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Abstract

The remote sensing technique, total column differential absorption LiDAR (TC-DIAL)
has been proposed in a number of feasibility studies as a suitable method for making
total column measurements of atmospheric CO2 from space. Among the sources of
error associated with TC-DIAL retrievals from space is an undefined modulation of the5

received signals resulting from the variability in the Earth’s surface reflectance between
the LiDAR pulses. This source of uncertainty is investigated from a satellite perspective
by the application of a computer model for spaceborne TC-DIAL instruments. The sim-
ulations are carried out over Europe and South America using modified MODIS surface
reflectance maps and a DIAL configuration similar to that suggested for the proposed10

ESA A-SCOPE mission. A positive bias of 0.01 ppmv in both continental test sets is
observed using 10 Hz pulse repetition frequency and 200 km integration distance. This
bias is a consequence of non-linearity in the DIAL equation, and in particular regions
such as the Alps and over certain coastlines it contributes to positive errors of between
0.05 and 0.16 ppmv for 200 and 50 km integration distances. These retrieval errors are15

defined as lower bound estimates owing to the likely resolution difference between the
surface reflectance data and the expected surface heterogeneity observed by a DIAL
instrument.

1 Introduction

Carbon dioxide (CO2) is a naturally and anthropogenically occurring green house gas20

in the Earth’s atmosphere whose concentration has increased over the last 200 years
by approximately 30% (Keeling et al., 1995). Measurements obtained from ice cores
provide an historical account of atmospheric CO2 concentrations as far back as
650 000 years, and via comparison with modern in-situ measurements it has been
shown that the atmospheric CO2 concentration is now over 90 ppmv higher then it has25

ever been in that time (Sitenthaler et al., 2005). The recent and sudden growth ob-
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served has been attributed to anthropogenic activities such as the burning of fossil
fuels, cement production and land-use change (IPCC, 2007).

Predicting the effect of increased CO2 levels on the climate requires improved under-
standing of the terrestrial processes that control carbon fluxes, as well as any potential
feedback mechanisms on these processes which may develop as a consequence of5

climate change (Sarmiento and Gruber, 2002). Tighter constraints on the transport
models which at present are only capable of calculating fluxes on continental scales
are required (Gibert et al., 2004). To better constrain the present models more obser-
vations are needed on a global scale to supplement the sparsely located in-situ mea-
surement networks. Satellite remote sensing has been shown to provide the denser10

sampling required by inversion modeling and an improvement in flux estimation may
be achieved if the precision of total column measurements averaged over monthly time
scales on an 8◦×10◦ footprint is less than 2.5 ppmv (Rayner and O’Brien, 2001). There
are a number of satellite instruments at present measuring CO2 from space including
the SCIAMACHY instrument on board the ESA ENVISAT satellite (Bovensmann et al.,15

1999), the AIRS instrument onboard the NASA AQUA satellite, the IASI instrument on-
board the METOP-A satellite and the GOSAT instrument launched by JAXA in January
2009 (Hamazaki et al., 2005). Whilst some of these systems may have shown the
potential to meet the required spatial coverage and precision to improve flux estimates
on continental scales (Barkley et al., 2006; Buchwitz et al., 2006), they also have lim-20

itations. In particular passive measurements which use the short wave infrared are
limited by their reliance on solar illumination which restricts their latitudinal coverage,
and thermal infrared systems are not sufficiently sensitive near the ground where the
fluxes occur. Furthermore, passive remote sensing systems involve retrieval complex-
ities which suffer from aerosol contamination and radiation path length uncertainties.25

The active remote sensing technique, total column differential absorption LiDAR (TC-
DIAL) offers a different technique without some of these sources of uncertainty and
has recently been the focus of many papers and feasibility studies (Amediek et al.,
2009; Dufour and Breon, 2003; Ehret et al., 2008; Ehret and Kiemle, 2005; Gibert et
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al., 2004; Loth et al., 2005; Ismail et al., 2004). Many of TC-DIALs advantages over
current passive remote sensing systems are a product of its use of pulsed (active)
radiation. The path length of the returned pulses may be determined via the time be-
tween their transmission and reception, measurements can be made equally well at
all latitudes both day and night, and by using a differential retrieval method, aerosol5

and thin cloud interference is avoided. These advantages make TC-DIAL a flexible
CO2 measuring technique capable of diurnal sampling with potential for near-surface
sensitivity and therefore an attractive supplement to the current measurement systems
(Loth et al., 2005). At present there are no CO2 TC-DIAL instruments in space, however
breadboard demonstrators and aircraft campaigns are being carried out to develop the10

technology for space application (Amediek et al., 2009).
The principle of TC-DIAL is the differential retrieval of scattered intensities from two

laser transmissions of similar wavelengths. The wavelength of the first transmission is
selected to be absorbed by CO2 during its propagation through the atmosphere known
as the “on-line” frequency, and the second transmission is tuned to avoid signficant15

absorption by CO2 known as the “off-line” frequency (Fig. 1).
Two spectral lines have been identified as particularly appropriate for CO2 DIAL using

temperature sensitivity, strength and interference from other atmospheric species as
selection criteria (Loth et al., 2005). The two lines identified were 4875.748957 and
6367.223459 cm−1. The signal returned to the detector with which a CO2 measurement20

is made is reflected from aerosols, cloud and the Earth’s surface. For TC-DIAL only
the latter applies by definition, however instruments which operate by this principle may
also be able to use backscatter from clouds to retrieve above cloud CO2 if the clouds
are optically thick. The measurement pair consisting of the on-line and off-line returned
intensities is used in a simple retrieval equation to calculate the vertical column density25

