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Abstract

Clouds are increasingly recognised for their influence on the radiative balance of the
Earth and the implications that they have on possible climate change, as well as in air
pollution and acid-rain production. However, clouds remain a major source of uncer-
tainty in climate models.5

Satellite-borne high-resolution limb sounders, such as the Michelson Interferometer
for Passive Atmospheric Sounding (MIPAS) onboard ENVISAT, provide information on
clouds, especially optically thin clouds, which have been difficult to observe in the past.
The aim of this work is to develop, implement and test a reliable cloud detection method
for infrared spectra measured by MIPAS.10

Current MIPAS cloud detection methods used operationally have been developed
to detect thick cloud filling more than 30% of the measurement field-of-view (FOV). In
order to resolve thin clouds, a new detection method using Singular Vector Decompo-
sition (SVD) is formulated and tested. A rigorous comparison of the current operational
and newly-developed detection methods for MIPAS is carried out – and the new SVD15

detection method has been proven to be much more reliable than the current opera-
tional method, and very sensitive even to thin clouds only marginally filling the MIPAS
FOV.

1 Introduction

High thin clouds such as cirrus are important to study. High clouds are frequently20

observed at all latitudes and, at any one time, 60% of the Earth’s surface is covered
by cirrus (Wylie, 2005). High clouds are important because they are high enough
to act to warm the Earth; however this mechanism is not well understood in terms
of the relation of micro- and macro-physical cloud properties. Because they are so
wide-spread and permanent, it is important to understand how these clouds affect the25

climate. However, current cloud detection algorithms often miss much thin cloud in
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satellite measurements – and hence conventional cloud climatologies and inventories
are in no way complete with respect to high thin cloud such as cirrus (Wylie, 2005).

There have been many studies on clouds over the years and many climatologies:
by Barton, 1983; Warren, 1985; Woodbury and McCormick, 1983; Prabhakara et al.,
1988; Wylie and Menzel, 1989; Wylie et al., 1994 – but these were all limited by a lack5

of global coverage. Currently, the Stratospheric Aerosol and Gas Experiment (SAGE)
(e.g. SAGE, 2002), High Resolution Infrared Radiation Sounder (HIRS) instrument (e.g.
Wylie, 2005), International Satellite Cloud Climatology Project (ISCCP) (e.g. ISCCP,
2008) and GRAPE project (e.g. Sayer, 2009) are actively compiling cloud climatologies.

2 Overview of MIPAS-ENVISAT10

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is an in-
frared limb-viewing instrument and was launched in March 2002 on the European
Space Agency’s Environmental Satellite (ENVISAT). ENVISAT is in an 800 km sun-
synchronous polar orbit, with a nominal orbit having a repeat period of 35 days, an
orbital period of 100.6 min and an inclination of 98.54◦. The inclination of the orbit15

in conjunction with azimuth scanning enables full global coverage pole-to-pole (ESA,
2005).

MIPAS was designed to measure limb-emission spectra (primarily for trace gases
such as CO2, O3, H2O, HNO3, CH4, N2O and NO2) at a high spectral resolution in
the near- to mid-infrared from 685 cm−1 to 2410 cm−1 in five discrete bands (A 685–20

970 cm−1, AB 1020–1170 cm−1, B 1215–1500 cm−1, C 1570–1750 cm−1, and D 1820–
2410 cm−1). In its initial operating specifications, MIPAS operated at a spectral reso-
lution of 0.025 cm−1, measuring spectra nominally every 3 km vertically in the tropo-
sphere – however following persistent slide malfunctions in early 2004, the resolution
was decreased to 0.0625 cm−1 but the measurement frequency increased to nominally25

every 1.5 km in the troposphere (Mantovani, 2005).
The FOV of MIPAS is approximately 3 km high and 30 km horizontally, perpendicular
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to the instrument line-of-sight. The FOV is modelled by a trapezoidal response function
φ(z), having a 4 km-high base and a 2.8 km-high top.

3 Current detection methods for MIPAS

The presence of cloud particles in the FOV of infrared remote sounding instruments
influences observations and measurements registered, due to extraneous absorption,5

emission and scattering features in a large range of wavelengths. Clouds in the line-of-
sight can act as grey-bodies with significant opacity which alter the measured radiation,
and introduce serious problems in sensing atmospheric temperatures and gas profiles
below the cloud level. All clouds cause a broadband increase in the radiance emitted
and measured in the FOV – however thin clouds also introduce a multiple-scattering10

effect which implies that the instrument measures radiance from below the tangent
height. The presence of clouds introduces problems with regular constituent retrievals
by introducing a sharp transition from optically thin to optically thick limb transmittance
at the cloud top. In order to avoid this, and to maintain retrieval quality/reliability, routine
processing of MIPAS spectra includes the detection and rejection of all spectra with15

significant cloud contamination. However, studying these cloud-contaminated spectra
can reveal information about the cloud itself.

