

2005; Cheng and Yu, 2015; Liu and Zhang, 2015). Essen-

tially, all these features are built upon pixels, which are en-

coded by RGB vectors as shown in Fig. 1. They are not suffi-

cient enough for cloud classification considering the follow-

ing aspects.

– Physical and spectral features are not accurate them-

selves, because pixels have great variation and are easy

to be noised. Mathematically, a pixel can be regarded as

an element of a three-dimensional vector set, which has

totally 2563 elements if each channel of red–green–blue

is quantized to 256 levels. Furthermore, RGB values are

often influenced by cameras and atmospheric interfer-

ence. So it is a nontrivial task to accurately measure

physical characteristics of clouds. For example, cloud

coverage, which refers to the fraction of the sky ob-

scured by clouds, depends on the performance of cloud

detection, but it is difficult to estimate cirrus clouds (Li

et al., 2012).

– Textural features (such as GLCMs) often represent the

global appearance of an image and are sensitive to scale

and rotation. All-sky images, however, need represen-

tation with rotation invariance since clouds may appear

in any direction of an all-sky image. Furthermore, such

global textural features would be confusing if an all-sky

image contained multiple types of clouds (Cheng and

Yu, 2015).

– These features based on pixels describe low-level vi-

sual characteristics of cloud images, but they fail to en-

code middle-level structural information or high-level

concepts. Structural information, however, is more use-

ful for classification (Zhang et al., 2007). According

to Fig. 1, a pixel is just labeled by a RGB vector, but

a patch can be defined as a certain micro-structure,

which can be given a meaningful description. In fact, the

features based on patches are more popular than those

features based on pixels in the community of computer

vision (Huang et al., 2014).

Accordingly, we put forward the new cloud image repre-

sentation, named “bag of micro-structures” (BoMS). BoMS

is constructed on image patches, rather than pixels. More

specifically, an all-sky image is firstly equally divided into

patches (maybe with overlap), and then each patch is mapped

to a micro-structure by vector quantization. Finally, the

image is regarded as a collection of micro-structures just

as a textual document consists of many words, and its

features are encoded by a weighted histogram of micro-

structures. BoMS outperforms the traditional cloud represen-

tations based on two factors: (1) a patch is more informative

and robust than a pixel for a cloud image. Micro-structures,
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Patches:
1: described as thin cloudy
2: described as whitish patch 

1
2

Pixels:
1: described as <53, 95, 137>
2: described as <53, 95, 137>

2
1

Figure 1. Sketch of the difference between pixels and patches.

A pixel is encoded by a RGB vector, whose values are easy to be

noised, and a pixel itself is not very meaningful. Meanwhile, a patch

is more meaningful than a pixel and can be mapped to certain micro-

structures, which are explainable with words.

which are learned offline from an image set, denote gen-

eral patterns shared by many image patches, so a label of

a micro-structure denotes a higher-level concept compared

with a RGB vector of a pixel. (2) The holistic histogram rep-

resentation is high dimensional but sparse, so it is discrimi-

native, even linearly separable for a support vector machine

(SVM) classifier.

The remainder of this paper is organized as follows. Sec-

tion 2 describes the data set and cloud classes. Section 3 in-

troduces the proposed cloud classification method. Section 4

presents experiment results. Finally, Sect. 5 gives our conclu-

sions.

2 Data set and cloud classes

2.1 Data set

Images used for development and evaluation of BoMS were

obtained from the total-sky cloud imager (TCI) (Li et al.,

2011), which is located in Tibet (29.25◦ N, 88.88◦ E). The

TCI, developed by the Chinese Academy of Meteorological

Sciences, is based on commercially available components.

The basic component is a digital camera, which is equipped

with a fisheye lens to provide a field of view larger than 180◦

and is enclosed by a weather protection box. The TCI is pro-

grammed to acquire images at fixed intervals, and all im-

ages are stored in color JPEG format with a resolution of

1392×1040 pixels. Note that these images are rectangular in

shape but the mapped whole sky is circular, in which the cen-

ter is the zenith and the horizon is along the border. Figure 2

displays an example of such an all-sky image. Because the

region near the circular border contains certain terrestrial ob-

jects, such as trees and buildings on the horizon of the TCI,

Figure 2. An all-sky image example used in this work (3 Octo-

ber 2012, 17:30 GMT+ 8). The area marked by the red circle refers

to the circle of interest.

we eliminate the area out of circle of interest (COI). COI is

defined by the center (cx,cy) and radius r . We set (cx,cy)

with (718,536) and r with 442 in this work. Note that COI is

the exact area for feature extraction and type identification.