(VCD) of CO2 in units of molecules per cm2 (Eq. 1). The concentration is subsequently
converted into a volume mixing ratio (VMR) (Ehret et al., 2008) (Eqs. 2 to 4).

n=
1

2∆σ(Rs−Rtoa)
ln
[
Son(Rtoa)Soff(Rs)

Son(Rs)Soff(Rtoa)

]
, (1)
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where n is the total column concentration of CO2, ∆σ is the difference in absorption
cross sections at the on-line and off-line wavelengths, Son is the on-line signal strength,
Soff is the off-line signal strength, Rtoa is the range to the top of the atmosphere and Rs
is the range to the surface.

NCO2
=

τ∫∞
−∞νdl

,where (2)5

τ =
1
2

ln
(
Son

Soff

)
,and (3)

ν(l )=
[
P (l )
kT (l )

.
1

1+ρw(l )

]
(σon(l )−σoff(l )), (4)

and NCO2
is the CO2 VMR, Son and Soff are the on and off line intensities, respectively,

k is the Boltzmanns constant, T is the temperature, P is the pressure, ρw is the water
vapour concentration, σon and σoff are the absorption cross sections for the online and10

offline pulses, respectively and l is the altitude.
Among the sources of error in TC-DIAL retrievals is the uncertainty associated with

the spatial variability in the reflectance properties of the Earth’s surface. The two sur-
face footprints from the on and off-line transmissions do not completely overlap, and
any variability in the surface reflectance across the footprints results in an error which15

varies as a function of distance between the footprint centre’s and the surface re-
flectance variability.

The causes of the imperfect footprint co-location are laser pointing jitter owing to un-
avoidable vibrations within the spacecraft, and a time delay between the transmissions
of the pulses designed to avoid any ambiguity in the retrieval owing to the simultaneous20

presence of the pulses in the atmosphere.
This paper investigates the regional, low bound errors incurred by the surface re-

flectance variability on TC-DIAL retrievals over Europe and South America. The study
is carried out using a LiDAR model configured with the instrument and satellite specifi-
cations given in Table 1.25
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2 Methodology

The Leicester LiDAR model (LLM) simulates the physical processes associated with
pulsed TC-DIAL systems, including interactions with clouds, aerosols, absorbing media
and the Earth’s surface. Its overall purpose is to investigate DIAL in its entirety and
search for means of exploiting the technique in novel ways.5

The model operates in one of three operational modes to suit the application. The
single shot mode is used to investigate single pulse interaction with the surface and
atmosphere, the batch mode is used to compare instrument and environmental prop-
erties, and the orbit mode simulates a TC-DIAL system using surface reflectance maps
and orbit parameters to obtain retrievals as observed from a spaceborne platform.10

2.1 Model atmosphere

The atmosphere model consists of a scattering component and an absorption com-
ponent. The scattering component uses the Henyey-Greenstein approximation for the
Mie phase function (Platt, 2008), a method required by scattering theory for the short
wave infrared region of the electromagnetic spectrum (Eq. 5). The parameters which15

define the phase functions were obtained from the SCIATRAN database to allow the
LLM to simulate various aerosol scenarios (Rozanov et al., 2002).

Φ=
1−g2

4π
(
1+g2−2gcosθ

)3/2
, (5)

where Φ is the phase function which describes the proportion of scattered photons
in any direction within the plane of incidence, θ is the scattering angle and g is the20

asymmetry parameter.
The absorption component is based on a modified inversion of the Beer-Lambert

equation (Eq. 6).

A=e−∆σln, (6)
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where A is the fraction of light absorbed within the atmospheric level, l is the length of
the atmospheric level, ∆σ is the absorption cross section difference between the on-
line and off-line wavelengths and n is the concentration of CO2 from the atmospheric
CO2 profile.

2.2 Model surface5

The surface interaction is modelled using a bi-directional reflectance distribution func-
tion (BRDF) which is modified to account for the hot spot effect and DIAL viewing ge-
ometry (Eq. 7). The parameterisation for the function comes from the 500 m resolution
MODIS BRDF data product MCD43A1.5 (Strahler et al., 1999), which for the present
study required a culmination of three data sets for cloud clearing purposes. The dates10

used were the 5, 15 and 25 May 2007. The MODIS MCD43 product has been shown
to have an RMS error of 0.0130 (equivalent to <5%) from continuous field observations
of surface albedo at a number of measurement locations (Salomon et al., 2006).

R(θ,ψ,φ,Λ)= fiso(Λ)+ fvol(Λ)Kvol(θ,ψ,φ)+ fgeo(Λ)Kgeo(θ,ψ,φ) (7)

The BRDF model used is a sum of three parameters (Roujean et al., 1992), fiso, fvol15

and fgeo, which combine to give surface reflectivity R. Two of the parameters have
associated kernels, the volumetric kernel Kvol and the geometric kernel Kgeo which
provide the BRDF’s directional components (Wanner et al., 1995).