The following sections outline the detection methods which have been either pro-
posed or operationally used to detect cloud in MIPAS measurements.

3.1 Mean Radiance Thresholding and colour indices20

A very basic method is the Mean Radiance Threshold test which simply uses a sta-
tistically gathered radiance threshold to detect cloud by assuming that clouds have a
warmer brightness temperature than a clear limb view. For MIPAS, considering the
region around 960.7 cm−1 a radiative transfer model, the Reference Forward Model
(the RFM, a GENLN2-based line-by-line radiative transfer code originally developed to25
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provide reference spectral calculations for MIPAS by Dudhia, 2004), is used to sim-
ulate the transmittance spectrum – and the 960.7 cm−1 region is used as it has high
transmission and low gaseous emission. Thus, in order to detect a cloud having an ex-
tinction coefficient of 10−4 km−1, a threshold of 100 nW (cm2 sr cm−1)−1 must be chosen
at a tangent height of 9 km (higher threshold for lower tangent heights and for higher5

extintion values).
A second generation detection method is Colour Index (CI) Thresholding (Spang,

2004). CIs work on the principle of radiance ratios between two different regions (called
microwindows MWs, and denoted MW1 and MW2) of the spectrum which respond dif-
ferently to cloud. The MWs are chosen such that the first microwindow MW1 responds10

very little to the presence of clouds whereas the second microwindow MW2 shows a
large reaction, as shown in Fig. 1. Use of a ratio of radiances from each measure-
ment spectrum implies that the variability in radiance resulting from temperature and
pressure fluctuations is effectively cancelled out, since both sections of the spectrum
will scale consistently to such changes – and hence thresholds can be more reliably15

picked.
The CI is defined to be the ratio of the mean radiances of the two MWs:

CI =
L̄MW1

L̄MW2

. (1)

When CI is large (CI>4, for conventionally chosen MWs), cloud-free conditions exist
and when CI is approximately unity optically thick clouds are present. The range of20

CIs represents the range of optical thickness of clouds present, with thicker clouds ap-
pearing blackbody-like with CI≈1 and thinner, tenuous clouds registering increasingly
larger CIs.

The presence of cloud is then determined by setting a threshold for the CI below
which it is said that cloud occurs and above which, cloud is said to not occur. In the25

interest of only conservatively discarding data which are truly contaminated by thick
cloud, a low threshold is frequently chosen, below which it is certain that cloud occurs
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and above which cloud is said to not occur, even though it is well known that above this
threshold cloud can indeed occur, either as an optically thin cloud or by only partially
filling the instrument FOV (Spang, 2004; Ewen, 2005).

It should be noted that the definition of CI breaks down above about 30 km due to
decreased signal-to-noise-ratio, particularly in the more transparent and intrinsically5

noisier (due to smaller signal) second MW. Cloud detection itself gives a measure of
the cloud top height, but this is limited to the height resolution of the measurement scan
pattern.

3.1.1 Analysis of current operational CI detection method

A useful quantity to measure the amount of cloud present in a measurement FOV is10

the cloud effective fraction (EF), as defined by

EF =

∫zct
−d

(
1 − e−kextx

)
φ(z)dz∫d

−d φ(z)dz
(2)

for a FOV of width 2d characterised by the FOV function φ(z) corresponding to inte-
grated pencil beam radiances each penetrating a pathlength x through an atmosphere
of extinction coefficient kext and cloud top height zct relative to the tangent height. It15

is essentially the effective blocking power of the cloud within the FOV – the propor-
tion of the FOV filled by cloud modified by the extinction of the cloud. Therefore, an
EF=0 indicates that a measurement is cloud-free or “clear”, an EF=1 represents a FOV
that is completely filled with thick cloud and 0<EF<1 represents the spread of varying
cloud-filled states of a FOV.20