We screened the complete image set that was observed

during August 2012 to July 2014 and selected 5000 all-sky

images in this work according to our predefined cloud classes

(see next section). We did our best to ensure that the data set

includes a large variety of different cloud forms. The data set
1 contains 1000 independent images per cloud class.

2.2 Cloud classes

Traditionally, manual cloud classification takes cloud shape

as a basic factor, together with shape development and in-

terior micro-structure of the cloud. Clouds are divided into

29 varieties of 10 genera in 3 families with high, mid-, and

low levels, according to the “Linnean” system developed by

Howard (1803). These criteria are used by surface observers,

but they are unsuitable for automatic cloud classification.

Calbo and Sabburg (2008) defined eight different sky con-

ditions for automatic cloud classification, while Heinle et al.

(2010) considered seven types. Note that there are also other

configurations of cloud types for automatic cloud classifica-

tion, and recent reviews can be found in Tapakis and Char-

alambides (2013).

Stratiform, cumuliform, and cirriform clouds are the most

common sky conditions, and they are primary classes in

many cloud classification systems (Tapakis and Charalam-

bides, 2013; Xia et al., 2015). Furthermore, a sky condition

obtained by an all-sky imager often contains multiple types

of clouds (Cheng and Yu, 2015). We, therefore, define five

1The data set is available at http://icn.bjtu.edu.cn/visint/

resources/CloudImages.
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(a) Cirriform (b) Cumuliform (c) Stratiform (d) Clear sky (e) Mixed cloudiness

Figure 3. Classic all-sky images of the five sky condition classes.

Table 1. Sky condition classes proposed in this work.

Sky condition classes Description Cloud types

Cirriform Thin clouds that are wispy and feathery-like Ci, Cc and Cs

Cumuliform Thick clouds that are puffy and cotton-like Cu, Cb and Ac

Stratiform Layered clouds that stretch out across the sky St, As, Sc and Ns

Clear sky Clear sky without cloud No clouds

Mixed cloudiness Mixed sky conditions with more than one cloud type

that covers the sky more than 20%

Co-occurrence

sky conditions for cloud classification as demonstrated in Ta-

ble 1. In our data set, most images of Cc and Cs are bright and

light blue, because the aerosol optical depth is small in Tibet

(29.25◦ N, 88.88◦ E) where the data set was collected. These

features are very similar to those of Ci as shown in Fig. 3a.

In addition, Cc, Cs, and Ci all belong to high-level clouds.

So we sort these cloud types into the same category. Cumuli-

form clouds are usually puffy in appearance, similar to large

cotton balls; while stratiform clouds are horizontal and lay-

ered clouds that stretch out across the sky like a blanket. An

image of these classes contains a single cloud type, but an

image of mixed condition contains more than one cloud type

together. Figure 3 displays some typical all-sky images of

these five sky conditions. This configuration of cloud classes

is similar to those used by Liu et al. (2011) and Xia et al.

(2015), except for the augmented class of mixed cloudiness,

which is never investigated in the literature but often occurs

in all-sky images.

3 Cloud classification based on a bag of

micro-structures

In this section, we first introduce the background of BoMS

and the pipeline of the cloud classification method. Then

we describe the details of BoMS, including patch descriptor,

dictionary of micro-structures, and holistic image represen-

tation. At last, the classifier with SVM is presented.

3.1 Overview of the proposed cloud classification

method

3.1.1 Review of the bag-of-words model

The bag-of-words model is a simplifying representation used

in natural language processing and information retrieval. In

this model, a document is represented as the bag of its words,

disregarding grammar and even word order but keeping mul-

tiplicity (Joachims, 1998). The document is first parsed into

words. These words are represented by their stems, for exam-

ple, “work”, “working”, and “works” would be designated

by the stem “work”. Moreover, a stop list is often used to
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reject very common words (such as “the”, “a” and “does”),

because they occur in most documents and are not meaning-

ful enough to discriminate different documents. After that,

the remaining words are assigned with a unique label, and

the document is represented by a vector that indicates the oc-

currences of these words. Note that each component of the

vector is often weighted in various ways in order to improve

its degree of discrimination (Baeza-Yates and Ribeiro-Neto,

1999). Finally, such vectors are used as features for docu-

ment classification or used to build an index for information

retrieval.

