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Abstract

The recently increasing development of whole sky imagers enables temporal and spa-
tial high-resolution sky observations. One application already performed in most cases
is the estimation of fractional sky cover. A distinction between different cloud types,
however, is still in progress. Here, an automatic cloud classification algorithm is pre-5

sented, based on a set of mainly statistical features describing the color as well as
the texture of an image. The k-nearest-neighbour classifier is used due to its high
performance in solving complex issues, simplicity of implementation and low compu-
tational complexity. Seven different sky conditions are distinguished: high thin clouds
(cirrus and cirrostratus), high patched cumuliform clouds (cirrocumulus and altocumu-10

lus), stratocumulus clouds, low cumuliform clouds, thick clouds (cumulonimbus and
nimbostratus), stratiform clouds and clear sky. Based on the Leave-One-Out Cross-
Validation the algorithm achieves an accuracy of about 97%, outperforming previous
algorithms with accuracies of at most 62%. An additional test run of random images
is presented, still yielding a success rate of about 75%, or up to 88% if only “serious”15

errors with respect to radiation impact are considered. Reasons for the decrement in
accuracy are discussed, and ideas to further improve the classification results, espe-
cially in problematic cases, are investigated.

1 Introduction

Clouds are one of the most important forces of Earth’s heat balance and hydrological20

cycle, and at the same time one of the least understood. It is well known that low
clouds provide a negative feedback and high, thin clouds a positive feedback on the
radiation budget. The net effect of clouds, however, is still unknown and they cause
large uncertainties in climate models and climate predictions (Houghton et al., 2001).
The effect of clouds on solar and terrestrial radiation is due to reflection and absorp-25

tion by cloud particles and depends strongly on the volume, shape, thickness and
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composition of the clouds. Large-scale cloud information is available from several satel-
lites, but such data is provided in a low resolution and may contain errors. For example,
small clouds are often overlooked due to the limited radiometer field of view. Low or
thin clouds and surface are frequently confused because of their similar brightness and
temperature (Ricciardelli et al., 2008; Dybbroe et al., 2005). Additionally, the solar ra-5

diation reaching the ground with respect to the cloud type cannot be determined, even
though this is essential for cloud-radiation studies.

Nowadays ground-based imaging devices are commonly used to support satellite
studies (Cazorla et al., 2008; Feister and Shields, 2005; Sakellariou et al., 1995). One
of the best known commercial manufacturer of such instruments is the Scripps Institute10

of Oceanography at the University of California San Diego. Their Whole Sky Imagers
are constructed to measure sky radiance at diverse wavelength bands (visible spec-
trum and near infrared) across the whole hemisphere (Shields et al., 1998, 2003). Due
to the high-quality components involved, these imagers are often too expensive for
small research groups. Therefore, as a cost-effective alternative, a few research insti-15

tutions in several countries have developed non-commercial sky cameras for their own
requirements (Pagès et al., 2002; Seiz et al., 2002; Pfister et al., 2003; Souza-Echer
et al., 2006; Kalisch and Macke, 2008). In most cases an upward looking fisheye-
objective is used to image the whole sky with a field of view (FOV) of about 180◦.
Individual algorithms to automatically estimate cloud cover already exist for many of20

them (Pfister et al., 2003; Long et al., 2006; Kalisch and Macke, 2008). Automatic
cloud type recognition, however, is still under development and few papers have been
published on that subject.

In one prior study Singh and Glennen (2005) present an approach of cloud classifi-
cation for common digital images (without 180 FOV) to be utilized in air traffic control.25

Numerous features have been extracted and used to distinguish five different sky con-
ditions, but the authors acknowledge their results as modest. Another recent paper
(Calbó and Sabburg, 2008) introduces some possible criteria for sky-images to classify
eight predefinded sky conditions. Those features include statistical features, features

271

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/3/269/2010/amtd-3-269-2010-print.pdf
http://www.atmos-meas-tech-discuss.net/3/269/2010/amtd-3-269-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
3, 269–299, 2010

Automatic cloud
classification of

whole sky images

A. Heinle et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

based on the Fourier transform, and features that need the prior distinction between
clear and cloudy pixels. However, the classifier is based on a very simple classification
method and achieves an accuracy of only 62%. Other publications handle simpler is-
sues such as the estimation of cloud base height or the identification of thin and thick
cloudiness (e.g. Seiz et al., 2002; Kassianov et al., 2005; Long et al., 2006; Cazorla5

et al., 2008; Parisi et al., 2008). Parisi et al. (2008) in particular report that they were
not able to classify cloud type.

