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Abstract. In this work, we have used a scanning mobil-

ity particle sizer (SMPS) and a quartz crystal microbalance

(QCM) to estimate the effective density of aerosol particles.

This approach is tested for aerosolized particles generated

from the solution of standard materials of known density,

i.e. ammonium sulfate (AS), ammonium nitrate (AN) and

sodium chloride (SC), and also applied for ambient measure-

ment in New Delhi. We also discuss uncertainty involved in

the measurement. In this method, dried particles are intro-

duced in to a differential mobility analyser (DMA), where

size segregation is done based on particle electrical mobil-

ity. Downstream of the DMA, the aerosol stream is subdi-

vided into two parts. One is sent to a condensation parti-

cle counter (CPC) to measure particle number concentration,

whereas the other one is sent to the QCM to measure the par-

ticle mass concentration simultaneously. Based on particle

volume derived from size distribution data of the SMPS and

mass concentration data obtained from the QCM, the mean

effective density (ρeff) with uncertainty of inorganic salt par-

ticles (for particle count mean diameter (CMD) over a size

range 10–478 nm), i.e. AS, SC and AN, is estimated to be

1.76±0.24, 2.08±0.19 and 1.69±0.28 g cm−3, values which

are comparable with the material density (ρ) values, 1.77,

2.17 and 1.72 g cm−3, respectively. Using this technique, the

percentage contribution of error in the measurement of ef-

fective density is calculated to be in the range of 9–17 %.

Among the individual uncertainty components, repeatabil-

ity of particle mass obtained by the QCM, the QCM crys-

tal frequency, CPC counting efficiency, and the equivalence

of CPC- and QCM-derived volume are the major contribu-

tors to the expanded uncertainty (at k = 2) in comparison to

other components, e.g. diffusion correction, charge correc-

tion, etc. Effective density for ambient particles at the begin-

ning of the winter period in New Delhi was measured to be

1.28±0.12 g cm−3. It was found that in general, mid-day ef-

fective density of ambient aerosols increases with increase in

CMD of particle size measurement but particle photochem-

istry is an important factor to govern this trend. It is further

observed that the CMD has good correlation with O3, SO2

and ambient RH, suggesting that possibly sulfate secondary

materials have a substantial contribution in particle effective

density. This approach can be useful for real-time measure-

ment of effective density of both laboratory-generated and

ambient aerosol particles, which is very important for study-

ing the physico-chemical properties of particles.

1 Introduction

The density of atmospheric particles is an important param-

eter for prediction of particle physical, micro-physical and

optical properties (Tang and Munkelwitz, 1994; Baron and

Willeke, 2001). It is not only governed by the shape, mor-

phology and mixing state of the particles, but also linked with

the chemical composition of particles. The density, combined

with the dynamic shape factor (DSF, which is a measure of
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non-sphericity, χ ), relates the aerodynamic diameter (da) of

a particle to its electrical mobility diameter (dm) through its

mass equivalent diameter (dM) (Kelly and McMurry, 1992)

by

d2
aC (da)ρ0 = d

2
mC(dm)

[C (dM)]
3
× ρp

[C (dm)]
3
×χ3

, (1)

where C(da), C(dm) and C(dM) are the Cunningham slip

correction factor for corresponding diameters (da, dm and

dM), ρ0 is the standard density (1 g cm−3), and ρp is the par-

ticle density. As given in Eq. (1), combined measurement

of mobility and aerodynamic diameters yields the density of

particles having any shape. For non-spherical and porous par-

ticles, the tendency has been to define an effective density

instead (Hand and Kreidenweis, 2002; Jimenez et al., 2003).

Effective density reflects both particle density and shape in-

formation:

ρeff =
ρp

χ
. (2)

This equation suggests that if the particles are spherical

with the absence of internal voids (i.e. χ = 1), then the ef-

fective density is equal to the material density. If particles

are non-spherical, then the calculated volume or volume con-

centration surpasses the true value, and the effective density

is less than the material density. However, in general effec-

tive density is measured assuming that particles are spherical.

Therefore the detailed uncertainty budget estimation in parti-

cle effective density measurement is very important to better

simulate the results of particle properties, which are linked

with such measurements.

As a result of aerosol instrumentation advancement in

recent decades, several approaches for the real-time mea-

surements of particle effective density have been developed.

Hand and Kreidenweis (2002) measured particle optical size

(do), and dm, and da, using an optical particle counter (OPC),

a differential mobility analyser (DMA), and an aerodynamic

particle sizer (APS), respectively and aligned these sizes in

the instrument overlap regions, which allowed them to re-

trieve particle effective density. Pioneering work was done by

McMurry et al. (2002) in which they determined the density

of aerosol particles by selecting particles of known mobil-

ity diameter (dm) using a DMA and subsequently measuring

their mass (mp) and number concentration using aerosol par-

ticle mass analyser (APM) and condensation particle counter

(CPC), respectively. Since then, several instrumental ap-

proaches have been reported following the measurements of

particle mass and mobility-equivalent volume (V ) to deter-

mine effective density:

ρeff =
mp

V
. (3)

Khlystov et al. (2004) reported a simple algorithm that was

developed to combine aerosol size distributions measured us-

ing scanning mobility particle sizer (SMPS) and an APS.

Then this integrated SMPS–APS volume concentration and

PM2.5 mass concentration measured using a tapered element

oscillating microbalance (TEOM) were used to calculate ef-

fective density. Katrib et al. (2005) used a SMPS in parallel

with an aerosol mass spectrometer (AMS) to measure par-

ticle dm, vacuum diameter (dva) and mp to measure effec-

tive density. Similarly, Kostenidou et al. (2007) developed

an algorithm for the calculation of organic aerosol density in

mixed organic–inorganic particles combining the measure-

ments by SMPS and AMS. Kannosto et al. (2008) investi-

gated the mode-resolved density of ultrafine particles mea-

sured in boreal forest using an electrical low-pressure im-

pactor (ELPI) for particle mass distribution and SMPS or dif-

ferential mobility particle sizer (DMPS) operated in parallel

for size distribution data. Virtanen et al. (2002) and Maricq

and Xu (2004) adopted a similar technique (ELPI–SMPS)

for measurement of the density of diesel exhaust soot par-

ticles. Spencer et al. (2007) reported the simultaneous mea-

surements of the effective density and chemical composition

of individual ambient particles in Riverside, California by

coupling a DMA with an ultrafine aerosol time-of-flight mass

spectrometer (UF-ATOFMS).

Olfert et al. (2007) measured the effective density and frac-

tal dimension of particles emitted from a light-duty diesel

vehicle fitted with a diesel oxidation catalyst (DOC) using

a DMA and Couette centrifugal particle mass analyser (Cou-

ette CPMA). Recently Quiros et al. (2015) also used a DMA–

CPMA technique to measure the effective density of particles

emitted from five light-duty vehicles. Ovigneur et al. (2011)

presented an approach to retrieve stratospheric aerosol densi-

ties in the altitude range 10–40 km from SCIAMACHY limb

radiance measurements in the spectral range of the O2A ab-

sorption band, near 760 nm.

Similarly, more recently a DMA–APM approach to get

particle size and mass information, respectively has been ex-

tensively applied for particle density measurements in differ-

ent environments (Geller et al., 2006; Malloy et al., 2009; Lee

et al., 2009; Gysel et al., 2011; Nakao et al., 2013; Rissler et

al., 2014; Yin et al., 2015).