It can be asserted that the CI Method used operationally fails to detect many cloudy
FOVs – as well as incorrectly diagnosing many clear spectra as cloud-contaminated –
using the EF as a metric. Considering the average radiance measured in the 960.0–
961.0 cm−1 MW (a region of the A band spectrum having comparatively high transmis-
sivity – which implies that most variations in radiance come from continuum features,25
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such as induced by clouds) as shown in Fig. 3 (with different values of CI assigned
different colours), there exist two distinct regions, one corresponding to cloudy mea-
surements and the other to clear measurements. The leftmost region is a thick band
extending through all altitudes at relatively low radiances, which represents the clear
measurements. To the right of this thick band is a scattering of radiance points, start-5

ing at an altitude that could be taken as the maximum average tropopause height,
at higher radiances – these points represent the cloudy measurements. The spread
in these cloudy radiances is a result of many possible fractions of cloud experienced
by the measurement FOV. The present MWs and thresholds used for cloud detection
are unable to detect the measurements which through this analysis are clearly cloud-10

contaminated, although with a small EF. Figure 2 shows that for EF less than about
0.3, the CI Method is not able to detect cloud. It is interesting to note that increasing
the value of the threshold used to higher CI does have the effect of picking up this
scattering of cloudy cases, but that it also results in the obviously clear cases being
almost completely flagged as cloud as well. Furthermore, there is a known problem15

with the CI method whereby clear spectra are misdianosed as cloudy, deriving from the
fact that water vapour emissions in the lower atmosphere can create broadband con-
tinua features, much like those exploited in the CI method itself (Greenhough, 2005).
Altitude-dependent thresholds would partially solve the problem of misdetection, how-
ever given the inclusion of clear spectra as cloudy as a consequence of emission by20

water vapour, the CI method has key caveats which cannot be rectified by simply set-
ting different thresholds.

Given the relative insensitivity of the current operational cloud detection method to
optically thin cloud or of FOVs only partially covered in cloud, as well as its sensitiv-
ity to water vapour emissions in the lower atmosphere, there appears to be room for25

development of a cloud detection method which is capable of reliably resolving and
identifying even these small amounts of cloud in measurements.
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3.2 Singular Vector Decomposition

Singular Vector Decomposition (SVD) is a standard statistical technique (Press, 2007)
used for finding patterns in high dimensional data and for summarising these data. To
this end, SVD transforms a number of potentially correlated variables into a smaller
number of uncorrelated variables called singular vectors v . The first singular vector v 05

accounts for as much of the variability in the data as possible, and then each successive
v i accounts for as much of the remaining variability as possible.

Consider an m×n matrix L (Press, 2007). In this application, L is a set of m spectra
each of length n – and each spectrum of length n is denoted l). Then, L can be
expressed as10

L = WTSV (3)

whereby V and W are the m×n and m×m orthogonal matrices containing left- and
right-singular vectors, respectively, and S is a m×m diagonal matrix whose diagonal
elements contain the m singular values Si . The singular values (S) are essentially
eigenvalues corresponding to the singular vectors (vs), which are analogous to eigen-15

vectors. Hence, the original matrix L is merely a linear combination of the singular
vectors as scaled by the singular values (Murtagh and Heck, 1987).

Application of the decomposition yields a set (V) of a maximum of m singular vectors
(vs) each of length n which best orthogonally span the variance of the initial ensemble
of measurements (in the sense that the v s can then be thought of as a set of basis20

vectors in lRn chosen so that the maximum object-to-object variation in the data be-
longs to a subspace formed by the least number of basis vectors). The v s are usually
ordered (by choice) by decreasing magnitude of their eigenvalue. Thus, each succes-
sive v captures increasingly less and less information, such that the percentage of the
total variance Pi captured by the i th v is25

Pi =
di∑m
i=1 di

× 100%. (4)
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The original input measurements Li j can be reconstructed simply by calculating the
appropriate linear combination of the v s and their corresponding singulars values, as
described by

Li j = WT
ikSklVl j (5)

where Li j is the j th spectral measurement of the i th spectrum for i ε [1,m] and j ε5

[1, n]. In this notation, summation occurs over the indices k and l , where k ε [1,m] and
l ε [1,m]. Since the first few vs capture so much of the total variance of the dataset, it
is often sufficient to only sum over the first few singular vectors (for example, not from
1 to m, but rather from 1 to 2 or 3) in order to obtain a reconstruction which is good to
within a few percent of the full reconstruction.10