The objective of this study is the development of a fully automated algorithm clas-
sifying all-sky images in real-time with high accuracy. The cloud camera and the as-
sociated imager data are introduced in the following section. In Sect. 3 the features10

used to classify cloud types as well as the algorithm, a k-nearest-neighbor (kNN) clas-
sifier assigning the pre-processed images due to their feature vector to one of seven
different sky conditions, are presented. The performance and results of the algorithm
are discussed in Sect. 4, and Sect. 5 contains the summary and proposals for future
research.15

2 Data

2.1 Camera

The images used to develop the algorithm have been obtained by one of two cloud
cameras constructed to enable cost-effective continuous sky observations for research
associated with radiative transfer at the Leibniz Institute of Marine Sciences at the20

University of Kiel (IFM-GEOMAR). These all-sky imagers are based on commercially
available components and are designed to be location-independent and run during
adverse weather conditions, as one of them is primarily operating onboard a research
vessel. The basic component is a digital camera equipped with a fisheye lens to provide
a field of view larger than 180◦, enclosed by a water and weather resistant box. In25

order to obtain a high temporal resolution, the cameras are programmed to acquire
one image every 15 s, stored in 30-bit color JPEG format with a maximal resolution of
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3648×2736 pixel. As such, the images are rectangular in shape, but the whole sky
mapped is circular where the center is the zenith and the horizon is along the border
(spherical projection, see Fig. 1). More details about the cameras and their usage can
be found in Kalisch and Macke (2008).

2.2 Images5

For the development of the cloud type classification algorithm, images with a reso-
lution of 2272×1704 pixel, captured during a transit of the german research vessel
“Polarstern” (ANT XXIV/1) from Germany to South Africa in autumn 2007, are used
(Schiel, 2009). In the course of this expedition, different climate zones in several sea-
sons were crossed and therefore the acquired data covers a wide range of possible10

sky conditions and solar zenith angles.
To create an image set required for feature search and later training of the cloud type

classifier, we screened the complete data set and selected approximately 1500 all-sky
images from the 75 000 obtained onboard in total. The selection procedure focused on
temporal independence and uniqueness with respect to our pre-defined cloud classes15

(see next section). Furthermore, we insured that the final image set includes a large
variety of different cloud forms as well as images of different daytimes and consequently
different states of solar zenith angle.

The training set generated in this fashion, called TRAIN, contains about 200 inde-
pendent images per cloud class.20

3 Algorithm

In this section, the individual cloud classes are presented, followed by an introduction
to the methodology of the applied classifier, the kNN classifier. We then explain the
features integrated, as well as the feature selection method. The pre-processing of the
imager data is described as well.25
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3.1 Cloud classes

In contrast to other publications handling automated cloud classification, we used phe-
nomenological classes to be separated according to the International Cloud Classifica-
tion System (ICCS) published in Obasi (1987). Therein, ten genera are defined which
represent the basis of our classification. Based on visual similarity we combined some5

genera (altostratus and stratus, cirrocumulus and altocumulus, cumulonimbus and nim-
bostratus) to avoid systematical misclassifications. Aditionally, we merged the genera
cirrus and cirrostratus due to lack of available data showing the latter, as well as the
difficulty in detecting very thin clouds, such as some kinds of cirrostratus. Besides, it
must be noted that the class of clear sky includes not only images without clouds, but10

also images with cloudiness below 10%.
Despite these generalizations, the resulting classes (see Table 1) represent a suit-

able partitioning of possible sky conditions and are especially useful for radiation stud-
ies. In order to simplify the application of the cloud classes, each is labeled by an
individual identification number (see also Table 1).15

3.2 Classifier

To classify the images described in Sect. 2, the k-nearest-neighbor (kNN) is cho-
sen. This method is part of the supervised, non-parametric classifiers (Duda and Hart,
2001). “Supervised” means that the separating classes are known and a training sam-
ple is used to train the classifier. Non-parametric classifiers in general do not assume20

an a-priori probability distribution. Compared with other classifiers, the kNN method is
very simple (and therefore associated with only low computatitional costs) and simulta-
neously quite powerful (Serpico et al., 1996; Vincent and Bengio, 2001; Duda and Hart,
2001). Even in the specific field of cloud type recognition, some results for comparison
with linear classifiers and neural networks exist, underlining the high performance of25

kNN classifiers (Singh and Glennen, 2005; Christodoulou et al., 2003).
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kNN classifier : The assignment of an image to a specific class using kNN classifier is
performed by majority vote. After pre-processing, several spectral and textural features
are extracted from an image. In the next step, the computed and normalized feature
vector x is compared with the known feature vectors x

i of each element in the training
data by means of a distance measure, in our case the Manhattan Distance5

d (x,xi ) :=
dim∑
j=1

|xj −xi
j |. (1)

The class associated with the majority of the k closest matches determines the un-
known class. In the case that this majority is not unique, the training date with the
absolute smallest distance to the unknown image specifies the target class.