Although these various instrumental approaches have been

applied successfully to different aerosol types for their effec-

tive density measurements, very limited information is avail-

able on the uncertainty (standard) involved with the data re-

ported. These data suggest that the uncertainty in the mea-

surement of effective density may vary widely from 3 to 30 %

(McMurry et al., 2002; Hand and Kreidenweis, 2002; Olfert

et al., 2007; Johnson et al., 2014). More importantly, to our

best knowledge no report is available on the detailed com-

bined uncertainty budget in such measurements.

In this work, we have developed a simplified approach

to determine aerosol effective density by measuring parti-

cle size distribution using a SMPS (electrostatic classifier

(EC)+DMA+CPC) and simultaneously measuring parti-

cle mass using the quartz crystal microbalance (QCM) tech-

nique. This approach is demonstrated here with laboratory-
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generated particles of inorganic salt materials whose density

is known to estimate the combined uncertainty in the mea-

surement. The setup is then applied for effective density mea-

surement of ambient aerosols in New Delhi for a week. Here

we also discuss the variation of effective density of particles

with the meteorological parameters and atmospheric gaseous

species, and their influences on effective density of ambient

aerosols.

2 Method

We used a SMPS (TSI 3080) with a QCM (PC-2, Califor-

nia Measurements, Inc.), which is a 10-stage cascade im-

pactor with cutoff sizes (aerodynamic diameters) from upper

to lower stages of 25, 12.5, 6.4, 3.2, 1.6, 0.8, 0.4, 0.2, 0.1 and

0.05 µm.

2.1 Scanning mobility particle sizer

The SMPS consists of an electrostatic classifier (EC, TSI

3080, including an impactor (0.0457 cm, TSI 1 502 296) and

Kr-85 bipolar charger (TSI 3077), differential mobility anal-

yser (DMA, TSI 3081) and condensation particle counter

(CPC, TSI 3788). Different nozzle sizes for different sam-

ple flow rates are used in the SMPS, e.g. for flow rate 0.2–

0.8 L min−1, 0.0457 cm a nozzle size of the impactor is rec-

ommended. We use a sample flow rate 0.48 L min−1 in all

the measurements, the cut-off size (D50) of the impactor at

this flow rate is 472 nm. The aerosol stream enters through

the inlet impactor and the resulting particles get neutralized

through the bipolar charger (in accordance with the Fuchs

equilibrium charge distribution principle). Then this neutral

aerosol stream enters to the DMA, where a varying voltage

is applied to the DMA rod so that according to the electrical

mobility of particles, respective sized particles exit through

the slit at the bottom of the DMA. These size-segregated par-

ticles then enter the CPC, where particles undergo condensa-

tional growth while passing through saturated liquid vapours

followed by their detection through optics. Before the density

measurement, the DMA was calibrated with 60 and 100 nm

polystyrene latex (PSL) particles (Sarangi et al., 2014). Also

the calibration of CPC counts was checked by a gravimetric

approach (Aggarwal et al., 2013).

2.2 Quartz crystal microbalance

The QCM uses piezoelectric quartz crystal substrates for the

collection of particles which enter through an impactor noz-

zle placed before every stage. Every stage consists of two

quartz crystals: one of the crystals, the sensing oscillating

crystal is placed close to the nozzle-exit, and it collects parti-

cles; the other crystal, the reference crystal, does not collect

particles but is there to nullify background frequency, tem-

perature and other effects on both the crystals. The two crys-

tals are identical and have a resonant frequency of 10 MHz.

As the particles impact on the sensing crystal, its frequency

decreases while the reference crystal frequency remains un-

changed. The difference in frequency of the mixer output

(which is generally the same amount of decrease as in the

sensing crystal frequency) is considered as the change in the

frequency. The amount of frequency change of the signal out-

put is directly proportional to the particle mass deposited on

the sensing crystal. The QCM uses the following informa-

tion to determine particle concentration: the initial frequency

before particle collection, the frequency after particle collec-

tion (the final frequency), and the sampling time. The QCM

design was verified and calibrated at Los Alamos National

Laboratory and the Aerosol Laboratory, ULCA.

2.3 Experimental setup

The experimental setup used in this study is shown in Fig. 1.

For validation of the method, standard materials (inorganic

salts) of known density were used. Solution of a standard

material was aerosolized by an atomizer (TSI 3076) using 5N

purity N2 gas, and the generated aerosol stream was passed

through two diffusion dryers placed in series. This dried

aerosol stream (RH < 5 %) was then introduced to the SMPS

(through the inlet impactor). Downstream of the DMA, the

aerosol flow was subdivided into two parts. One was con-

nected to the CPC and other one to the QCM, which were

placed at equal distances from the DMA (the tube length

between DMA exit and inlet of CPC or QCM was 25 cm).

The sample flow rate of the SMPS was set to 0.48 L min−1,

which is a sum of flow rates of the CPC and the QCM, i.e.

0.24 L min−1 each. The purpose of selecting 0.24 L min−1

for the CPC is to keep its flow rate equal to the flow rate

of the QCM (which works only at 0.24 L min−1 for better

size segregation). Sheath flow rate of the SMPS was set to

4.8 L min−1. Particles of size range 10–478 nm were segre-

gated by the DMA and number concentration was measured

by the CPC. Simultaneously, the corresponding mass distri-

bution was obtained from the QCM. For the calculation of

effective density, we used count mean diameter (CMD) de-

rived from the size distribution scan over a size range 10–

478 nm of the CPC and the real-time corresponding mass

concentration obtained from the QCM downstream of the

DMA. In this approach, we assumed that particles are spher-

ical (χ = 1, Eq. 1), thus the electrical mobility diameter (dm,

related to DMA size segregation) is equivalent to the aerody-

namic diameter (da, related to QCM size segregation, based

on impaction theory). It is important to note, however, that

uncertainty due to this assumption is added to the combined

uncertainty estimation (see Sect. 3.2.2).

Based on the particle size distribution obtained from the

SMPS and corresponding mass concentration measured from

the QCM, we calculated the effective density of particles us-
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Figure 1. Measurement setup of effective density measurement of laboratory-generated particles and ambient aerosols.

ing Eq. (3):

ρeff =
mp

V
=

mp

π
6
×

(∑
i

dm,i×Ni∑
i

Ni

)3

×
∑
i

Ni

, (4)

wheremp is the total mass concentration of the particles mea-

sured by the QCM downstream of the DMA. The dm,i andNi
are the mobility diameter of particles and their corresponding

number concentration in size bin i, respectively.

2.4 Inorganic salts used

To validate the measurement of particle effective density us-

ing the proposed setup, standard materials of known density

were used. These materials were used to prepare solutions

(0.001 %w/v) using Milli-Q water (> 18 M� cm). This solu-

tion was nebulized (at 0.7 bar pressure) to generate particles.

The details of the material used are summarized in Table 1.

2.5 Estimation of uncertainty in effective density

measurement

The uncertainty due to different components belonging to

particle mass measurement by QCM and volume measure-

ment by CPC are taken into consideration in the measure-

ment of effective density of laboratory-generated aerosol par-

ticles (AS, SC and AN), Fig. 2. The combined standard un-

certainty (uc) can be defined as

uc =

√∑
i

(ui)
2 (5)

Ue = k× uc, (6)

where ui is the standard uncertainty of the component i and

Ue is the expanded uncertainty at k (coverage factor). In this

study, k = 2 at 95 % confidence level. Details of the estima-

tion of uncertainty are discussed in the following sections.