3.1.2 Pipeline of the cloud classification method

Inspired by the bag-of-words model, we propose the new

cloud classification method, which treats a cloud image as

a collection of micro-structures. More specifically, the pro-

posed method includes two aspects: learning and recogni-

tion (as shown in Fig. 4). The learning procedure is offline

and carries out two tasks: learning the dictionary of micro-

structures and training the SVM model. Recognition proce-

dure analyzes an input image and identifies its cloud class. It

includes four main procedures.

1. It divides an input image into patches (maybe with over-

lap) and extracts a description for each patch accord-

ing to its appearance. In other words, the input image is

treated as a collection of patches, rather than raw pixels.

2. It assigns patch descriptors to a set of predetermined

micro-structures by vector quantization. Each patch is

mapped to a label of certain micro-structure in a learned

dictionary, so the input RGB image can be transformed

into a label matrix. Each element of the label matrix

refers to an index of a micro-structure. Accordingly, the

image is regarded as a bag of micro-structures, just as

a document is represented by its words.

3. It constructs a holistic image representation based on

BoMS. The histogram of micro-structures is calculated

and used as the feature vector of the input image.

4. It applies a SVM classifier to identify the cloud type of

the input image, which is represented by a histogram of

micro-structures.

We refer to the quantized patch descriptors as micro-

structures, because each micro-structure represents a com-

mon pattern or appearance shared by many patches. Micro-

structures for a cloud image play the same role as words for

a text document, though they do not necessarily have an ac-

tual meaning as “wispy cloud”, or “puffy cloud”.

SVM model Type decision

Dictionary 
learning

Learning Recognition

Image 
representation

Patch 
descriptors

Patch 
descriptors

Image 
representation

                         

      

      

      

      

Figure 4. The pipeline of the cloud classification method based on

BoMS.

3.2 Cloud representation of BoMS

3.2.1 Patch descriptor based on appearance

A cloud image is regarded as a collection of local patches,

rather than simple pixels. Image patches should be firstly de-

scribed by certain feature vectors (named descriptors) based

on their visual appearance. Of course, this descriptor should

be discriminative for cloud patches. We apply statistical mea-

surements of color and contrast to describe image patches,

because color and contrast are the most important appearance

features to distinguish cloud patches from others patterns.

Firstly, a cloud image is equally divided into several

patches (maybe with overlap). Given an image I with width

w and height h, a patch refers to a square area defined by the

top-left point (px,py) and size s, 1≤ s ≤min (w,h). Fur-

thermore, all patches are indirectly specified by the sampling

step τ . Of course, if τ equals s, a cloud image would be

segmented into grids without overlap. Note that the border

patches that are partly beyond the scope of COI are discarded

because they contain nonsense pixels.

Secondly, statistical measurements of color and contrast

are extracted as a descriptor for each patch. The mean, stan-

dard deviation, and skewness of blue component are con-

sidered as used by Heinle et al. (2010). In addition, similar

measurements for the ratio of red and blue components are

applied as a Supplement, since such a ratio is powerful to

distinguish cloud from sky (Calbo and Sabburg, 2008). Fur-

thermore, the difference between color components is veri-

fied to be useful for cloud classification (Heinle et al., 2010),

www.atmos-meas-tech.net/9/753/2016/ Atmos. Meas. Tech., 9, 753–764, 2016
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Figure 5. Samples of image patches randomly selected from certain clusters. All images in a cluster are assigned with an identical label of

micro-structure.

so improved contrast features based on such difference are

included in the patch descriptor as well. More specifically,

the patch descriptor is calculated as follows.

Mean, standard deviation, and skewness of blue

component

Color is one of the most important characteristics to distin-

guish clouds from sky. Especially, the blue component has

the highest discrimination power. So the mean Mb, standard

deviation Db and skewness Sb of blue components are used

in the patch descriptor. Mb encodes the main color appear-

ance, while Db and Sb partly describe the texture character-

istics of an image patch.