The objective of this work is to use SVD techniques to create, implement and vali-
date a reliable cloud detection method. The idea is to create an ensemble of simulated
MIPAS spectra (Sect. 4) which contain varying amounts of cloud (because the EF
characterising each spectrum will be known for simulated spectra) and then to use this
ensemble to obtain singular vectors which correspond to the clear and cloudy atmo-15

spheric states (Sect. 5.1– 5.2). Once the two orthogonal sets of basis vectors (clear
and cloudy) are known, any atmospheric signal should be able to be fit using both
sets of vectors, regardless of whether the atmosphere is clear or cloudy (Sect. 6). By
using some appropriate parameter related to the fitting process, it should be possible
to create a cloud detection method (Sect. 8). Finally, this SVD-based cloud detection20

method will be compared with the current cloud detection method on a year’s worth of
MIPAS data (Sect. 8) as well as using a set of simulated data for which the clear/cloudy
state is known (as introduced in Sect. 4). It is hypothesised that the increased informa-
tion gained by using large regions of spectra (such as would be done for SVD-based
methods) should lead to more reliable cloud detection than those based upon mean-25

continuum recognition (such as the CI method).
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4 Ensemble of simulated clear and cloudy MIPAS spectra

The RFM was used to simulate an ensemble of spectra with varying amounts of cloud
(as defined by their extinction coefficients (kext) and cloud top heights – CTH) occurring
in the MIPAS FOV for all the tangent heights at which cloud is normally expected, for
many different atmospheric conditions. The advantage of having an artificially created5

ensemble of spectra to examine as opposed to real data is that all of the cloud pa-
rameters are known in advance and one can without question identify with confidence
different cases and regimes. The parameters used to build this ensemble of spectra are
given in Table 1. In total, the ensemble has 5184 different atmospheric conditions: 576
of which are totally clear (i.e. cloud top height =−2.0 km) and 4608 of which which con-10

tain some finite amount of cloud in the corresponding MIPAS FOV (here, when cloud
top height >−2.0 km). These simulations have been carried out at the MIPAS full-
resolution of 0.025 cm−1 in the second half of the MIPAS A band (827.5–970.0 cm−1,
5701 spectral points).

5 Calculation of singular vectors15

In the following SVD studies, the ensemble discussed in Sect. 4 is separated by tangent
height, and data from each tangent height are treated independently. Since, in practise,
the nominal tangent height is a well-known discrete parameter of MIPAS data, this
segregation has been carried out in order to preserve vertical atmospheric variations
which consistently occur.20

SVD has been carried out by first dividing the ensemble of spectra into two regimes:
clear (EF=0) and cloudy (EF 6=0). Then each of these two atmospheric regimes is
sub-divided into smaller ensembles grouped by tangent height. To normalise the data,
each spectrum in the ensemble has had its average radiance subtracted (which ef-
fectively allows clear and cloudy singular vectors to share reconstructive responsibility25

of the raised cloud radiance baseline), and then SVD is carried out upon each of the
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normalised tangent height ensembles.

5.1 Clear singular vectors

Using the clear ensemble of spectra, divided by tangent height and normalised, SVD is
carried out to calculate the clear singular vectors v cleari

. For a tangent height of 9.0 km,
Fig. 4 shows the average clear spectrum for the 9.0 km clear ensemble along with5

the first eight singular vectors. It should be noted that the zeroth order v clear carries
so much of the variance associated with the ensemble that it visually resembles the
average spectrum, while the higher order v clears pick up more non-trivial variances,
which is expected due to the large range of variations in clear atmospheric spectra
due to local changes in pressure and temperature. If the total variance captured by10

the addition of each successive v clear in the decomposition is considered, the first
three v clears contain over 90% of the total variance. Thus, the SVD method effectively
minimises the number of pieces of information needed to represent a set of data, since
any of the initial pieces of information (here, the spectra) can be reconstructed by using
as few as three singular vectors.15

5.2 Cloudy singular vectors

Considering now the second ensemble of spectra which consist of simulations of in-
frared measurements containing some finite amount of cloud, the component of the
signal which is due to the cloud alone is sought. The measurement registered by the
instrument FOV will be some combination of emission and absorption from the clear20

atmospheric components (i.e. the gases) and those resulting from the cloud presence.
The singular vectors obtained for the clear ensemble of spectra should represent the
clear component in these mixed clear/cloud measurements and by using these already
obtained v clears, the component due to the cloud alone can be retrieved. The basis of
this work is the hypothesis that a cloud-contaminated spectrum can be decomposed25