2.6 Effective density measurement of ambient aerosols

The experimental setup used to measure effective density of

ambient aerosols using the proposed approach is shown in

Fig. 1. The measurement was performed for urban aerosols

in New Delhi at the National Physical Laboratory (NPL) for

the week of 12–18 November 2014. The measurement site

is known to be a good representative site of urban aerosols

in Delhi with the combined influence of residential, agricul-

tural, traffic and industrial emissions (Sarangi et al., 2015).

Also, meteorological data during mid-November in Delhi is

known to be representative of the year-round average data.

Aerosol samples were aspirated at the rooftop of the lab-

Atmos. Meas. Tech., 9, 859–875, 2016 www.atmos-meas-tech.net/9/859/2016/



S. G. Aggarwal et al.: Aerosol effective density measurement 863

Table 1. Inorganic salts used for the measurement of density using the SMPS–QCM approach.

Inorganic salt Molecular formula Mw (gmol−1) ρ (gcm−3) Maximum number Supplier Purity

of ions

Ammonium sulfate (NH4)2SO4 132.1 1.77 3 MERCK > 99.5 %

Sodium chloride NaCl 80.1 2.17 2 Sigma Aldrich > 99.5 %

Ammonium nitrate NH4NO3 58.4 1.72 2 MERCK > 99.5 %

Figure 2. Cause-effective diagram of the uncertainty components

considered in this study, constituting the entire uncertainty budget

in the measurement of ρeff using the SMPS–QCM approach.

oratory (∼ 15 m above the ground) through a cyclone inlet

(2.5 µm cutoff size) connected with copper tubing of inter-

nal diameter 6 mm and length ∼ 4 m. Then aerosols were

dried after passing through two diffusion dryers before they

reached the inlet impactor of the SMPS.

2.7 Meteorological data

Hourly meteorological data (temperature, relative humid-

ity, wind speed and direction) and concentration of atmo-

spheric gases, i.e. sulfur dioxide (SO2), carbon monox-

ide (CO), ozone (O3) and nitrogen oxides (NOx) for the

study period are obtained from a continuous ambient air

quality monitoring station (CAQMS) of the Central Pollu-

tion Control Board (CPCB), Shadipur located within 3 km

radius from the measurement site (http://www.cpcb.gov.in/

CAAQM/mapPage/frmindiamap.aspx).

3 Results and discussion

3.1 Laboratory test

Laboratory tests of effective density measurement using the

proposed SMPS–QCM setup were performed with three dif-

ferent inorganic salts: ammonium sulfate (AS), sodium chlo-

ride (SC) and ammonium nitrate (AN). Before the density

measurement of inorganic salt materials, the DMA was cal-

ibrated using particle size standards (PSL 60 and 100 nm),

which are traceable to SI through the National Institute

of Standards and Technology (NIST), USA. Counting effi-

ciency of the CPC was checked using a filter-based gravi-

metric approach, which is discussed elsewhere (Aggarwal et

al., 2013). Crystals of all the stages of the QCM were tested

for background frequency prior to measurements. As per the

QCM instrumental guidelines, background frequency of the

crystals of all the stages was set to between 2 and 4 kHz for

a valid measurement.

Effective density is estimated from the SMPS-derived vol-

ume and QCM-measured mass using Eq. (4). Figure 3 shows

the effective density (g cm−3) versus count mean diameter

(CMD) for AS, SC and AN particles. The mean effective

particle densities with standard deviation were determined

to be 1.76± 0.04, 2.08± 0.12 and 1.69± 0.17 g cm−3 for

AS, SC and AN particles, respectively. Number concentra-

tion and detailed statistics are shown in Table 2. The results

indicate that the measured effective density of laboratory-

generated inorganic salt particles using the SMPS–QCM ap-

proach agrees well with the reported value in the literature

(Svenningsson et al., 2006; Schmid et al., 2009; Schkolnik et

al., 2007).

3.2 Detailed uncertainty calculations

Because the measurement of particle effective density us-

ing the SMPS–QCM approach (Eq. 4) is based on (i) par-

ticle mass measurement using the QCM and (ii) particle

volume measurement using DMA+CPC, therefore the un-

certainty in density measurement involves the components

which comprise these two measurements. These components

are shown in the cause-effective diagram in Fig. 2.

The uncertainties due to different parameters involved dur-

ing the measurement of effective density are estimated for

laboratory-generated aerosol particles (of AS, SC and AN).

The combined standard uncertainty for the measurement of

www.atmos-meas-tech.net/9/859/2016/ Atmos. Meas. Tech., 9, 859–875, 2016
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Table 2. Measured effective density of laboratory-generated inorganic salt particles.

Inorganic Density (ρ) from Effective density (ρeff) ±SD measured Mean CMD±SD Mean number

salts literature (gcm−3) using the SMPS–QCM approach (gcm−3) (nm) concentration

Mean Max Min % SD (×105 particles cm−3)

(NH4)2SO4 1.77 1.76± 0.04 1.86 1.66 2.27 33.17± 0.43 4.6

NaCl 2.17 2.08± 0.12 2.19 1.91 5.76 33.17± 0.21 8.3

NH4NO3 1.72 1.69± 0.17 1.92 1.51 10.1 31.20± 0.33 2.3

Figure 3. Laboratory-generated inorganic salt particle effective

density versus count mean diameter over the size range 10–478 nm:

(a) ammonium sulfate, (b) sodium chloride and (c) ammonium ni-

trate.

effective density (u(ρ)) can be expressed as

u(ρ)

ρ
=

√(
u(m)

m

)2

+

(
u(V )

V

)2

, (7)

where
u(ρ)
ρ

,
u(m)
m

and
u(V )
V

represent the combined relative

standard uncertainty in density, mass and volume of the par-

ticles, respectively. Using Eq. (7) the combined standard un-

certainty in the measurement of effective density of AS, SC

and AN was estimated to be 0.24, 0.19 and 0.28 g cm−3. The

detailed uncertainty budget for the estimation of uncertainty

in measurement of ρeff of all the inorganic salts species con-

sidered in this study (i.e. AS, SC and AN) is shown in Ta-

ble 3. In what follows we discuss the individual combined

relative standard uncertainty for both mass and volume for

ammonium sulfate particles as an example.

3.2.1 Uncertainty in particle mass measurement using

QCM

The mass concentration of monodisperse inorganic salt par-

ticles (downstream of the DMA) is obtained by QCM. The

QCM uses the following information to determine particle

concentration: (i) the initial frequency before particle col-

lection, (ii) the frequency after particle collection (the final

frequency) and (iii) the sampling time. Once these are avail-

able, the instrument finds the frequency change (dF in Hz),

divides it by the sampling time (dT in min) and multiplies

it by a mass sensitivity constant (K in µg min (Hz m3)−1) of

an impactor stage, and then finally gives the result of particle

mass concentration (m in µg m−3):

m=K

(
dF

dT

)
. (8)

Equation (8) represents the mass concentration, which is

a function of change in frequency of quartz crystal and the

sampling time, and mass sensitivity constant. Therefore, the

uncertainty involved in particle mass measurement has sig-

nificant contributions from these parameters which are dis-

cussed in detail in the following sections.

Uncertainty due to mass collected at different stages of

QCM

The mass concentration of the particles is considered to be

the summation of the mass concentrations obtained from the

different stages of QCM (i.e. total mass, mp). This mass

concentration is further converted to mass using QCM air

volume (the product of inlet flow rate and sampling time).
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Table 3. The uncertainty budget in the measurement of effective density of laboratory-generated inorganic salt particles (ammonium sulfate,

AS; sodium chloride, SC; ammonium nitrate, AN).