Mb =

∑s2

i=1
Bi/s

2, (1)

Db =

√∑s2

i=1
(Bi −Mb)

2/
(
s2− 1

)
, (2)

Sb =
1

s2− 1

∑s2

i=1

(
Bi −Mb

Db

)3

, (3)

where Bi refers to the intensity value of blue channel for the

pixel i in a patch with size s.

Mean, standard, and skewness of the ratio of red and

blue components

The ratio of red and blue components is a popular feature

used to classify cloud from sky, because a clear sky scatters

more blue than red light and appears blue, whereas clouds

scatter blue and red light with similar extent and appear white

or gray (Calbo and Sabburg, 2008). So the meanMt , standard

deviationDt , and skewness St of the ratio values are adopted

as supplements for the above measurements of blue compo-

nent.

Mt =

∑s2

i=1
Rti/s

2, (4)

Dt =

√∑s2

i=1
(Rti −Mt )

2/
(
s2− 1

)
, (5)

St =
1

s2− 1

∑s2

i=1

(
Rti −Mt

Dt

)3

, (6)

where Rti(= Ri/Bi) represents the ratio of red component

and blue component.

Contrast between color components

Heinle et al. (2010) pointed out that DGB (referring to the

difference between green and blue channels) and DRB are

the most weighted features. Essentially, such a difference is

a simple measurement for color contrast, but it ignores the

intensity level of each component. For example, the DRB of

a dark cloud would be same with that value of a bright cloud,

but they are different according to their appearance. So we

define contrast as the normalized difference between color

Atmos. Meas. Tech., 9, 753–764, 2016 www.atmos-meas-tech.net/9/753/2016/
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patches

Patches 
clustering

Descriptor space 

Micro-structure 
dictionary

Image 
representation

.........
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Figure 6. Image representation based on micro-structures, in which patch descriptors are grouped to construct micro-structure dictionary,

and histogram of such micro-structures in an image is used as its representation.

components.

C1 =
Mr−Mg

Mr+Mg

, (7)

C2 =
Mr−Mb

Mr+Mb

, (8)

C3 =
Mg−Mb

Mg+Mb

, (9)

whereMr,Mg, andMb refer to the mean values of red, green,

and blue components in the image patch, respectively.

Consequently, each patch can be represented by a nine-

dimensional feature vector:

D =<Mb,Db,Sb,Mt ,Dt ,St ,C1,C2,C3 > . (10)

A sampled collection of such descriptors are used to con-

struct a micro-structure dictionary (see the following sec-

tion). Note that each dimension of D is normalized to [0,1],

in order to eliminate the effect of magnitude.

3.2.2 Learning dictionary of micro-structures with

k means algorithm

Dictionary of micro-structures is one of the most important

aspects of BoMS, and it is learned offline by the k means

algorithm (Han et al., 2006). First, a large number of im-

age patches are equally sampled from the data set, and their

descriptors are extracted to form a collection. Second, the

descriptor collection is clustered by k means algorithm and

divided into k clusters. Finally, the centroids of these clusters

are regarded as micro-structures, and they form the micro-

structure dictionary. A micro-structure represents a specific

local pattern shared by all patches assigned to it. Figure 5

shows examples of image patches belonging to particular

clusters.

K-means clustering is a method of vector quantization,

which is popular for cluster analysis in data mining. Given

a set of patch descriptors {D1,D2, · · ·,Dn}, k means al-

gorithm groups the n descriptors into k(≤ n) sets S =

{S1,S2, · · ·,Sk} by minimizing the sum of squared Euclidean

distances between descriptors and their corresponding cen-

troids. The objective function of k means is formulated as

follows:

arg
S

min

k∑
i=1

∑
D∈Si

‖D−µi‖
2, (11)

where µi represents the centroid of cluster i. Given an initial

set of k centroids {µ0
1,µ

0
2, · · ·,µ

0
k}, k means algorithm alter-

nates between assignment step and update step.

– Assignment step. It assigns each descriptor to its nearest

cluster centroid and obtains grouped clusters as follows:

Sti =

{
Dp

∣∣∣∣∥∥Dp −µti∥∥2
≤

∥∥∥Dp −µtj∥∥∥2

,∀j,1≤ j ≤ k

}
.
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(a) Mixture to cirriform (b) Mixture to cumuliform

(c) Mixture to stratiform (d) Cirriform to clear sky

Figure 7. Some misclassified all-sky images.