into components coming from the clear atmosphere and those due to the cloud itself.
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For each tangent height, m clear singular vectors of length n (m=96 and n=5701,
as before) have been calculated, as described in Sect. 5. If then each cloudy spec-
trum lcloudy+clear (which includes, at this point, a clear atmospheric contribution along
with that coming from the cloud itself) in the cloudy tangent height ensemble is first
normalised by subtracting off its average radiance to give5

lcloudy+clearnorm
= lcloudy+clear − l̄cloudy+clear (6)

the component due to the clear background atmosphere can be obtained by carrying
out a linear least squares fit using the clear singular vectors v cleari

such that the clear
radiance component lclear of the measurement is

lclear =
m∑
i=1

λiv cleari
(7)10

where λi are fit coefficients. Since the fit of the normalised signal by the clear singular
vectors will have captured any of the variance due to the clear sky, it is necessary
merely to subtract to obtain the cloudy component of the signal (lcloudy):

lcloudy = lcloudy+clearnorm
− lclear. (8)

Carrying out this procedure for each cloudy spectrum in each tangent height ensemble15

yields an ensemble of spectra registering only the cloudy component for an abundance
of cloudy atmospheric conditions. SVD can then be performed on this cloud-signal-only
ensemble to yield a set of cloud singular vectors v cloudyi

which are orthogonal to the
clear singular vectors v cleari

. Figure 5 shows how cloudy measurements of varying
EF between 0 and 1 can be individually fitted by first normalising the input radiance20

and then applying the linear least squares fitting in v cleari
. It bears noting that the non-

zero difference between the linear least squares fit and the original signal is due to the
removal of the mean radiance, as expected, and carries no spectral information.

The residual cloudy signal reported is a complicated spectrum with many emission
and absorption features which deviate from that of a blackbody at the appropriate25
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cloud top temperature. However, Fig. 6 shows these cloudy signatures compared with
blackbody-only signatures (calculated using the Planck function at various wavenum-
bers), which for most cases, agree well with the baseline of each cloudy signal, so
one can be confident that the signals thus obtained are truly due to the presence of
cloud alone. The only case in which the blackbody signature deviates from the residual5

cloudy signal determined here is for the clear case, where the cloudy signal is a non-
zero constant (as opposed to the constant zero radiance expected). This is a result of
the normalisation procedure used – but will not affect the fitting of arbitrary spectra as
it is a constant offset.

6 Fit an arbitrary cloud signal with singular vectors10

Using the previously calculated clear and cloudy singular vectors, v cleari
and v cloudyi

(of
which there are mclear and mcloudy, respectively), for each MIPAS tangent height where
cloud is normally expected, any measured MIPAS spectrum in the spectral range of
827.5 cm−1 to 970.0 cm−1 can be accurately fitted by a linear least squares fit in the
singular vectors. Taking an arbitrary MIPAS spectrum lorig, the first step is to normalise15

the spectra by subtracting its average radiance (as explained previously) such that

lnorm = lorig − l̄orig. (9)

The linear least squares fit veclfit of lnorm is then trivially found, such that

lfit =
mclear∑
i=1

λcleari
v cleari

+

mcloudy∑
i=1

λcloudyi
v cloudyi

, (10)

where λcleari
and λcloudyi

are constant coefficients of the least squares fit. In order to20

regain a fit which can be immediately compared with the original input measurement,
it remains simply to add back on the constant average radiance of the original signal to
the fitted spectra:

lfit orig = lfit + l̄orig. (11)
1197
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This method was implemented and tested on RFM-simulated spectra for infrared
spectra with a tangent height of 9.0 km and extinction coefficients between 0.001 km−1

and 0.1 km−1 and cloud top heights located every 0.5 km in the 4.0 km-wide MIPAS
FOV. Figure 7 shows the efficiency and consistency with which the linear least squares
fit using both the clear and cloudy singular vectors is able to fit a signal with an arbi-5

trary amount of cloud in it for a tangent height of 9.0 km and extinction coefficient of
0.01 km−1. It is also interesting to note that as increasing amounts of cloud are added
to the measurement, the fit coefficients corresponding to the cloudy singular vectors in-
crease in magnitude, while those corresponding to the clear singular vectors decrease
in magnitude. This is an encouraging trend, since it is expected that if there is in-10

creased cloud presence in the measurement, the signal should be increasingly well fit
by the cloudy singular vectors with a minimised dependence upon the clear singular
vectors.