Mass measurement by quartz crystal microbalance (QCM)

Contribution of relative standard

Source of Uncertainty Standard uncertainty, Distribution Relative standard, uncertainty in the combined

uncertainty type ui(m) (µg) uncertainty
(
ui (m)
m

)
relative uncertainty of density

measurement,

(
ui (m)

m

)2

(
u(ρ)
ρ

)2 (%)

AS SC AN AS SC AN AS SC AN

u1(m) Type A 1.45 0.05 0.18 Normal 0.053 0.004 0.067 15.1 0.17 16.2

u2(m) Type A 0.54 0.27 0.05 Normal 0.019 0.019 0.011 2.14 4.81 1.42

u3(m) Type A 1.01 0.49 0.09 Normal 0.037 0.036 0.037 7.32 16.5 4.87

u4(m) Type B 0.59 0.29 0.06 Rectangular 0.022 0.021 0.022 2.51 5.64 1.72

Sampling time Negligible

Volume measurement by scanning mobility particle sizer (SMPS)

Contribution of relative standard

Source of Uncertainty Standard uncertainty, Relative standard uncertainty in the combined

uncertainty type (ui(V ))× 10−19 (cm3) Distribution uncertainty,
(
ui (V )
V

)
relative uncertainty of density

measurement,

(
ui (V )

V

)2

(
u(ρ)
ρ

)2 (%)

AS SC AN AS SC AN AS SC AN

u1(V ) Type A 2.13 1.63 2.28 Normal 0.011 0.008 0.014 0.67 0.89 0.74

u2(V ) Type A 2.12 1.63 2.28 Normal 0.011 0.005 0.014 0.67 0.89 0.74

u3(V ) Type B 1.62 1.62 1.35 Rectangular 0.009 0.006 0.009 0.39 0.88 0.27

u4(V ) Type A 2.13 0.42 0.59 Normal 0.011 0.001 0.004 0.67 0.06 0.05

u5(V ) Type A 2.13 1.41 1.98 Normal 0.011 0.004 0.012 0.68 0.67 0.56

u6(V ) Type A 1.82 1.04 1.51 Normal 0.009 0.006 0.006 0.49 1.11 0.33

u7(V ) Type A 1.82 1.04 1.51 Normal 0.009 0.006 0.006 0.49 1.11 0.33

u8(V ) Type B 12.3 10.9 9.18 Rectangular 0.064 0.057 0.057 22.4 40.6 12.0

u9(V ) Type B 17.6 8.89 20.6 Rectangular 0.092 0.047 0.13 46.4 26.6 60.7

Density measurement by SMPS–QCM

Combined standard uncertainty (uc(ρ)) (g cm−3) Contribution of the combined uncertainty in the

density measurement
(
uc(ρ)
ρ

)
(%)

AS SC AN AS SC AN

0.24 0.19 0.28 13.6 9.13 16.6

The uncertainty (type A) in mass measurement u1(m) is es-

timated using the following equation:

u1(m)=

√
n∑
i=1
(mp,i−mp)

2

n−1
√
n

, (9)

where mp,i is the mass of particles obtained from QCM for

sample i (i.e. total mass of particles collected on different

stages of QCM), mp is the mean mass over mp,i , and n is the

number of samples (n= 12).

For example, the calculated mean mass of ammonium sul-

fate (AS) particles is 27.4 µg, and the estimated standard un-

certainty for ammonium sulfate particle mass is ±1.45 µg.

Uncertainty due to sampling time

The sampling time of sample i in QCM is 120 s which is

equivalent to SMPS up-scan sampling time for a sample i.

Because the sampling time for a sample in both QCM and

CPC is the same, uncertainty due to sampling time is equally

contributed to mass and volume measurements, respectively,

and hence assumed to nullify the effect in effective density
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measurement result. Therefore we have not considered this

component in the uncertainty estimation.

Uncertainty due to QCM inlet flow rate

The QCM inlet flow (0.24 L min−1) is calibrated with the ref-

erence flow meter (Gilian Gilibrator2, SP100IZ, World Pre-

cision Instruments) traceable to SI unit through NIST, USA.

Standard uncertainty in flow rate (u(q)) at the inlet of the

QCM during sampling is estimated using the following equa-

tion:

u(q)=

√
n∑
i=1

(qi−q)
2

n−1
√
n

, (10)

where qi is the QCM inlet flow rate during sample i, and q

is the mean flow rate measured during the whole duration of

sampling (for n number of samples).

The uncertainty contribution in mass of AS particles due

to the QCM inlet flow rate is ±1.98 %. The percentage is

calculated as
u(q)
q

%. The corresponding standard uncertainty

u2(m) (type A uncertainty based on repeatable measurement

and normal distribution) is estimated to be ±0.54 µg using

the following equation:

u2(m)=m×
u(q)

q
× 0.01. (11)

Uncertainty due to variation in crystal frequency

In the QCM, each impactor stage constitutes a nozzle, two

open-face quartz crystals, and electronics circuits for the

crystals. One of the crystals, the sensing crystal, is placed

close to the nozzle exit and collects particles. The other crys-

tal, the reference crystal, does not collect particles but is there

to nullify temperature or other effects on both crystals. The

amount of frequency change of the signal output is in di-

rect proportion to the particle mass deposited on the sensing

crystal. Therefore, the frequency of each stage of QCM is

continuously monitored prior to and after the sampling. The

uncertainty due to crystal frequency u(1f ) is estimated us-

ing Eq. (12) below, which is based on the deviation in mean

frequency difference of sensing and reference crystals of all

the stages of the QCM:

u(1f )=

√
n∑
i=1

(
1fi−1f

)2
n−1
√
n

, (12)

where1fi is the mean frequency difference between sensing

and reference crystals of all the stages of the QCM for sample

i, the 1f is the mean over 1fi , and n is the total number of

observations during the whole duration of sampling.

The uncertainty contribution in mass of AS particles due

to variation in crystal frequency is ±3.7 %. The percentage

is calculated as
u(1f )

1f
%. The corresponding standard uncer-

tainty, u3(m) (type A and normal distribution) is estimated to

be ±1.01 µg using

u3(m)=m×
u(1f )

1f
× 0.01. (13)

Uncertainty due to QCM collection efficiency

The QCM (PC-2) is a 10-stage impactor and the collection

efficiencies for all stages are reported by Horton et al. (1992).

In this study we have assumed that the collection efficiencies

of all the stages are a function of particle diffusion loss. The

percentage uncertainty contribution in the mass of ammo-

nium sulfate due to QCM collection efficiencies is ±3.73 %.

This percentage is a mean value of the collection efficiencies

of all the stages as reported by Horton et al. (1992), and was

not measured during the sampling in this work. Hence the

uncertainty contribution is considered as type B uncertainty.

The corresponding standard uncertainty (i.e. u4(m)) assum-

ing rectangular distribution is estimated to be ±0.59 µg for

AS particles:

u4(m)=mp× 3.73× 0.01×
1
√

3
. (14)

The combined relative standard uncertainty
(
u(m)
m

)
in par-

ticle mass measurement using QCM including both type A

and type B is estimated by

u(m)

m
=

√√√√∑
i

(
uA,i(m)

m

)2

+

∑
i

(
uB,i(m)

m

)2

(15)

where uA,i(m) (i.e. u1(m), u2(m) and u3(m)) and uB,i(m)

(i.e. u4(m)) are the standard uncertainty sources from type

A and type B, respectively. The estimated combined relative

standard uncertainty in the measurement of AS particle mass

using Eqs. (9)–(15) is estimated to be ±0.07.