The volumetric kernel (Eq. 8) is modified to account for the hot-spot effect (Maignan
et al., 2003), a characteristic of nadir viewing LiDAR observations and anologous to20

viewing at the glint angle when observing the ocean with passive observations (Eq. 10).

Kvol =
4

3π

[
1

cosθs+cosθv

]
·
[
Fhs

((π
2
−ξ
)

cosξ+sinξ
)]

− 1
3
, (8)

where,

cosξ= cosθscosθv+sinθssinθvcosφ, (9)
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Fhs =

(
1+

1

1+ξ/0.03

)
, (10)

θs is the illumination azimuth angle, θv is the viewing azimuth angle, and φ is the
illumination zentih angle.

The geometric kernel is given as

Kgeo =O(θ,ψ,φ)−secθ′−secψ ′+
1
2

(1+cosξ)(secθ′secψ ′), (11)5

where,

O=
1
π

(t−sintcost)(secθ′+secψ ′), (12)

cost=
1
π

√
D2+ (tanθ′ tanψ ′sinφ)2

secθ′+secφ′ , (13)

D=
√

tan2θ′+ tan2ψ ′−2tanθ′ tanψ ′cosφ, (14)

θ′ = tan−1 (tanθ), (15)10

ψ ′ = tan−1 (tanψ). (16)

The result of applying the BRDF model is a surface reflectance map (Figs. 2 and 3) in
units of sr−1.

An exception to the use of the BRDF calculations is the determination of the sur-
face reflectance of water. In this instance it is assumed that the surface reflectance is15

0.025 sr−1 (Loth et al., 2005) and that the surface reflectance varies spatially with the
same distribution function observed in the variation of available MODIS 1.6 µm water
reflectance data. The figure chosen is the median of a reflectance distribution obtained
from POLDER data for high sun elevation angles.

154

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/3/147/2010/amtd-3-147-2010-print.pdf
http://www.atmos-meas-tech-discuss.net/3/147/2010/amtd-3-147-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
3, 147–184, 2010

DIAL measurement
bias owing to surface
reflectance variability

J. P. Lawrence et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

The pulse interaction with the surface is calculated using Eqs. (17) and (18) which
define the scattered intensity of light from the surface back towards the detector. The
on-line returned intensity (Son) is the product of the surface reflectivity and the solid
angle between the surface pixel and the satellite receiving mirror. The off-line returned
intensity (Soff) is a sum of the on-line returned intensity and the difference between5

the on and off-line returned intensities taking account of the footprint overlap fraction
labelled O in Fig. 4. The (Soff) term therefore may be considered to be the effective
off-line intensity for the subsequent surface pixel having taken into consideration the
footprint overlap.

Son =
RonD

L2
, (17)10

Soff =Son+
(

(Ron−Roff)O ·D
2L2

)
, (18)

where D is the receiver aperture diameter, O is the fractional area of the two footprints
that do not overlap, Ron is the surface reflectance of the on-line footprint, Roff is the
surface reflectance of the off-line footprint and L is the distance between the transmitter
aperture and the ground. The values of D, O and L used in the model simulations are15

given in Table 1.
The resolution of the MCD43 product imposes limitations on the constraints which

can be determined on errors incurred by surface reflectance variation. Variations in
reflectance are expected to be observed over less than 50 m, yet the MODIS data
product provides an average figure over 500 m. On the scale of individual pulses, the20

lower resolution of the MODIS datasets will reduce variations owing to smaller scale
objects, however the integration distance of the DIAL instrument will aid in reducing
the statistical impact of this effect. Despite this consolidation it must be accepted that
the variations observed in this study are somewhat lower than those a DIAL system
will encounter, and by consideration of this the aim of this study is to assess regional25
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variations in the errors incurred in the DIAL retrievals, and to determine lower bound
errors for those variations.

2.3 Model spectroscopy

The LLM incorporates spectral line shape calculations founded on HITRAN 2008 line
centers and associated parameters to define the position and behavior of the relevant5

spectral lines (Lafferty et al., 2009). A convolution algorithm constrained by these
parameters is applied to the lines with a pressure and temperature dependant Voigt
line shape (Mitchell, 1971). The result of the convolution process is a vertically varying
group of spectral lines, incorporating collisional and pressure broadening as well as
pressure shift (Eq. 19).10

V (x)=
αυ0

π
(√
πγD
) ∫ ∞

−∞

e−t
2/γ2

D

(v−t)2+α2
dt, (19)

where

γD =∆D
√

ln2, (20)

α=
√

ln2
(
∆L
∆D

)
, (21)

∆D =
(
∆L
π

)(
1

(υ−υ0)2+∆L

)
, (22)15

∆L =Ref
(

P
101325

)(
273
T

)1/2

. (23)

Ref is the spectral lines half width at half maximum at a reference atmospheric temper-
ature and pressure. For HITRAN, and therefore the LLM, these points are 101 325 Pa
and 273 K. υ is the wavenumber of the laser transmission, υ0 is the centre lines wave
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number (4875.74896 cm−1), P is the atmospheric pressure and T is the atmospheric
temperature. The atmospheric profiles used with the Voigt lineshape calculations are
MIPAS reference atmospheres (Remedios et al., 2007).