– Update step. It recalculates the centroids of new clus-

ters. A new centroid is updated as follows:

µt+1
i =

1∣∣Sti ∣∣
∑
Dj∈S

t
i

Dj .

The algorithm is regarded as converged when the assign-

ments no longer change or the number of iteration has

reached a predefined value. After the algorithm is con-

verged, the dictionary is constructed and denoted as V =

{µ1,µ2, · · ·,µk}, where µi refers to the prototype of micro-

structure with label si . The number of clusters k determines

the size of the dictionary, which can vary from hundreds to

thousands.

3.2.3 Image representation based on BoMS

Image representation refers to the characteristics of an all-

sky image and is encoded by a numeric feature vector. Image

representation is different from the patch descriptor, but it is

built on patch descriptors as shown in Fig. 6. Inspired by the

bag-of-words model, we bring forward the “bag of micro-

structure” model to extract the image representation.

Firstly, an all-sky image is divided into several patches

(see Sect. 3.2.1), and each patch maps to certain type of

micro-structure in the dictionary. Assume that the image is

divided intom patches denoted as {D1,D2, · · ·,Dm}.Di(1≤

i ≤m) is a nine-dimensional vector and is mapped to cer-

tain micro-structure label si(∈ [1,k]) by searching for the

nearest micro-structure among the dictionary V . Thereby, the

descriptor set {D1,D2, · · ·,Dm} is transformed into a label

set {L1,L2, · · ·,Lm}, whose value of each element refers to

the index of a certain micro-structure. The label set is com-

posed of many micro-structures, just as a document consists

of words.

After that, we transform the image, which is denoted as

a label set, into a representation suitable for the learning al-

gorithm. We apply an attribute-value representation for all-

sky images. Basically, each distinct micro-structure si corre-

sponds to a feature, assigned with the value ti that counts the

number of occurrences of micro-structure si . In order to high-

light some important micro-structures, we apply a weighting

strategy and represent the image by a vector:

F = 〈t1, t2, · · ·, tk〉. (12)

ti(1≤ i ≤ k) refers to the weighted frequency of micro-

structure si and is calculated by

ti = ni log
N

Ni
, (13)

where ni is the number of occurrences of micro-structure

si in the image, Ni is the number of documents containing
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si , and N is the number of images in the whole data set.

In essence, TF (term frequency) and IDF (inverse document

frequency) are two major factors in the weighting strategy

(Baeza-Yates and Ribeiro-Neto, 1999). TF weights micro-

structures more highly if they occur more often in an image,

while IDF decreases the weights of the micro-structures that

appear often in the data set because these micro-structures do

not help to discriminate between different images.

This representation is analogous to the bag-of-words

model for a document in terms of form and semantics. Micro-

structures reveal characteristics of local patterns for all-sky

cloud images, just as words convey meanings of a document.

Note that both representations are sparse and high dimen-

sional.

3.3 Classifier with SVM

Support vector machines are based on the structural risk

minimization principle from computational learning theory

(Vapnik, 2000). Basically, the SVM classifier learns a hy-

perplane that separates two-class data with maximal margin.

The margin is defined as the distance of the closest training

sample to the separating hyperplane. Given a training set X

and corresponding class labels Y that takes value ±1, SVM

finds a decision function:

f (x)= sign(wT x+ b),

where w and b refer to the parameters of the hyperplane.

The SVM applies two strategies to address the data set that

is not linearly separable. Firstly, it introduces a regularization

term that penalizes misclassification of samples in proportion

to their distance from the hyperplane, and this regularization

term is weighted by the parameter C. Secondly, a mapping8

is considered to transform the original data space of X into

another feature space. The feature space may have a high or

even infinite dimension. Because SVM can be formulated by

the terms of scalar products in the mapped feature space, it

is avoidable to directly define such mapping by introducing

the kernel function K(u,v)=8(u)T ×8(v). In the kernel

formulation, the decision function can be written as

f (x)= sign(yiαiK(x,xi)+ b), (14)

where xi is a feature vector from the training set X and yi
is the label of xi . The parameters αi are learned by SVM,

and they are typically zero for most i. The feature vectors xi
corresponding to nonzero αi are known as support vectors.