Complexity : The kNN classifier is often critizised for slow runtime performance and10

large memory requirements (in other words high time and space complexity, respec-
tively). The time complexity of an algorithm is a measure of how much computation
time is needed to run the algorithm and is thus dependent on the number of calculation
steps. In the case of image classification, this measure refers to the computational
expense in classifying an unknown image. Using the kNN classifier, all distances15

between the feature vector of this image and each of the n members of the training
sample are required for the calculation. These distances depend on the dimension of
the feature vector d and we get a total complexity of O(nd ) (here n=1497 and d =12).

Since kNN methods store a set of prototypes in memory once, the space complexity
of such an algorithm is O(nd ) as well.20

3.3 Pre-processing

To obtain suitable features for separating the defined classes, it is necessary to elimi-
nate some areas of the analysed raw images, as they are rectangular in shape but the
interesting part, the mapped sky, is circular. Due to varied camera locations, disrup-
tive factors like ship superstructures or towering edifices may also be mapped on the25
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image and should be excluded as well from further calculations. Additionally, analy-
ses showed that it is useful to segment the images into clear and cloudy areas before
calculating features.

Therefore, interfering regions are first excluded using a location dependent image-
mask. Afterwards the remaining area is divided pixel by pixel into clear and cloudy5

regions, utilizing their red and blue pixel values.
In a clear atmosphere (without aerosols), more blue than red light is scattered by

gas molecules, which is why clear sky appears blue to our eyes. In contrast, clouds
(containing particles like aerosols, water droplets and/or ice crystals) scatter blue and
red light to a similar extent, causing them to appear white or grey (Petty, 2006). There-10

fore, image regions with clear sky show relatively lower red pixel values compared to
regions showing clouds, and the ratio R/B may be used to differentiate these areas. A
separating threshold, whose exact value depends on both the camera used and pre-
vailing atmospheric conditions, has to be determined. Suitable values are discussed
in several papers handling cloud cover estimation (e.g. Pfister et al., 2003; Long et al.,15

2006). However, during the testing phase we noticed problems in detecting thick clouds
and classifying circumsolar pixels at the same time. Therefore we modified the crite-
rion and considered the difference R−B instead of the ratio R/B. Comparisons showed
that segmentation using such a difference threshold still results in minor errors, but
outperforms the ratio method. For our application the value R−B= 30 is optimal (see20

Fig. 2).

3.4 Features used

Out of numerous features tested (for example, features describing edge or color, fea-
tures considering the run-length of primitives, their quantity or frequency, or features
describing the texture of an image), we selected 12 features for application (see below).25

The choice of these features was based on their Fisher Distances F x
ij , a selection cri-

terion used in cloud classification work relating to satellite imagery (Pankiewicz, 1995).
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It is defined as

F x
ij :=

|µx
i −µx

j |

σx
i +σx

j

, (2)

where µi and µj are the means of feature x with respect to class i and j , σx
i , and σx

j the
corresponding standard deviations. The features best suited to separate the defined
classes are those which have the largest Fisher distances F x

ij . It should be noted,5

however, that the feature set chosen in this way has to guarantee the separation of all
classes. That means that features with smaller Fisher distances have to be included
in the final set as well, if they discriminate classes which are not separated by other
features with higher distances.

Most of the features are based on grey-scale images. Since the original data is10

provided in color, a partition into the three components R, G and B has to be performed
before the features can be calculated. A simple transformation provides the grey-scale
images, containing only the color information of one channel (R, G or B).

Spectral features: Spectral features describe the average color and tonal variation
of an image. In cloud classification they are useful to distinguish between thick dark15

clouds, such as cumulonimbus, and brighter clouds, such as high cumuliform clouds,
and to separate high and transparent cirrus clouds from others.

The spectral features implemented in the algorithm are the following:
Mean (R and B)

ME=
1
N

N−1∑
l=0

al , (3)20

Standard deviation (B)

SD=

√√√√ 1
N−1

N−1∑
l=0

(
al −MEj

)2, (4)
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Skewness (B)

SK=
1
N

N−1∑
l=0

(
al −MEj

SD

)3

, (5)

Difference (R−G, R−B and G−B)

Di j =MEi −MEj , (6)

where i ,j ∈ {R,G,B} and al denotes the grey value of pixel l ∈ {0,...,N−1}.5

In the brackets, R, G and B specify the color for which the individual feature is cal-
culated. Due to the color of the sky and the different translucency of clouds, the color
component B has the highest separation power. Thus most features are calculated for
the grey-scale image containing the B color information.