Three spectral lines were chosen to be modelled based on their proximity to the on-
line laser frequency and their absorption cross sections. The omission of the other5

spectral lines was investigated and resulted in a retrieval difference of approximately
4.0×10−4 ppmv.

In Fig. 5 the spectral line strengths are displayed as a function of distance from the
primary line centre (4875.74896 cm−1), with 9 spectral lines identified as most impor-
tant based on their strength and proximity to the centre line.10

2.4 Error estimation

For DIAL measurements to meet precision requirements they must be averaged over
an interval of time. The size of this interval depends on the desired spatial resolution
and the instrument pulse repetition frequency (PRF). To combine the uncertainties
normal distribution statistics may be applied if the associated errors are approximately15

Gaussian in shape and non-biased. Analysis of the errors incurred in the CO2 retrievals
by the variability in the surface reflectance over Europe is given in Fig. 6.

A non-skewed Gaussian distribution of amplitude 45 900.0 and standard deviation
1.05 is fitted to the histogram using a least squares fitting method. Given the reason-
able fit observed the use of Gaussian error statistics is viable, and Eq. (24) is used to20

combine the individual errors in the present study.

Z =

∑n
0(zi )

n
√
n
, (24)

where Z is cumulative error over the integration distance, n is the number of measure-
ments and z is the error associated with each individual measurement.
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2.5 Model configuration

The LiDAR model is configured using parameters partly based on the expected con-
figuration of the A-SCOPE mission (A-SCOPE, 2008) and these are presented in
Table 1. Using these parameters the model operates with an optimum precision of
±2.0×10−5 ppmv when no sources of error are applied. The locations chosen for the5

investigation are Europe and South America. Europe was identified as an ideal loca-
tion to observe errors associated with measurements intersecting coastlines owing to
its variety of land mass shapes, and South America was chosen because of its impor-
tance as a carbon sink.

The error associated with surface reflectance variability for a single sounding varies10

as a function of footprint overlap and the surface’s reflectance heterogeneity over the
area of the footprints (Fig. 7).

The separation between the footprint centres is a fixed value for the simulations
performed as per Table 1, and the surface reflectance variability is dependant on the
geolocation of the measurements. However, for multiple soundings integrated over an15

interval in time, the pulse repetition frequency and the integration interval are variables
which also affect the errors observed. The retrieval error response to varying the PRF
and the integration interval is investigated for 50, 100 and 200 km integration distances
and for 1 to 10 Hz PRF. The limits on the variables are based on the restrictions im-
posed by the resolution of the surface reflectance map. For 10 Hz the measurement20

pairs are approximately 700 m apart and therefore approaching the limit of the model
resolution at 500 m, and at 1 Hz the measurement pairs are approximately 7 km apart
allowing only 7 measurements to be integrated within 50 km.

3 Results

The results from both continental test patches show variability in the surface reflectance25

which leads to biases in the TC-DIAL retrievals. They also show that particular geo-
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graphic features such as mountain regions and coastlines create errors which sig-
nificantly exceed the average. These features and their relationships to associated
variables are described here.

3.1 Bias

The presence of a bias in the retrieval is a consequence of non-linearity in the DIAL5

equation and has been shown to be of similar magnitude over both Europe and South
America. A recent aircraft campaign looking at the effect of surface reflectance variabil-
ity on DIAL retrievals used a power series expansion to the first order to linearise the
DIAL equation with the effect of successfully avoiding a bias in their result sets (Ame-
diek et al., 2009). Unfortunately this method is only applicable to measurements where10

the on-line and off-line returned intensities are of similar strength. In conditions typical
of a spaceborne system the returned intensities are likely to be significantly different
rendering this approximation unsuitable for spaceborne retrievals.

The bias has been shown to vary with both integration distance and pulse repetition
frequency. Simulated measurements over the Amazon rainforest are a suitable exam-15

ple of this with the bias ranging from 0.08 ppmv to 0.02 ppmv for variations of 1 to 10 Hz
PRF and 50 to 200 km integration distance.

Comparing the results from the Amazon rainforest with that of the entire continental
region shows that the magnitude of the bias is diluted by the presence of relatively ho-
mogeneous surfaces such as water. For all of South America the bias is approximately20

0.01 ppmv lower on average than it is over the Amazon rainforest alone.

3.2 Regional errors

Figures 8 and 9 highlight particular regions where the measurement errors far exceed
the average. These include the Alps, the west coast of Scotland, the mountains of
Norway, the east coast of Sweden, the north west of the Andes mountain range and25

many other regions where the orbit track has been repeatedly intersected by coastlines.
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Figures 10 and 11 show the simulation data over Europe and South America. The
error spikes associated with mountains and coastlines are clearly identifiable as is
a positive bias.

3.3 Integration distance

The integration distance determines the number of the measurements averaged over5

and may be increased to reduce measurement errors through statistical averaging at
the expense of spatial resolution. Three data sets with integration distances of 50, 100
and 200 km are presented in Fig. 12.