In the cloud classification method, the input features re-

fer to the BoMS representation in Eq. (12). We take the

one-against-all approach for the multi-class problem. That is,

there are five classes for all-sky images, so we train five SVM

classifiers. Classifier model i distinguishes images between

category i and all the other four categories. Given a test im-

age, we assign it to the class with the largest SVM output.

There are two reasons motivating us to select SVM rather

than other methods, such as KNN and artificial neural net-

works. On the one hand, the image representation based on

BoMS is high dimensional (more than 100 dimensions in

our experiments). SVM has the potential to handle large fea-

ture space because it embraces overfitting protection, and it

is more efficient for space and time compared to KNN. On

the other hand, the image representation of BoMS is sparse.

In other words, the feature vector contains only few entries

that are not zero. SVM is proven to be well suited for prob-

lems with dense concepts and sparse instances (Melgani and

Bruzzone, 2004; Tong and Koller, 2002).

4 Results and discussion

In this section we evaluate the performance of BoMS, com-

pared with the baseline (Heinle et al., 2010), and investigate

the effect of the key parameters in BoMS.

We apply 10-fold cross-validation to estimate the perfor-

mance of classification methods. The data set is randomly

partitioned into 10 equal sized subsets. One single subset is

retained for validation, and the remaining nine subsets are

used as training data. The cross-validation process is then

repeated 10 times. During the cross-validation, each subset

is used exactly once as validation; meanwhile, each image

in the data set is also used for validation exactly once. Fi-

nally, the measure of performance is defined by accuracy

(Ac), which is given by

Ac=
Correctly classified image number

Total image number
. (15)

We conduct each experiment three times and take average

values as final results.

4.1 Performance of BoMS

Table 2 demonstrates the confusion matrix of BoMS method,

in which the patch size s equals 12 with a step τ = 6 and

the dictionary size k equals 500. The kernel of SVM selects

linear kernel function, and the regularization C is set to 62.5,

which is optimized by a search strategy.

According to Table 2, clear sky is the easiest class to be

identified with an accuracy of 99.5%, and it is just a little

confused with cirriform because some cirrus is very thin and

similar to clear sky. On the contrary, mixed cloudiness is the

most difficult class with a low accuracy of 79.5%, and it is

misclassified to all other classes. This result is not difficult to

be understood since mixed sky condition contains multiple

cloud types, and its distribution of micro-structures is easy to

be confused with others. Figure 7 displays some misclassi-

fied images of mixed cloudiness. Stratiform obtains a good

accuracy as well, because it is notably different from cirri-

form and cumuliform according to color and contrast.
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Table 2. Confusion matrix of BoMS.

Ground truth Classified

Cirriform Cumuliform Stratiform Clear sky Mixed Ac

cloudiness

Cirriform 0.872 0.011 0.013 0.023 0.081

Cumuliform 0.013 0.920 0.007 0.001 0.059

Stratiform 0.008 0.005 0.965 0.000 0.022

Clear sky 0.005 0.000 0.000 0.995 0.000

Mixed cloudiness 0.077 0.092 0.035 0.001 0.795 0.909

Table 3. Comparison of BoMS and baselines according to accuracy of each class.

Methods Cirriform Cumuliform Stratiform Clear sky Mixed cloudiness Overall

F12+KNN 0.438 0.780 0.892 0.939 0.515 0.713

F12+SVM 0.525 0.843 0.922 0.904 0.274 0.694

BoMSF12 0.853 0.896 0.952 0.997 0.736 0.887

BoMS 0.872 0.920 0.965 0.995 0.795 0.909

4.2 Performance comparisons with the baselines

In order to verify the advantage of BoMS, we compare its

classification performance with the following three methods:

– F12+kNN is the original method proposed by Heinle

et al. (2010), and it acts as the baseline in this com-

parison. We set k with 9 by an optimized search

procedure and set the weight vector of features with

[1,1,1,1,1,1,2,1,2,2,3,1], which is suggested by

Heinle et al. (2010).

– F12+SVM method applies the 12-dimensional features

used in (Heinle et al., 2010) but replaces kNN with

SVM, in order to investigate the influence of classifier.

The kernel of SVM selects linear kernel as well.

– BoMSF12 method applies the framework of BoMS,

but its patch descriptor is replaced by Heinle’s 12-

dimensional features, rather than 9-dimensional fea-

tures described in Sect. 3.