3.2.2 Uncertainty in particle volume calculation (using

DMA + CPC)

The SMPS consists of an electrostatic classifier (EC, includ-

ing an impactor and Kr-85 bipolar charger), a DMA and a

CPC. The radioactive source (Kr-85 gas) imposes a Boltz-

mann charge distribution on aerosol particles. Aerosol par-

ticles then pass through the DMA. Here, an electric field

acts on the charged particles, such that they are classified ac-

cording to their electrical mobility equivalent diameter and

then the resulting size-selected particles enter the CPC. In the

CPC, particles are counted in an optical detector, which uses

the scattered light of a laser source focused onto the parti-

cle stream (Hinds, 1999). The particle number concentration

for every size bin (Nsmps), which is a function of channel

raw count (n′i) of the CPC through the CPC dilution factor
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(ϕ), the sampling time (ti), the sampling flow rate (θ) and

the counting efficiency (ηi), and can be represented as (Buo-

nanno et al., 2009)

Nsmps,i =
n′iϕ

tiθηi
. (16)

The channel volume concentration (vsmps,i) is evaluated

from Nsmps,i by means of

vsmps,i =
π

6
d3

ve,iNsmps,i =
π

6
d3

ve,i

n′iϕ

tiθηi
(17)

=
π

6
d3

ve,i

dNi

dlogdve,i

1wi,

where dve,i represents the equivalent volumetric diameter

(the diameter of a sphere having the same volume as the

particle under examination), dNi/dlogdve,i is the normalized

number concentration for each channel and 1wi represents

the channel width.

In this study, the hypothesis of spherical particle is as-

sumed, hence with this approximation, volumetric and mo-

bility diameter are considered to be equal (Sioutas, et al.,

1999; McMurry et al., 2002). The total volume concentration

through the SMPS (Vsmps) is obtained as the sum of volume

concentration of n number of bins:

Vsmps =

n∑
i=1

vsmps,i . (18)

Uncertainty in particle volume estimated from CPC data

The volume of inorganic salt particles is calculated from the

count mean diameter (Hinds, 1999; Sarangi et al., 2015) ob-

tained from the size distribution data of the CPC for a sample

i, CPC inlet flow rate (0.24 L min−1) and DMA up-scan time

(120 s). The mathematical expression for the estimation of

standard uncertainty (type A) in volume of the particles is

u1(V )=

√
n∑
i=1

(
Vi−V

)2
n−1
√
n

, (19)

where Vi is the volume of AS obtained from CPC samples

i, and V is the mean volume determined from n number of

samples.

For AS particles (n= 12), the mean volume determined is

1.91× 10−17 cm3 and the standard uncertainty estimated is

±2.13× 10−19 cm3.

Uncertainty in volume due to assumption that particles

are spherical

For spherical particles, the dynamic shape factor (DSF, χ )

is 1 and in most other cases (e.g. non-spherical particles) it is

larger than 1. In such cases, the electrical mobility diameter

(dm, considered for DMA size segregation) is not equivalent

to the aerodynamic diameter (da, considered for QCM size

segregation). Therefore, it is important to estimate the uncer-

tainty due to the DSF in particle volume and thus in particle

density measurement.

It is important to note that the DSF is not a constant – it

changes with pressure, particle size, and as a result of par-

ticle orientation in electric or aerodynamic flow fields. For

inorganic salts, such as ammonium sulfate and sodium chlo-

ride, the shape correction factor has been taken as 1.04 (Ze-

lenyuk et al., 2006) and 1.08 (Hinds, 1999), respectively. In

this study we have assumed the shape factor for ammonium

nitrate as 1.08. Therefore, the correction in particle size can

be calculated as

ddm = χ
′dm,i −χdm,i, (20)

where ddm is the correction in diameter. χ and χ ′ are the

DSFs for spherical and original inorganic salt particle (non-

spherical), respectively. Therefore correction in the volume

(vm) of particles can be calculated from the correction in mo-

bility diameter:

vm =
π

6
×

(
dd3

m

)
, (21)

and then the standard uncertainty (type A) involved due to

DSF (u2(V )) is

u2(V )=

√
n∑
i=1
(vm,i−vm)

2

n−1
√
n

, (22)

where vm,i is the corrected volume of sample i of CPC data,

and vm is the mean corrected volume derived from n number

of samples of CPC data.

Based on repeated measurements (n= 12), the standard

uncertainty involved due to DSF in the measurement of vol-

ume of AS particles is ±2.12× 10−19 cm3.

DMA calibration: uncertainty in volume due to DMA

particle size segregation

In this study, calibration of the DMA was performed using

standard polystyrene latex (PSL) 60 and 100 nm particles,

which are traceable to SI through NIST, USA. Here the un-

certainty of particle volume using PSL-60 nm is considered

because it is used routinely in the calibration of DMA before

and after sampling.

Based on the particle size distribution obtained from the

SMPS, the observed mode peak is represented by the size

peak of standard PSL particles. The experiment was re-

peated five times on each of 3 different days. The statistical

analyses (count mean diameter (CMD), geometric mean di-

ameter (GMD), geometric standard deviation (GSD), mean

mode diameter (MD), repeatability and reproducibility) of

particle size obtained from size distribution were performed.
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Table 4. The uncertainty budget in the measurement of PSL-60 nm reference particles.

Source of Probability Standard Sensitivity Degree of

uncertainty (nm) distribution uncertainty (nm) coefficient freedom

Sample Sample

SET-1 SET-2

Mode peak (Repeatability) Normal-TypeA 0.380 0.420 1 4

CMD correction Normal-TypeA 0.199 0.140 1 4

Diffusion correction Rectangular-TypeB 0.161 0.118 1 ∞

Charge correction Rectangular-TypeB 0.109 0.119 1 ∞

Impactor flow Rectangular-TypeB 0.016 0.016 1 ∞

Sheath flow Rectangular-TypeB 0.00004 0.00005 1 ∞

Bypass flow Rectangular-TypeB 0.057 0.058 1 ∞

Certificate value of SRM 1964 Normal-TypeB 0.310 0.310 1 ∞

Uncertainty (at manufacturer site) Normal-TypeB 0.551 0.559 1 ∞

Reproducibility Normal-TypeA 0.274 0.274 1 2

Combined uncertainty – 0.750 0.763 ∞

Expanded uncertainty (k = 2) – 1.500 1.525 ∞

Uncertainty components due to instrument calibration (im-

pactor flow, sheath flow, bypass flow, CPC inlet flow), instru-

mental measurement (diffusion correction, charge correction,

CMD correction, repeatability, reproducibility) and calibra-

tion standard (certificate value of particle standard used, cal-

ibration uncertainty at the manufacturer site) were included

in the budget estimation of the uncertainty in particle size

measurement (Table 4; Sarangi et al., 2014):

u3(V )= v× xpsl× 0.01×
1
√

3
(23)

xpsl =
u′

dpsl

× 100, (24)

where xpsl is the percentage of uncertainty in PSL-60 nm par-

ticles. u′ and dpsl are the estimated combined standard uncer-

tainty and the obtained mean mode of PSL-60 nm by DMA

calibration, respectively.

The uncertainty reported for PSL-60 nm in certificate is

±0.63 nm with coverage factor k = 2. The uncertainty esti-

mated from DMA calibration using PSL-60 nm by Eq. (23)

is 55.62± 1.53 nm (with coverage factor k = 2). The stan-

dard uncertainty u3(V ) (type B and rectangular distribution)

involved due to PSL-60 nm in the measurement of volume of

AS particles is ±1.62× 10−19 cm3.