To quantify the effect of integration distance, the mean bias and the top one per-
centile values are tabulated for the Europe and South America result sets in Tables 210

and 3, respectively. The top 1% errors were investigated as a seperate statistic for their
strong association with mountain regions and coastlines and as a means to provide an
indication as to the response of the errors over these regions to variations in instrument
configuration.

The distribution of the errors over both continents are quantified by the least squares15

fitting of a skewed normal distribution function to the error histograms for 50, 100 and
200 km integration distances. The fits are given in Fig. 13 and the parameters of the
skewed normal distribution fits are tabulated in Tables 4 and 5.

The function for the skewed normal distributions fitted to the histograms is given in
Eq. (25) (Azzalini, 1985).20

f (x)=
2α

pb22π
e
−
(

(x−a)2

2b2

) ∫ αx
−∞
e
−
(

(αx−a)2

2b2

)
dx, (25)

where α is the skew factor, p is the amplitude factor which modifies the normalised
amplitude, b is the standard deviation and a is the offset in the x domain.
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3.4 Pulse repetition frequency

The pulse repetition frequency defines the number of measurements made within
a given integration interval. The effect of changing the PRF on the measurement bias
and top 1% errors are investigated and presented in Fig. 14 for 50, 100 and 200 km
integration distances over key locations. The locations are the Alps and the west coast5

of Scotland to consider mountain and coastline regions, and the Amazon rainforest to
include an example of a large area with a relatively homogenous surface.

The presented results show that increasing the PRF reduces the retrieval error for
both the bias and the top 1% error components over very different error source lo-
cations, however, based on the trends observed in Fig. 14 very little improvement is10

expected after 10 Hz. The trends are likely to be a combination of a reduction in error
with increased PRF as a result of greater statistical averaging, and an increase in error
as a result greater exposure to potential surface variability.

The uncertainty in the presented results arises from the error in the variability of
the surface reflectance between adjacent pixels, and therefore can be up to twice that15

of the uncertainty in the MODIS MCD43 product, implying an error of <10% for all
results. A further source of error is the resolution difference between the MODIS pixel
and the surface reflectance variations on the scale of the overlap of the two DIAL
footprints. This ambiguity incurs an underestimation of the surface variability and as
a consequence leads to an underestimation in the errors as well. It is accepted as20

a result that the magnitude of the errors observed are lower bound estimates.

4 Conclusions

The study has shown the lower bound errors incurred in DIAL retrievals as a conse-
quence of the Earth’s surface reflectance variability. A bias observed over both conti-
nental regions has been quantified over a range of instrument parameters within the25

limits of the LiDAR model capabilities, and the findings show that the bias magnitude
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is strongly dependant on the instrument pulse repetition frequency and the along-track
integration distance. The cause of the bias has been concluded to be a result of uncer-
tainties existing in the returned laser pulses intensities within the non-linear DIAL equa-
tion. The spatial component of the retrieval errors was also investigated and showed
that mountain ranges and coastlines that repeatedly intersect the orbit track are the5

most detrimental features to the retrieval, and that the magnitude of these values are
also dependent on the integration distance and instrument pulse repetition frequency.

From the findings of this study it may be inferred that any mountain region and coast-
line with comparable surface angle to the satellites surface track may result in an error
that exceeds those quantified as top 1% errors in this study. It may be possible to com-10

pensate for this in the retrieval process if the expected biases were accurately quanti-
fied over these regions. This would would require the inclusion of seasonal variations
in land type and cover, as well as potentially tides and receding coastlines. Further
investigation using higher resolution reflectance data such as that from Landsat will aid
in obtaining more accurate error estimates.15
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Table 1. List of model parameters used in the LLM for this study.

Model Parameter Setting

Simulation duration 29 days
Atmospheric depth 60 km
Satellite altitude 400 km
Modelled spectral lines 3
Orbit inclination 82◦

On/Off footprint seperation 12 m
Pulse repetition freq 10 Hz
Spectral line centre 4875.74896 cm−1

On-line offset 0.08 cm−1

Off-line offset 0.7 cm−1

Transmission energy 0.1 J/pulse
Power distribution off/on 1/3
Laser line width 1 MHz
Laser pulse width 100 ns
Instrument sampling 500 ns
Receiver diameter 1 m
Quantum efficiency 61%
Optical efficiency 90%
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Table 2. Mean errors and top 1% errors associated with various integration distances over
Europe for 10 Hz simulated DIAL data.

Integration distance LLM error mean Top 1% errors
(km) (ppmv) (ppmv)

50 0.0168 0.13
100 0.0121 0.07
200 0.0086 0.05
400 0.0061 0.02
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Table 3. Mean errors and top 1% errors associated with various integration distances over
South America for 10 Hz simulated DIAL data.

Integration distance LLM error mean Top 1% errors
(km) (ppmv) (ppmv)

50 0.0204 0.16
100 0.0143 0.09
200 0.0102 0.06
400 0.0098 0.04
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Table 4. Skewed normal distribution parameters used to fit retrieval histograms for various
integration distances over Europe.

Integration distance α b a p

50 49.5 0.31 −0.28 2.21
100 91.8 0.25 −0.32 2.18
200 114.2 0.24 −0.33 2.31
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Table 5. Skewed normal distribution parameters used to fit retrieval histograms for various
integration distances over South America.