Table 3 presents the comparison results. BoMS outper-

forms all other methods. Especially, BoMS outperforms

F12+KNN with regards to all five classes and achieves an

increase of 19% overall accuracy. There are two main differ-

ences between BoMS and F12+KNN: feature representation

and classifier model. What makes sense for such improve-

ment? We first compare F12+KNN and F12+SVM and ob-

serve that F12+SVM does not make an improvement. This

result indicates that SVM does not lead to better performance

just based on traditional features. The comparison between

F12+SVM and BoMSF12 shows that BoMSF12 is notably

better than F12+SVM. So it can be deduced that the image

representation based on BoMS contributes to the excellent

performance.

Figure 8. The curve of overall accuracy of BoMS with different

patch sizes.

4.3 Parameter analysis

In the framework of BoMS, patches are the fundamental ob-

jects, and they are mainly determined by patch size s. What

is the influence of parameter s?

Figure 8 displays the accuracy curve of BoMS according

to different s. Note that the sampling step τ is set to s/2 in

this experiment. Generally, the accuracy for most values of

patch size s is greater than 86%, and smaller patch size can

result in better accuracy. Especially, we get the best perfor-

mance setting s with 12. This result reveals that structure in-

formation of image patches is significant for cloud classifi-

cation, but patches with too small size maybe do not encode

enough structure information. Meanwhile, large patches have

too large variations to construct efficient micro-structures.

The patch number of an all-sky image is partly determined

by sampling set τ . Sampled patches would overlap if τ were

smaller than s, and a smaller τ results in more patches. Our
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Figure 9. The curve of overall accuracy of BoMS with different

dictionary sizes.

experiment results show that classification accuracy is robust

for τ , and it is the best choice to set τ with s/2, regarding the

accuracy and computational complexity.

The dictionary of micro-structures is another core factor

for BoMS, and its size k not only determines the dimension

of the image representation but also influences the classi-

fication performance. Figure 9 displays the accuracy curve

of BoMS according to different dictionary size k. Generally,

BoMS achieves stable performance with an accuracy greater

than 88%, when dictionary size k is more than 300. Espe-

cially, BoMS obtains the best performance with k = 500. We

can account for this result with two aspects. Firstly, a small

dictionary of micro-structures just contains limited distinct

patterns, since one micro-structure represents one common

pattern that is shared by many image patches. As a result, the

BoMS with small dictionary is not discriminative enough for

cloud classification. Secondly, the dictionary would be sat-

urated with micro-structures when its size is large enough,

and a proper micro-structure would be divided into multi-

ple sub-patterns if the dictionary size further increased. How-

ever, such sub-patterns cannot promote classification perfor-

mance.

Moreover, the dimension of BoMS equals with size k. In

other words, larger dictionary size results in a higher dimen-

sion of cloud representation. Consequently, a medium dic-

tionary size is a good choice, considering the computational

complexity.

5 Conclusions

This study presents the new cloud classification method

based on a bag of micro-structures, whereas most state-of-

the-art methods (Heinle et al., 2010; Liu and Zhang, 2015;

Kliangsuwan and Heednacram, 2015; Cheng and Yu, 2015)

apply traditional features based on pixels. In this method, an

all-sky image is treated as a collection of micro-structures

just as a document consists of words, and it is represented

by a high-dimensional histogram of micro-structures. Sub-

sequently, the SVM classifier is used to identify the cloud

type of the all-sky image. A large data set is constructed with

actual all-sky images captured by the TCI located in Tibet

(29.25◦ N, 88.88◦ E), and evaluation is carried out to verify

the performance of BoMS. The experiment results demon-

strate that BoMS achieves a high accuracy of 90.9%, and it

outperforms the state-of-the-art method proposed by Heinle

et al. (2010). Moreover, the experiments on the influence of

key parameters, including patch size s and dictionary size k,

are carried out to verify the robustness of BoMS.

We will extend our research in future from the follow-

ing aspects. Firstly, we will extensively investigate differ-

ent patch descriptors and find out more efficient patch rep-

resentation for BoMS. Secondly, we are going to study topic

models for cloud images in order to reduce the dimension

of cloud representation and further improve classification ac-

curacy. Lastly, we will conduct research to establish a con-

figuration of sky conditions, which is suitable for automatic

cloud classification systems.
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