This method was then applied to a scan of apodised MIPAS spectra, which has been
flagged as cloudy by the CI Method in the final sweep at 6.0 km but clear everywhere15

above. Figure 8 shows the fits of the input raw spectra overlaid with the fit obtained
from the clear and cloudy singular vectors, which clearly do a good job of fitting the
signal since the root mean square error is less than 1.0% of the measurement’s spec-
tral baseline. As well, it is obviously the clear singular vectors which dominate fit until
the final sweep, at which the cloudy singular vectors are fitted with non-zero fit coef-20

ficients, corresponding well to the present cloud detection mechanism’s judgement of
the cloudy state of the atmosphere in that sweep only.

Given the success in reproducing spectral features through fitting with the clear and
cloudy singular vectors as well as the fact that the clear and cloudy singular vectors are
used in relation to each other in a manner which is expected, for both simulated and25

real MIPAS data in the spectral region considered, it appears as if this method should
be able to be used to detect and quantitatively determine the amount of cloud occurring
in the MIPAS FOV.
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7 Effect of noise on singular vector fits

It is interesting to consider how the SVD fit of a noisy signal (such as obtained from
real measurements) will differ from that of a noise-free signal. In other words, the way
in which the singular value assigned to each noise-free singular vector in the fitting
process is affected by noise on the input spectra is sought.5

Consider a noise-free radiance spectrum l of length n such that

l =
(
l1, l2, · · · , ln

)
(12)

which is to be fit by a singular vector v of length n where

v =
(
v1, v2, · · · , vn

)
. (13)

Then the least squares linear fit of the spectrum using the singular vector can be ex-10

pressed as

λ =
(
v Tv

)−1
v T l. (14)

It immediately follows that

λ = (v · v )−1 v T l =
(
|v |

)−1
v T l = v T l% (15)

since |v |=1 because v is a unit vector by nature. Discretising this yields15

λ =
n∑

i=1

vi li . (16)

If random noise of amplitude σ is added to each spectral point on this arbitrary spec-
trum, there will be some change σλ in the singular value assigned by the least squares
fit. The least squares fit to the noisy spectrum can be expressed as

λnoisy = λ + σλ =
n∑

i=1

vi (li + σi ) . (17)20
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It follows that

σ2
λ =

n∑
i=1

(vi )
2 σ2 = σ2

n∑
i=1

(vi )
2 = σ2 (18)

since
∑n

i=1 (vi )
2 =1 as v is a unit vector. Hence the fit coefficient to the noisy spectrum

is simply

λnoisy = λ + σ. (19)5

For the case at hand, whereby σ=50 nW (cm2 sr cm−1)−1, the change in the fit coeffi-
cient (λnoisy−λ=σ) is negligible for most λ since λ�σ for most v s. Essentially, for the
singular vectors important to the fit (i.e. the first few of both the clear and cloudy singu-
lar vector sets), the difference caused by the presence of a maximum value of noise is
negligible as these “low order” singular vectors are fit without noise with values of the10

order of 10 0001.
Therefore, random error on the input measurements should not greatly affect the

fitting of the spectra by noise-free singular vectors as the vectors important in the fitting
mechanism are negligibly changed by the noise.

8 SVD cloud detection method15

As described in the previous sections, using the set of clear and cloudy singular vec-
tors should yield a cloud detection mechanism. This section will introduce and test a
possible candidate for detection mechanism which reconstructs the portion of radiance
that the fit attributes to a cloudy presence.

1This is an overestimation of the effect of noise, since Eq. (18) assumes no spectral correla-
tion, which is not the case for apodised spectra, as used here. It does represent nevertheless
a good upper limit for the effect that noise will have on the fitting process.
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Any arbitrary spectrum can be successfully fit to a high degree by a set of altitude-
dependent singular vectors which span the clear and cloudy atmospheric states such
that

ltotal =
mclear∑
i=1

λcleari
v cleari

+

mcloudy∑
i=1

λcloudyi
v cloudyi

, (20)

in keeping with standard reconstruction of SVD, as discussed in Eq. (5), where λcleari
5

and λcloudyi
are constant coefficients of the least squares fit. Once this linear least

squares fit has been obtained, it is trivial to reconstruct the radiance components of
the original signal: that due to the clear background state and that due to possible
cloud presence. Reconstructing, the clear radiance is

lclear =
mclear∑
i=1

λcleari
v cleari

, (21)10

and the radiance due to the cloud presence is

lcloudy =

mcloudy∑
i=1

λcloudyi
v cloudyi

. (22)

It follows, then, that when the radiance due to cloud presence becomes non-zero,
cloud is present. To normalise this quantity, the ratio of the cloudy radiance to the total
radiance Ltotal, called the Integrated Radiance Ratio, is considered such that15

L̄cloudy

L̄total

> 0 (23)

for cloudy spectra and

L̄cloudy

L̄total

≈ 0 (24)
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for clear spectra, where L̄ represents the average of the reconstructed radiance l in the
960–961 cm−1 MW. It is hypothesised that this ratio could be used as a cloud detection
method.

