Advances in cavity-based techniques for measurements of atmospheric aerosol and trace gases
Advances in cavity-based techniques for measurements of atmospheric aerosol and trace gases
Editor(s): K. Manfred, P. Xie, W. Chen, D.S. Venables, and T. Hanisco
This special issue aims to highlight advances in spectroscopic techniques for applications in atmospheric science. It will highlight cutting-edge measurements of atmospherically relevant species, including aerosol, isotopologues, and trace gases, using optical cavity-based techniques. Such techniques can include cavity-enhanced methods for sensitive absorption and extinction measurements as well as advances in frequency comb techniques. Techniques based on both broadband and laser sources from the ultraviolet to infrared will be considered. Papers based on both laboratory and field measurements are welcome.

Download citations of all papers

26 Jun 2019
The ICAD (iterative cavity-enhanced DOAS) method
Martin Horbanski, Denis Pöhler, Johannes Lampel, and Ulrich Platt
Atmos. Meas. Tech., 12, 3365–3381, https://doi.org/10.5194/amt-12-3365-2019,https://doi.org/10.5194/amt-12-3365-2019, 2019
Short summary
17 Jun 2019
Simultaneous measurement of NO and NO2 by a dual-channel cavity ring-down spectroscopy technique
Zhiyan Li, Renzhi Hu, Pinhua Xie, Hao Chen, Xiaoyan Liu, Shuaixi Liang, Dan Wang, Fengyang Wang, Yihui Wang, Chuan Lin, Jianguo Liu, and Wenqing Liu
Atmos. Meas. Tech., 12, 3223–3236, https://doi.org/10.5194/amt-12-3223-2019,https://doi.org/10.5194/amt-12-3223-2019, 2019
Short summary
12 Jun 2019
Simultaneous detection of C2H6, CH4, and δ13C-CH4 using optical feedback cavity-enhanced absorption spectroscopy in the mid-infrared region: towards application for dissolved gas measurements
Loic Lechevallier, Roberto Grilli, Erik Kerstel, Daniele Romanini, and Jérôme Chappellaz
Atmos. Meas. Tech., 12, 3101–3109, https://doi.org/10.5194/amt-12-3101-2019,https://doi.org/10.5194/amt-12-3101-2019, 2019
Short summary
20 May 2019
High-precision measurements of nitrous oxide and methane in air with cavity ring-down spectroscopy at 7.6 µm
Jing Tang, Bincheng Li, and Jing Wang
Atmos. Meas. Tech., 12, 2851–2861, https://doi.org/10.5194/amt-12-2851-2019,https://doi.org/10.5194/amt-12-2851-2019, 2019
Short summary
24 Apr 2019
Development of an incoherent broadband cavity-enhanced absorption spectrometer for measurements of ambient glyoxal and NO2 in a polluted urban environment
Shuaixi Liang, Min Qin, Pinhua Xie, Jun Duan, Wu Fang, Yabai He, Jin Xu, Jingwei Liu, Xin Li, Ke Tang, Fanhao Meng, Kaidi Ye, Jianguo Liu, and Wenqing Liu
Atmos. Meas. Tech., 12, 2499–2512, https://doi.org/10.5194/amt-12-2499-2019,https://doi.org/10.5194/amt-12-2499-2019, 2019
Short summary
25 Mar 2019
Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser
Yufeng Pan, Lei Dong, Hongpeng Wu, Weiguang Ma, Lei Zhang, Wangbao Yin, Liantuan Xiao, Suotang Jia, and Frank K. Tittel
Atmos. Meas. Tech., 12, 1905–1911, https://doi.org/10.5194/amt-12-1905-2019,https://doi.org/10.5194/amt-12-1905-2019, 2019
Short summary
19 Mar 2019
Laser frequency stabilization based on a universal sub-Doppler NICE-OHMS instrumentation for the potential application in atmospheric lidar
Yueting Zhou, Jianxin Liu, Songjie Guo, Gang Zhao, Weiguang Ma, Zhensong Cao, Lei Dong, Lei Zhang, Wangbao Yin, Yongqian Wu, Lianxuan Xiao, Ove Axner, and Suotang Jia
Atmos. Meas. Tech., 12, 1807–1814, https://doi.org/10.5194/amt-12-1807-2019,https://doi.org/10.5194/amt-12-1807-2019, 2019
Short summary
19 Dec 2018
Analysis of spatial and temporal patterns of on-road NO2 concentrations in Hong Kong
Ying Zhu, Ka Lok Chan, Yun Fat Lam, Martin Horbanski, Denis Pöhler, Johannes Boll, Ivo Lipkowitsch, Sheng Ye, and Mark Wenig
Atmos. Meas. Tech., 11, 6719–6734, https://doi.org/10.5194/amt-11-6719-2018,https://doi.org/10.5194/amt-11-6719-2018, 2018
Short summary
CC BY 4.0