Uncertainty in volume due to particle diffusion loss

Diffusion correction was done using a program (TSI-Aerosol

Instrument Manager® (AIM) Software) which is based on

the loss of the particles along the SMPS channel (particle

loss on the impactor inlet, the bi-polar neutralizer, internal

plumbing, the tubing to the DMA and CPC). Using the built-

in TSI-AIM (version 9.0.0.0, 15:32:53, 11 November 2010)

algorithm, the diffusion correction was done and a corrected

number concentration of the particles was obtained. Because

the particle CMD is the function of particle number concen-

tration (Hinds, 1999), the uncertainty due to diffusion loss of

particles, which affects the volume of particles is estimated

as

vd =
π

6
×

(
(CMD′)3− (CMD)3

)
(25)

CMD′ =

(
N ′

N

)
×CMD, (26)

where vd is the diffusion corrected volume, and N ′ and N

are the total particle number concentrations with diffusion

correction and without diffusion correction over a size range

10–478 nm, respectively.

The standard uncertainty (u4(V )) involved due to diffu-

sion correction (type A uncertainty based on repeated mea-

surement and normal distribution) in the measurement of vol-

ume is then estimated as

u4(V )=

√
n∑
i=1
(vd,i−vd)

2

n−1
√
n

, (27)

where the subscript i denotes individual samples. vd is the

mean diffusion-corrected volume and n is the total number

of samples.

Using Eq. (27), the standard uncertainty (u4(V )) involved

in volume of AS particles (n= 12) is estimated to be±2.13×

10−19 cm3.

Uncertainty in volume due to particle multiple charges

Multiple charges on a particle increase its mobility. Since

the TSI-AIM software assumes that a particle has only one

charge, the effect of multiple charges on a particle allows the
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particle to be incorrectly binned into a smaller-sized particle

channel. Therefore, multiple charge correction is performed

using the built-in TSI-AIM (version 9.0.0.0, 15: 32: 53,

11 November 2010) algorithm (which is based on Wieden-

sohler, 1988; Kim et al., 2005) that attempts to correct the

sample data from the effects of the multiple charged parti-

cles. The mathematical expression for estimation of uncer-

tainty in volume due to multiple charges is similar to that for

uncertainty due to particle diffusion loss:

u5(V )=

√
n∑
i=1
(vc,i−vc)

2

n−1
√
n

(28)

vc =
π

6
×

(
(CMD′′)3− (CMD)3

)
(29)

CMD′′ =

(
N ′′

N

)
×CMD, (30)

where vc,i and vc are the multiple charge-corrected and mean

multiple charge-corrected volumes, respectively. N ′′ and N

are total particle number concentrations with and without

multiple charge corrections, respectively.

The standard uncertainty (u5(V )) involved due to multi-

ple charge correction (type A uncertainty based on repeated

measurement and normal distribution) in the measurement of

volume of AS particle is ±2.13× 10−19 cm3.

Uncertainty in particle volume due to CPC inlet flow

rate

The CPC inlet flow (0.24 L min−1) is calibrated with the ref-

erence flow meter (Gilian Gilibrator2, SP100IZ, World Pre-

cision Instruments). Standard uncertainty in flow rate (u(q ′)

at the inlet of the CPC during sampling is estimated using

u(q ′)=

√
n∑
i=1

(
q ′i−q

′

)2

n−1
√
n

, (31)

where q ′i is the CPC inlet flow rate during sample i, and q ′

is the mean flow rate measured during the whole duration of

sampling (for n number of samples).

The uncertainty contribution in volume of AS particles due

to CPC inlet flow rate is ±0.95 %. This percentage is calcu-

lated using
u(q ′)

q ′
%. The corresponding standard uncertainty

u6(V ) (type A and normal distribution) is estimated to be

±1.82× 10−19 cm3 using

u6(V )= v×
u(q ′)

q ′
× 0.01. (32)

Uncertainty in particle volume due to CPC dilution

factor

The CPC dilution factor is the ratio of aerosol sample flow

rate (equivalent to CPC inlet flow rate) to sheath flow rate:

φ =
θ

θ ′
, (33)

where θ is the aerosol sample flow rate and θ ′ is the DMA

sheath flow rate (fixed at 0.48 L min−1). Both the sample

flow rate and sheath flow rate are measured with the refer-

ence flow meter (Gilian Gilibrator2). Standard uncertainty

due to CPC dilution factor (u(φ) at the inlet of CPC during

sampling is estimated using

u(φ)=

√
n∑
i=1

(
φi−φ

)2
n−1
√
n

. (34)

The uncertainty contribution in volume of ammonium sul-

fate due to the CPC dilution factor flow rate is ±0.95 %.

This percentage is calculated using
u(φ)

φ
%. The correspond-

ing standard uncertainty u7(V ) (type A and normal distribu-

tion) is estimated to be ±1.82× 10−19 cm3 using

u7(V )= v×
u(φ)

φ
× 0.01. (35)

Uncertainty in particle volume due to CPC counting

accuracy

CPC counting uncertainty (u8(V )
′) is directly taken from

the CPC calibration certificate of the manufacturer, and CPC

counting accuracy (for particle size 10–478 nm) is further

checked using a filter-based gravimetric technique (u8(V )
′′)

(Aggarwal et al., 2013). The standard uncertainty in particle

volume due to CPC counting accuracy in the measurement

of particle volume (u8(V )) (type B uncertainty) is expressed

as

u8(V )=

√
(u8(V )′)

2
+ (u8(V )′′)

2. (36)

The standard uncertainty (u8(V )) in volume measurement

of AS particles due to CPC counting accuracy is estimated to

be ±12.3× 10−19 cm3. Here we discuss the detailed proce-

dure of the calculation of CPC counting accuracy both using

CPC certificate and the filter-based gravimetric technique.

From the manufacturer specification it has been reported

that the CPC (TSI model 3788) particle concentration ac-

curacy is ±10 % for 400 000 # cm−3 (i.e. particles cm−3).

Therefore, the standard uncertainty (assuming 10 % un-

certainty, rectangular distribution and type B uncertainty)

(u8(V )) in particle volume measurement due to CPC count-

ing accuracy is

u8(V
′)= v× 10× 0.01×

1
√

3
. (37)
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The standard uncertainty u8(V )
′ for AS particles is estimated

to be ±1.1× 10−19 cm3.

The filter-based gravimetric technique has been discussed

elsewhere (Aggarwal et al., 2013). Briefly, dried ammonium

sulfate particles were introduced to SMPS with a sample

flow rate of 0.6 L min−1 and sheath flow rate of 6 L min−1.

Particles of size range 14–615 nm were segregated by DMA

and number concentration was measured by CPC which was

operated with a flow rate of 0.3 L min−1. Also, after DMA

a Quartz filter (47 mm which was pre-baked at 450◦, pre-

conditioned and pre-weighted) was placed to collect particles

with a flow rate of 0.3 L min−1 and simultaneously to mea-

sure the mass of the particles downstream of the DMA. After

30 min of particle sampling, the filter was conditioned and

weighed.

Using CPC particle count data the CPC-derived particle

volume was calculated as

V ′ = v×
π

6
×

105∑
i=1

d3
ve,i × n

′

i, (38)

where V ′ is the total volume of the size distribution, v is the

flow volume that enters the CPC (calculated from CPC inlet

flow and the time of flow), and dve,i and n′i are the particle’s

mobility diameter and number concentration in bin i, respec-

tively.

Based on the particle mass collected on the filter, and using

the density of particle material (e.g. ammonium sulfate), we

have calculated the volume of particles as

V ′′ =
m

ρ
, (39)

where ρ is the density of particle material (e.g. in the case of

ammonium sulfate, 1.769 g cm−3), and m is the mass of the

particles collected on the filter.