Integration distance α b a p

50 91.2 0.48 −0.62 0.95
100 117.0 0.38 −0.57 0.95
200 149.0 0.31 −0.51 0.95
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Fig. 1. Diagrammatic representation of the DIAL measurement process showing four sound-
ings within an integration interval. The two transmissions which make up a single measurement
are closely located but do not completely overlap.
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Fig. 2. Surface reflectance map over Europe generated by the Leicester LiDAR Model at 500 m
resolution.
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Fig. 3. Surface reflectance map over South America generated by the Leiceter LiDAR Model
at 500 m resolution.
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Fig. 4. A schematic representation of DIAL surface area viewing geometry over lower resolution
MODIS pixels (not to scale).
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Fig. 5. HITRAN 2008 line centre positions and cross sections.
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Fig. 6. Histrogram of CO2 retrieval errors over Europe with fitted Gaussian distribution.
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6 J. P. Lawrence: DIAL measurement bias owing to surface reflectance variability

Model Parameter Setting
Simulation duration 29 days
Atmospheric depth 60 km
Satellite altitude 400 km
Modelled spectral lines 3
Orbit inclination 82◦

On/Off footprint seperation 12 m
Pulse repetition freq 10 Hz
Spectral line centre 4875.74896 cm−1

On-line offset 0.08 cm−1

Off-line offset 0.7 cm−1

Transmission energy 0.1 J/pulse
Power distribution off/on 1/3
Laser line width 1 MHz
Laser pulse width 100 ns
Instrument sampling 500 ns
Receiver diameter 1 m
Quantum efficiency 61%
Optical efficiency 90%

Table 1. List of model parameters used in the LLM for this study

Fig. 7. CO2 retrieval error (ppmv) as a function of surface re-
flectance variability and distance between footprint centres for a
single sounding. Data generated by the Leicester LiDAR model
using system parameters as per Table 1

surface reflectance variability is dependant on the geoloca-
tion of the measurements. However, for multiple soundings
integrated over an interval in time, the pulse repetition fre-
quency and the integration interval are variables which also
affect the errors observed. The retrieval error response to
varying the PRF and the integration interval is investigated
for 50, 100 and 200 km integration distances and for 1 to
10 Hz PRF. The limits on the variables are based on the re-
strictions imposed by the resolution of the surface reflectance
map. For 10 Hz the measurement pairs are approximately
700 m apart and therefore approaching the limit of the model
resolution at 500 m, and at 1 Hz the measurement pairs are
approximately 7 km apart allowing only 7 measurements to
be integrated within 50 km.

3 Results

The results from both continental test patches show variabil-
ity in the surface reflectance which leads to biases in the TC-
DIAL retrievals. They also show that particular geographic
features such as mountain regions and coastlines create er-
rors which significantly exceed the average. These features
and their relationships to associated variables are described
here.

3.1 Bias

The presence of a bias in the retrieval is a consequence of
non-linearity in the DIAL equation and has been shown to be
of similar magnitude over both Europe and South America.
A recent aircraft campaign looking at the effect of surface re-
flectance variability on DIAL retrievals used a power series
expansion to the first order to linearise the DIAL equation
with the effect of successfully avoiding a bias in their result
sets (Amediek et al., 2009). Unfortunately this method is
only applicable to measurements where the on-line and off-
line returned intensities are of similar strength. In conditions
typical of a spaceborne system the returned intensities are
likely to be significantly different rendering this approxima-
tion unsuitable for spaceborne retrievals.

The bias has been shown to vary with both integration
distance and pulse repetition frequency. Simulated measure-
ments over the Amazon rainforest are a suitable example of
this with the bias ranging from 0.08 ppmv to 0.02 ppmv for
variations of 1 to 10 Hz PRF and 50 to 200 km integration
distance.

Comparing the results from the Amazon rainforest with
that of the entire continental region shows that the magnitude
of the bias is diluted by the presence of relatively homoge-
neous surfaces such as water. For all of South America the
bias is approximately 0.01 ppmv lower on average than it is
over the Amazon rainforest alone.

3.2 Regional errors

Figures 8 and 9 highlight particular regions where the mea-
surement errors far exceed the average. These include the
Alps, the west coast of Scotland, the mountains of Norway,
the east coast of Sweden, the north west of the Andes moun-
tain range and many other regions where the orbit track has
been repeatedly intersected by coastlines.

Figures 10 and 11 show the simulation data over Europe
and South America. The error spikes associated with moun-
tains and coastlines are clearly identifiable as is a positive
bias.

3.3 Integration distance

The integration distance determines the number of the mea-
surements averaged over and may be increased to reduce

Fig. 7. CO2 retrieval error (ppmv) as a function of surface reflectance variability and distance
between footprint centres for a single sounding. Data generated by the Leicester LiDAR model
using system parameters as per Table 1.
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Fig. 8. CO2 retrieval error in units of ppmv over Europe for one
month of 10 Hz simulated DIAL data integrated over 200 km in-
tervals. The scale has been truncated to 0.05 to allow for stronger
contrasts

Fig. 9. CO2 retrieval error in units of ppmv over South America for
one month of 10 Hz simulated DIAL data integrated over 200 km
intervals. The scale has been truncated to 0.06 to allow for stronger
contrasts

measurement errors through statistical averaging at the ex-
pense of spatial resolution. Three data sets with integration
distances of 50, 100 and 200 km’s are presented in Figure 12.