The ensemble of RFM-simulated MIPAS spectra has again been used to test this
hypothesis. Following the least squares fitting of each spectrum with the altitude-5

corresponding set of clear and cloudy singular vectors, the cloudy radiance is recon-
structed as previously described, the average in the 960–961 cm−1 region calculated
and the Integrated Radiance Ratio determined. When the ratio is plotted against CI or
EF, as shown in Fig. 9, it becomes obvious that this hypothesis is valid, as the ratios
form a bimodal distribution corresponding to clear and cloudy cases.10

To confidently choose thresholds, it is a matter of fitting the clear peak in the bimodal
distribution to a Gaussian distribution – however this is not a trivial procedure since
above the clear distribution maximum, there will be non-negligible cloud cases from
the tailing edge of the cloudy portion of the overall distribution. Therefore, in fitting the
clear distribution, only points in the distribution occurring to the left of the peak are con-15

sidered. Furthermore, the thresholds are altitude-dependent and will be assigned for
each unit altitude between 6.0 km and 21.0 km. In this manner, probability distributions
functions corresponding to each unit altitude between 6.0 km and 21.0 km are consid-
ered and the “clear” peak (that centred the furthest to the left) fitted by a Gaussian
distribution and the altitude-dependent threshold set at20

Thr(z) = µ(z) + 3σ(z), (25)

for the peak maximum µ and standard deviation σ. Figure 10 shows the PDFs, over-
plotted with the clear peak fit with µ and σ noted. It is reassuring to note that at the
higher considered altitudes, the cloudy peak in the bimodal distribution becomes neg-
ligible with infrequent cloud expected.25
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9 Comparison of current cloud detection methods

Considering MIPAS data from 2003, and applying the SVD detection method de-
scribed previously, with the corresponding thresholds just obtained, it is immediately
apparent that the propsed SVD-based cloud detection method does better than the
currently-used operational method, as shown in Fig. 11 for the Integrated Radiance5

Ratio Method. It appears that this Integrated Radiance Ratio cloud detection method
does a good job in identifying even the thin cloud that the present CI Method misses,
choosing all points to the right of the thick clear band in Fig. 11 as cloud – and thus to
a first order, it appears to do better than the existing CI Method in terms of identifying
cloud. In fact, if the two detection methods are applied to MIPAS data from 2003, the10

CI method detects 17% of vertical profiles as having high cloud at some point, whilst
the SVD method suggests that there are 28% of scans having cloud occurrence some-
where in the altitude range ubiquitous with high cloud (6–24 km). This compares better
with Wylie’s 2005 result which records high cloud in 33% of measurements taken.

When the ensemble of clear and cloudy simulations are used to compare the rela-15

tive abilities of the two methods, it is found that the SVD method determines the correct
atmospheric state over 90% of the time whereas the CI method does so only for ap-
proximately 65% of cases. This increase in correct determination of atmospheric state
can be mostly attributed to the SVD method identifying thin cloud that the CI method
misses.20

10 Conclusions

SVD has been applied to an ensemble of simulated spectra which represent a large
number of atmospheric states, both clear and cloudy. Singular vectors have been
calculated which span both clear and cloudy atmospheres – and a cloud detection
method (Integrated Radiance Ratio) has been formulated and tested, exploiting statis-25

tics of linear combinations of the two sets of singular vectors to represent any spectra
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encountered. Appropriate thresholds have been chosen by application to MIPAS data
from 2003, and the methods qualitatively tested on MIPAS data from 2003.

It appears that broadband spectral information can be extracted by SVD and used
reliably to detect cloud. The true success of this analysis lies in the vast improvement
that the SVD detection method seem to have over the operationally used CI method in5

the detection of thin cloud. From a first perspective, the SVD method seems able to
correctly spot cloud having an EF of less than 0.0025 (compared to approximately 0.3
for the CI method).