Using this approach, the uncertainty (estimated from the

standard deviation of V ′ and V ′′) contribution due to CPC

counting accuracy to the total volume of the AS particles

is estimated to be 4.8 %. Therefore, the standard uncertainty

((u8(V )
′′, assuming rectangular distribution and type B un-

certainty) due to CPC counting accuracy in the measurement

of particle volume is

u8(V )
′′
= v× 4.8× 0.01×

1
√

3
. (40)

The u8(V )
′′ for AS particles is estimated to be ±5.31×

10−19 cm3.

Uncertainty due to assumption that equivalence of CPC-

and QCM-derived particle volumes

Both the CPC and QCM are placed equidistant downstream

of the DMA. The inlet flow rates are equal for both of the in-

struments. Uncertainty because of the assumption of equiv-

alency of CPC-derived volume (based on CMD of the dis-

tributions) and corresponding particle volume derived from

the QCM (based on mass obtained from QCM and mate-

rial density) is about ±12 %. This is calculated based on the

standard deviation between the CPC- and QCM-derived vol-

umes. Therefore, the standard uncertainty u9(V ) due to CPC

and QCM volume equivalence (assuming rectangular distri-

bution) in the measurement of particle volume is estimated

as

u9(V )= v× 12× 0.01×
1
√

3
. (41)

The u9(V ) (type B and rectangular distribution) due to the

assumption of CPC- and QCM-derived volume equivalence

in AS particles is estimated to be ±17.6× 10−19 cm3.

The combined relative standard uncertainty u(V ) includ-

ing type A and type B uncertainty sources can be defined as

u(V )

V
=

√√√√∑
i

(
uA,i(V )

V

)2

+

∑
i

(
uB,i(V )

V

)2

, (42)

where uA,i(V ) and uB,i(V ) are the standard uncertainty

sources from type A and type B, respectively as discussed

in the above sections.

The estimated combined relative uncertainty in the volume

measurement of AS particles is estimated to be ±0.12.

Once the combined relative standard uncertainty for both

the mass and volume is known, then the relative combined

standard uncertainty in measurement of effective density of

the particles can be estimated using Eq. (7).

Therefore, the combined standard uncertainties in the mea-

surement of effective density of AS, SC and AN are esti-

mated to be 1.76±0.24, 2.08±0.19 and 1.69±0.28 g cm−3,

respectively. The percentage of estimated uncertainties in the

measurement of the density of AS, SC and AN are calculated

to be 13.6, 9.13 and 16.6 %, respectively.

The detailed uncertainty budget involving different

components in the measurement of effective density of

laboratory-generated aerosol particles (of AS, SC and AN)

is summarized in Table 3. Among the individual uncertainty

components (Fig. 2), the repeatability of particle mass ob-

tained by QCM, QCM crystal frequency, CPC counting effi-

ciency, and the equivalence of CPC- and QCM-derived vol-

ume are the major contributors to the expanded uncertainty

(at k = 2) in comparison to other components, e.g. diffusion

correction, charge correction, CPC inlet flow rate, etc. The

contribution of different components in the total uncertainty

of effective density measurements varies with the nature or

properties of different salt particles (i.e. hygroscopic prop-

erty, solubility, etc). An extended study is needed to explain

these differences in future.

3.3 Ambient aerosol measurement

After successful measurement of laboratory-generated

aerosol particles, the experimental setup was used for the

measurement of effective density of ambient aerosols. The
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measurements were carried out at the National Physical

Laboratory (NPL, http://www.nplindia.org/), New Delhi,

which can be considered as the representative site with a

mixture of residential, biogenic, biomass-burning and traf-

fic emissions. Because meteorological conditions/data dur-

ing mid-November in Delhi are also known to be repre-

sentative of the year-round mean data, therefore 1 week

of measurements were conducted during 12–18 November

(Wednesday–Tuesday), 2014.

Although we conducted density measurement from 8:00

to 19:00 h (local time), here we report mid-day (10:00–

13:00 LT) data for which we have continuous data with-

out any downtime in the measurements. Also the focus of

the discussion here is to better understand the effect of the

photochemistry of particles (secondary aerosols) versus their

size/morphology and bulk composition on density, and thus

mid-day data are considered here.

The mid-day mean over the 7 days of the measure-

ment period of particle number concentration (ranged be-

tween (3.1±0.52)×104 to (4.8±1.2)×104 particles cm−3),

count mean diameter (82.8± 6.5–125.7± 11.7 nm ), effec-

tive density (1.12± 0.34–1.46± 0.19 g cm−3), relative hu-

midity (33.5± 4.1–43.1± 2.8 %), temperature (25.5± 1.5–

26.3±1 ◦C) and gaseous species such as CO (230±50–555±

21 µg m−3), O3 (95.8± 16–134± 35 µg m−3), NOx (12.6±

0.11–23.9±0.32 µg m−3) and SO2 (14.5±2.2–30.3±6.3 µg

m−3) are shown in Fig. 4. The overall mean (i.e. mean of the

mid-day mean) of the 7-day measurement period of effective

density of particles is observed to be 1.28±0.12 g cm−3. This

density measurement was carried out for ambient aerosol

particle size distribution range of 10–478 nm.

The observed mid-day particle effective density (range,

1.12–1.46 g cm−3; mean, 1.28 g cm−3) in New Delhi is sim-

ilar to the particle effective density measurement data ob-

tained from different sites around the globe. Yin et al. (2015)

reported a size-resolved effective density of 50–400 nm ur-

ban particles using a TDMA–APM system in Shanghai dur-

ing wintertime. The mean effective density was found to

range between 1.36 and 1.55 g cm−3 which showed increas-

ing trend with particle diameter. They observed that for

50 nm particles, the effective density increased rapidly from

1.35 g cm−3 at 10:00 LT to 1.51 g cm−3 at 13:00 LT corre-

sponding to a burst of nucleation and Aitken mode particles.

Khlystov et al. (2004) compared the TEOM PM2.5 mass

concentrations with volume concentrations from the SMPS–

APS data, and estimated an effective density of 1.52±

0.26 g cm−3 of urban aerosols during the Pittsburgh Air

Quality Study (PAQS) in summertime. This density is close

to 1.56 g cm−3, the density estimated from the average

aerosol bulk chemical composition during the PAQS study.

Further, the DMPS–APS and TEOM approach has been used

by Pitz et al. (2008) to determine particle (< 2.5 µm) effec-

tive density at an urban site in Augsburg, Germany. They

reported minimum particle density in the morning and after-

noon (∼ 1.5 g cm−3), and a maximum (∼ 1.8 g cm−3) during

mid-day. They suggested that the minima represent fresh pri-

mary aerosol emissions, which were related to traffic soot

particles with agglomerate structure, whereas the maximum

is likely due to increased secondary particle production dur-

ing mid-day hours and the presence of more aged particles.

Geller et al. (2006) determined effective densities of atmo-

spheric aerosols over a size range of 50–414 nm in various lo-

cations of the Los Angeles Basin using a SMPS-APM tech-

nique. They reported an effective density of unity or more

for 50 nm particles, indicative of their spherical nature. It

was suggested that the lower density of marine aerosols may

be due to the presence of a significant amount of organics.

Riverside aerosols, with an effective density as high as 1.4–

1.5 g cm−3 for this particle size especially during mid-day

hours were thought to be generated predominantly from pho-

tochemical reactions.