To quantify the effect of integration distance, the mean
bias and the top one percentile values are tabulated for the
Europe and South America result sets in Tables 2 and 3 re-
spectively. The top 1% errors were investigated as a seperate
statistic for their strong association with mountain regions
and coastlines and as a means to provide an indication as to

Fig. 10. CO2 retrieval error in units of ppmv over Europe for one
month of 10 Hz simulated DIAL data integrated over 200 km inter-
vals.

Fig. 11. CO2 retrieval error in units of ppmv over South America
for one month of 10 Hz simulated DIAL data integrated over 200
km intervals.

the response of the errors over these regions to variations in
instrument configuration.

Integration distance LLM error mean Top 1% errors
(km) (ppmv) (ppmv)
50 0.0168 0.13
100 0.0121 0.07
200 0.0086 0.05
400 0.0061 0.02

Table 2. Mean errors and top 1% errors associated with various
integration distances over Europe for 10 Hz simulated DIAL data.

The distribution of the errors over both continents are
quantified by the least squares fitting of a skewed normal dis-
tribution function to the error histograms for 50, 100 and 200

Fig. 8. CO2 retrieval error in units of ppmv over Europe for one month of 10 Hz simulated
DIAL data integrated over 200 km intervals. The scale has been truncated to 0.05 to allow for
stronger contrasts.
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Fig. 9. CO2 retrieval error in units of ppmv over South America for
one month of 10 Hz simulated DIAL data integrated over 200 km
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measurement errors through statistical averaging at the ex-
pense of spatial resolution. Three data sets with integration
distances of 50, 100 and 200 km’s are presented in Figure 12.

To quantify the effect of integration distance, the mean
bias and the top one percentile values are tabulated for the
Europe and South America result sets in Tables 2 and 3 re-
spectively. The top 1% errors were investigated as a seperate
statistic for their strong association with mountain regions
and coastlines and as a means to provide an indication as to

Fig. 10. CO2 retrieval error in units of ppmv over Europe for one
month of 10 Hz simulated DIAL data integrated over 200 km inter-
vals.

Fig. 11. CO2 retrieval error in units of ppmv over South America
for one month of 10 Hz simulated DIAL data integrated over 200
km intervals.

the response of the errors over these regions to variations in
instrument configuration.

Integration distance LLM error mean Top 1% errors
(km) (ppmv) (ppmv)
50 0.0168 0.13
100 0.0121 0.07
200 0.0086 0.05
400 0.0061 0.02

Table 2. Mean errors and top 1% errors associated with various
integration distances over Europe for 10 Hz simulated DIAL data.

The distribution of the errors over both continents are
quantified by the least squares fitting of a skewed normal dis-
tribution function to the error histograms for 50, 100 and 200

Fig. 9. CO2 retrieval error in units of ppmv over South America for one month of 10 Hz simulated
DIAL data integrated over 200 km intervals. The scale has been truncated to 0.06 to allow for
stronger contrasts.
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measurement errors through statistical averaging at the ex-
pense of spatial resolution. Three data sets with integration
distances of 50, 100 and 200 km’s are presented in Figure 12.

To quantify the effect of integration distance, the mean
bias and the top one percentile values are tabulated for the
Europe and South America result sets in Tables 2 and 3 re-
spectively. The top 1% errors were investigated as a seperate
statistic for their strong association with mountain regions
and coastlines and as a means to provide an indication as to

Fig. 10. CO2 retrieval error in units of ppmv over Europe for one
month of 10 Hz simulated DIAL data integrated over 200 km inter-
vals.

Fig. 11. CO2 retrieval error in units of ppmv over South America
for one month of 10 Hz simulated DIAL data integrated over 200
km intervals.

the response of the errors over these regions to variations in
instrument configuration.

Integration distance LLM error mean Top 1% errors
(km) (ppmv) (ppmv)
50 0.0168 0.13
100 0.0121 0.07
200 0.0086 0.05
400 0.0061 0.02

Table 2. Mean errors and top 1% errors associated with various
integration distances over Europe for 10 Hz simulated DIAL data.

The distribution of the errors over both continents are
quantified by the least squares fitting of a skewed normal dis-
tribution function to the error histograms for 50, 100 and 200

Fig. 10. CO2 retrieval error in units of ppmv over Europe for one month of 10 Hz simulated
DIAL data integrated over 200 km intervals.
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measurement errors through statistical averaging at the ex-
pense of spatial resolution. Three data sets with integration
distances of 50, 100 and 200 km’s are presented in Figure 12.

To quantify the effect of integration distance, the mean
bias and the top one percentile values are tabulated for the
Europe and South America result sets in Tables 2 and 3 re-
spectively. The top 1% errors were investigated as a seperate
statistic for their strong association with mountain regions
and coastlines and as a means to provide an indication as to

Fig. 10. CO2 retrieval error in units of ppmv over Europe for one
month of 10 Hz simulated DIAL data integrated over 200 km inter-
vals.

Fig. 11. CO2 retrieval error in units of ppmv over South America
for one month of 10 Hz simulated DIAL data integrated over 200
km intervals.

the response of the errors over these regions to variations in
instrument configuration.