Simulated spectra have been used in the development of this analysis, which, ar-
guably may not represent all of the possible clear atmospheric states – nor all the10

cloudy iterations. An interesting exercise would be to form singular vectors from real
MIPAS spectra, however this poses the difficulty of not knowing whether or not a singu-
lar vector corresponds to the clear atmosphere, or to a cloudy one. Whilst there may be
bifurcations in the appropriate distributions of singular values, this is likely not a trivial
task. In any case, the simulated singular vectors appear to do a good job at represent-15

ing the real atmosphere – and the suggested detection methods seem to pick up both
simulated cloud and what is hypothesised to be cloud in the real measurements.
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Table 1. Parameters used to c reate ensemble of cloudy atmospheres. Reference atmospheres
compiled by Remedios (2001).

Tangent
Height [km]

kext [km−1] Reference Atmosphere CTH relative to
Tangent Height
[km]

6, 9, 12, 15,
18, 21

0.001, 0.01,
0.1

standard mid-latitudinal, tropical, polar
summer and polar winter reference atmo-
spheres, their one standard-deviational
variants, and separate perturbations in
temperature, pressure, water vapour and
ozone of each

−2.0, −1.5,
−1.0, −0.5, 0.0,
0.5, 1.0, 1.5, 2.0
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Fig. 1. Samples of clear (black) and cloudy (red) MIPAS spectra with the locations of the current
CI MWs (blue) and optimised CI MWs (aqua) overplotted.
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Fig. 2. Relation between cloud effective fraction and CI for RFM-simulated clouds with extinc-
tion coefficients of 0.001–0.1 km−1 in the MIPAS A band. The red line shows the CI threshold
(1.8) below which cloud is detected.
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Fig. 3. Average radiance profiles measured in the 960.0–961.0 cm−1 MW by MIPAS, whereby
the measurements have been assigned colours to indicate their CI value.
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Interactive DiscussionFig. 4. Average clear spectrum for the 9.0 km clear ensemble along with the first eight singular
vectors and the percentage variance captured by each.
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Fig. 5. Fitting of cloudy signal by clear singular vectors to obtain cloud-only signal component
for cloud in a 9.0 km TH FOV. From top to bottom of the plot, EF increases in equal increments
of 25% from 0% to 100%. Left panels: the original signal containing varying amounts of cloud
is shown in black, the normalised original signal in blue, and the clear singular vector least
squares fit in red. Right panels: the component of the original signal caused by the cloud as
calculated in Sect. 5.2.
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Fig. 6. The cloud-only signal component of original partially cloudy measurement. From top
to bottom of the plot, EF increases in equal increments of 25% from 0% to 100%. From left to
right, the TH of the FOV containing the cloud is increased from 6.0 km to 12.0 km to 18.0 km.
Blackbody-only signature is overplotted in red and shows good agreement with retrieved cloud-
only component of signature given in black.
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Fig. 7. Left panels: linear least squares fit using both clear and cloudy singular vectors (red)
overplotted on original input signal (black). Right panels: magnitudes of fit coefficients of sin-
gular vectors used in the fit (blue=clear, red=cloudy), normalised such that the largest fit co-
efficient has a magnitude of unity. From top to bottom, the EF increases from 0% to nearly
100%.
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Fig. 8. Fitting of MIPAS spectra by clear and cloudy singular vectors. From top to bottom,
downwards through the scan pattern: 15.0 km, 12.0 km, 9.0 km and 6.0 km tangent heights. Left
panels: linear least squares fit using both clear and cloudy singular vectors (red) overplotted on
original input signal (black). Right panels: magnitudes of fit coefficients corresponding to the
singular vectors used in the fit (clear in blue, cloudy in red), normalised such that the largest fit
coefficient has a magnitude of unity.
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Fig. 9. Integrated Radiance Ratio for all RFM-simulated spectra in ensemble plotted as a
function of CI (left panel) and EF. Colour-coded by EF.
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Fig. 10. Altitude-dependent PDFs oflog
“

Lcloudy
Ltotal

”

for real MIPAS spectra in 2003. Each is plotted separately,

with the Gaussian fit of the clear distribution overplotted with maxima and standard deviations noted.

24

Fig. 10. Altitude-dependent PDFs of log
(

Lcloudy
Ltotal

)
for real MIPAS spectra in 2003. Each is

plotted separately, with the Gaussian fit of the clear distribution overplotted with maxima and
standard deviations noted.
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Fig. 11. Profiles of average radiance in 960.0–961.0 cm−1 MW from MIPAS spectra for 2003.
Left panel indicates in red those cases flagged as cloud by the CI Method. Right panel indicates
in red those cases flagged as cloud by SVD Integrated Radiance Ratio Method.
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