Kannosto et al. (2008) reported the mode-resolved density

of ultrafine atmospheric particles (nucleation, Aitken and ac-

cumulation mode) measured using the SMPS or DMPS-ELPI

technique for 2 weeks during early summer in a boreal for-

est environment. The particle density for accumulation mode

varied from 1.1–2.0 g cm−3 (average 1.5 g cm−3) and for

Aitken mode from 0.4 to 2.0 g cm−3 (average 0.97 g cm−3).

The density of nucleation mode particles decreased dur-

ing the growth process. The density values for 15 nm parti-

cles were 1.2–1.5 g cm−3and for grown 30 nm particles 0.5–

1 g cm−3. They suggested that this observation is consistent

with the present knowledge that the condensing species are

semi-volatile organics emitted from the boreal forest.

The above discussions suggest that particle density

depends more on particle chemical composition (which

changes rapidly while particle growth occurs during the mid-

day period) and morphology than on particle size. To further

check this hypothesis with the results in this study, we com-

pared ambient gaseous composition with observed densities.

Figure 5 displays the mean particle effective density ver-

sus count mean diameter over the size range 10–478 nm ob-

served in mid-day during the sampling days. In each box,

the line within the box shows the median effective density

value which corresponds to a CMD value, the top and bottom

lines of the box show the upper and lower quartiles (the 75th

and 25th percentiles) and the top and bottom of the whiskers

are set to 90 and 10 percentile. Considering more than 100

scans each day collectively, it was less often evident that the

effective density increased with the particle mobility diame-

ter, with a mean of 1.12±0.3 g cm−3 at 82.84±6.51 nm and

1.46±0.2 g cm−3 at 86.39±4.49 nm. This density versus size

trend is not exactly the same as observed by Yin et al. (2015)

that material density generally increased with particle size in

the range of 50–400 nm.

Figure 4a shows 7 consecutive days’ mid-day mean ef-

fective density and mean CMD of particles during the sam-

pling period. On the first 5 days, the effective density and

particle size (CMD) show a positive correlation coefficient

(r = 0.61); however on the remaining 2 days they show a
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Figure 4. Mid-day (10:00–13:00 LT) mean (bar represents standard deviation) of (a) number concentration, count mean diameter (CMD),

effective density, and (b) relative humidity, temperature and gas concentrations (CO, O3, SO2, NOx).

Figure 5. Measured effective density of ambient particles versus

their size (count mean diameter, CMD) during mid-day (10:00–

13:00 LT) of 7 consecutive days of sampling. In each box, the mid-

line shows the median effective density value for the corresponding

CMD value, the top and bottom show the upper and lower quar-

tiles (the 75th and 25th percentiles), and the top and bottom of the

whiskers are set to 90th and 10th percentile, respectively.

negative trend with overall (during the 7 days) correlation

coefficient r = 0.14. Large variations in particle number con-

centration including in CMD and effective density were ob-

served on the first day, whereas on the last day these varia-

tions were observed to be minimized.

Among gaseous species (Fig. 4b), mid-day mean con-

centration of O3 shows a decreasing trend with the sam-

pling days. Interestingly, CO and NOx present a similar

trend with the sampling days with first-day (12 November)

maximum and fifth-day minimum (16 November). Mid-day

mean concentration of both these species shows a continu-

ous increasing trend during the last 3 days of the campaign

(16–18 November). A strong correlation of the 7-day mid-

day mean concentration between these two gases is obtained

(r = 0.96), suggesting their common source, possibly from

traffic-related emission.

Further, day five (16 November) was Sunday. Recently

Gour et al. (2015) published a detailed report based on 5

years of observation that in New Delhi CO and NOx concen-

tration is lower on weekends and public holidays than during

working days. This further suggested that both of the species

are related with traffic source.

On the other hand, SO2 mid-day mean concentration de-

creases from the first day of the campaign to the middle

of the campaign (15 November) and then shows continu-

ous increase to the end of the campaign. Among all the

gaseous species (Table 5), SO2 presents a positive correlation

coefficient (r = 0.59) with particle effective density. Rela-

tive humidity (RH) also shows a positive correlation coef-

ficient (r = 0.52) with particle effective density. This sug-

gests that condensation of sulfates and water-vapour most

likely occurred on smaller particles, hence influencing the

density of the particles. It is also evident that mid-day par-

ticle mean diameter shows a good/strong correlation with

ozone (r = 0.58), SO2 (r = 0.81) and RH (r = 0.51), while

it shows poor correlations with the NOx (r = 0.35) and CO

(r = 0.40). This is consistent with the theory of the atmo-

spheric photo-oxidation process of SO2 that in the presence

of sunlight and water vapour, O3 forms an OH radical which

oxidizes SO2 to SO3 and then forms H2SO4 vapour (Seinfeld

and Pandis, 2006). These vapours contribute to the condensa-

tional growth of aerosol particles, and hence to the increasing

effective density of particles.
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Table 5. Correlation coefficient (r) between mid-day (10:00–

13:00 LT) mean of ambient particle effective density and other at-

mospheric constituents during 7 days of sampling in New Delhi in

November.

r O3 CO NOx SO2 RH T ρeff

O3 1

CO 0.54 1

NOx 0.37 0.96 1

SO2 0.04 0.13 0.20 1

RH 0.32 0.10 0.21 0.45 1

T 0.26 0.41 0.22 0.08 −0.54 1

ρeff −0.48 −0.41 −0.20 0.59 0.52 −0.68 1

4 Conclusions

We have presented a method to measure the effective den-

sity of aerosol particles of a size range from 10 to 478 nm.

We used an SMPS–QCM approach to measure particle ef-

fective density, for which particle volume is calculated from

size distribution data of the SMPS and simultaneously mass

concentration of particles is obtained from the QCM. This

approach is simple because of the use of real-time aerody-

namic instrument (QCM). The method is successfully tested

for laboratory-generated particles from the solutions of stan-

dard materials (inorganic salts of known densities). Also

the setup is successfully applied for ambient measurement

of particle effective density in New Delhi. To our knowl-

edge, this is the first time that a detailed uncertainty budget

of particle effective density measurement using the SMPS–

QCM technique has been discussed. The discussed uncer-

tainty measurement method can be applied to similar in-

strumental approaches (such as TDMA/SMPS/DMPS/APS-

APM/ELPI/TEOM, etc.) used for particle effective density

measurement. Among individual uncertainty components,

repeatability of the particle mass obtained by QCM, the

QCM crystal frequency, CPC counting accuracy and equiva-

lence of CPC- and QCM-derived volume are the major con-

tributors to the expanded uncertainty (at k = 2) in compari-

son to other components. This suggests that minimizing the

calibration uncertainties of the QCM (i.e. in particle mass

sensing) and CPC (i.e. in particle counting) can result in

reducing the uncertainty of particle density measurement.

Using this approach, the effective density of laboratory-

generated ammonium sulfate, sodium chloride and ammo-

nium nitrate particles with combined uncertainty is found to

be 1.76±0.24 (±13.6 %), 2.08±0.19 (±9.13 %) and 1.69±

0.28 g cm−3 (±16.6 %), respectively. The ambient measure-

ments (of particle size range: 10–478 nm) revealed that in

general, effective density of ambient aerosol increases with

the increase in particle size during mid-day hours during

the sampling days in November in New Delhi. However,

this particle growth is likely governed by mid-day photo-

chemistry of the sulfate secondary aerosol formation pro-

cess. The mid-day mean effective density of ambient parti-

cles (10–478 nm) during the 7 days of sampling is obtained to

be 1.28± 0.12 g cm−3. Our results of mid-day measurement

of ambient particle effective density with other atmospheric

constituents suggest that particle effective density is largely

dependent on particle chemistry.
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