Integration distance LLM error mean Top 1% errors
(km) (ppmv) (ppmv)
50 0.0168 0.13
100 0.0121 0.07
200 0.0086 0.05
400 0.0061 0.02

Table 2. Mean errors and top 1% errors associated with various
integration distances over Europe for 10 Hz simulated DIAL data.

The distribution of the errors over both continents are
quantified by the least squares fitting of a skewed normal dis-
tribution function to the error histograms for 50, 100 and 200

Fig. 11. CO2 retrieval error in units of ppmv over South America for one month of 10 Hz
simulated DIAL data integrated over 200 km intervals.
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Fig. 12. CO2 retrieval error in units of ppmv over Europe for 3
integration distance scenarios, 50km, 100km, and 200km. A bias in
retrieval error is seen to be present for all three integration distances.

Integration distance LLM error mean Top 1% errors
(km) (ppmv) (ppmv)
50 0.0204 0.16

100 0.0143 0.09
200 0.0102 0.06
400 0.0098 0.04

Table 3. Mean errors and top 1% errors associated with various
integration distances over South America for 10 Hz simulated DIAL
data.

km integration distances. The fits are given in Fig 13 and the
parameters of the skewed normal distribution fits are tabu-
lated in Tables 4 and 5.

The function for the skewed normal distributions fitted to
the histograms is given in equation 25 (Azzalini, 1985).

f(x) =
2α

pb22π
e
−

„
(x−a)2

2b2

« ∫ αx

−∞
e
−

„
(αx−a)2

2b2

«
dx, (25)

where α is the skew factor, p is the amplitude factor which
modifies the normalised amplitude, b is the standard devia-
tion and a is the offset in the x domain.

Integration distance α b a p

50 49.5 0.31 -0.28 2.21
100 91.8 0.25 -0.32 2.18
200 114.2 0.24 -0.33 2.31

Table 4. Skewed normal distribution parameters used to fit retrieval
histograms for various integration distances over Europe

3.4 Pulse repetition frequency

The pulse repetition frequency defines the number of mea-
surements made within a given integration interval. The ef-

Integration distance α b a p

50 91.2 0.48 -0.62 0.95
100 117.0 0.38 -0.57 0.95
200 149.0 0.31 -0.51 0.95

Table 5. Skewed normal distribution parameters used to fit retrieval
histograms for various integration distances over South America

fect of changing the PRF on the measurement bias and top
1% errors are investigated and presented in Fig 14 for 50,
100 and 200 km integration distances over key locations. The
locations are the Alps and the west coast of Scotland to con-
sider mountain and coastline regions, and the Amazon rain-
forest to include an example of a large area with a relatively
homogenous surface.

The presented results show that increasing the PRF re-
duces the retrieval error for both the bias and the top 1% error
components over very different error source locations, how-
ever, based on the trends observed in Figure 14 very little im-
provement is expected after 10 Hz. The trends are likely to be
a combination of a reduction in error with increased PRF as a
result of greater statistical averaging, and an increase in error
as a result greater exposure to potential surface variability.

The uncertainty in the presented results arises from the er-
ror in the variability of the surface reflectance between ad-
jacent pixels, and therefore can be up to twice that of the
uncertainty in the MODIS MCD43 product, implying an er-
ror of <10% for all results. A further source of error is the
resolution difference between the MODIS pixel and the sur-
face reflectance variations on the scale of the overlap of the
two DIAL footprints. This ambiguity incurs an underestima-
tion of the surface variability and as a consequence leads to
an underestimation in the errors as well. It is accepted as
a result that the magnitude of the errors observed are lower
bound estimates.

4 Conclusions

The study has shown the lower bound errors incurred in
DIAL retrievals as a consequence of the Earth’s surface re-
flectance variability. A bias observed over both continental
regions has been quantified over a range of instrument pa-
rameters within the limits of the LiDAR model capabilities,
and the findings show that the bias magnitude is strongly de-
pendant on the instrument pulse repetition frequency and the
along-track integration distance. The cause of the bias has
been concluded to be a result of uncertainties existing in the
returned laser pulses intensities within the non-linear DIAL
equation. The spatial component of the retrieval errors was
also investigated and showed that mountain ranges and coast-
lines that repeatedly intersect the orbit track are the most
detrimental features to the retrieval, and that the magnitude

Fig. 12. CO2 retrieval error in units of ppmv over Europe for 3 integration distance scenarios,
50 km, 100 km, and 200 km. A bias in retrieval error is seen to be present for all three integration
distances.
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Fig. 13. CO2 retrieval histrograms fitted with skewed normal distribution functions for the South America and Europe simulation results for
50, 100 and 200 km integration distancesFig. 13. CO2 retrieval histrograms fitted with skewed normal distribution functions for the South

America and Europe simulation results for 50, 100, and 200 km integration distances.
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Fig. 14. CO2 retrieval error over the Alps, the Amazon rainforest and the west coast of Scotland for 50, 100 and 200 km integration distances
as a function of instrument pulse repetition frequencyFig. 14. CO2 retrieval error over the Alps, the Amazon rainforest and the west coast of Scot-

land for 50, 100, and 200 km integration distances as a function of instrument pulse repetition
frequency.
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