Spectral features like the ones above support a division of cloud classes, but con-10

sidering only those is not sufficient. They do not provide information about the spatial
distribution of color in an image. In most issues of pattern recognition and particularly
in cloud type recognition, however, this distribution is equally significant. For example,
images showing cumulus clouds and others showing altocumulus or stratocumulus
clouds have similar mean color values and cannot be separated with those features.15

On the other hand, their spatial distribution of color is quite different, and other kinds of
features can be added to separate those cases.

Textural features: To describe the texture of an image, statistical measures computed
from Grey Level Co-occurrence Matrices (GLCM) may be used. A GLCM is a square
matrix for which the number of rows equals the number of grey levels in the considered20

image. Every matrix element represents the relative frequency P ∆(ab) that two pixels
occur, separated in a defined direction by a pixel distance ∆= (4x,4y), one with grey
value a and the other with grey value b. To avoid dependency on image orientation,
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an average matrix is often calculated out of two or four matrices, expressing mutually
perpendicular directions. Furthermore, because the computation of GLCMs strongly
increases with increasing number of intensity levels G, it is advantageous to reduce the
original number (G =256) of grey levels.

The textural features used in this study are the following four of 14 statistical mea-5

sures proposed by Haralick et al. (1973), computed from an average GLCM with pixel
distance ∆= (1,1):
Energy (B)

EN=
G−1∑
a=0

G−1∑
b=0

P ∆(a,b)2 (7)

The energy shows the homogenity of the grey level differences.10

Entropy (B)

ENT=
G−1∑
a=0

G−1∑
b=0

P ∆(a,b) log2 P ∆(a,b) (8)

The entropy is a measure of randomness of grey level differences.
15

Contrast (B)

CON=
G−1∑
a=0

G−1∑
b=0

(a − b)2 P ∆(a,b) (9)

Contrast is a measure of local variation of grey level differences.

Homogenity (B)20

HOM=
G−1∑
a=0

G−1∑
b=0

P ∆(a,b)

1 + |a − b|
. (10)
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The homogenity reflects the similarity of adjacent grey levels.
Cloud cover : In addition to the features described above, we computed the cloud

cover (CC): Cloud cover

CC :=

∑Nbew

k=0 bk∑N
l=0al

(11)

CC is a measure of the average cloudiness, and for example stratiform clouds could5

be well distinguished from other sky conditions using this feature.
For each pre-classified image in the training sample TRAIN we computed the fea-

tures presented above and stored them with their assigned cloud class. Since the
kNN classifer chooses the target class of an unknown image based on its distance in
the feature space to the training images and the features differ in their value ranges,10

we normalized the features to the interval [0.100]. This ensures that all features are
equally weighted in the decision process.

4 Results and discussion

In this section we describe the methodology used to estimate the performance of the
created algorithm as well as to optimize the included parameters and the respective15

results are discussed. Afterwards, an additional test sample of random images is pre-
sented to assess the performance of the algorithm in classifying more ambiguous im-
ages.

The algorithm was implemented in IDL and tested on an Intel Celeron 530 with
1.73 GHz and 512 MB RAM. For one image it took about 1.3 s to return the classifi-20

cation result.
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4.1 Methodology of performance estimation

To estimate the performance of the selected features and the created algorithm we
applied the Leave-One-Out Cross-Validation (LOOCV). Cross-validation methods in
general have the advantage that they reuse the known training sample to estimate
the capability of an algorithm, nevertheless being unbiased, instead of needing an5

additional test sample (Ripley, 2005). Therefore, they are often used for validation
or feature selection in the area of pattern recognition. In cloud type recognition the
LOOCV has been applied by e.g. Tag et al. (2000) or Bankert and Wade (2007).

LOOCV : From a training sample T , one single element t is removed and the algo-
rithm is trained with the remaining data (T − t). Then the element excluded, which is10

independent from the data used for training, is classified. This is repeated n times,
where n is the number of elements in T , such that each element in the training sample
is used for validation exactly once. The average number of correctly classified elements

CV=
|{t ∈ T | t is classified correctly}|

n
(12)

is finally used as measure of performance.15

First results: The results of the first LOOCV performed are given in Table 2. All
features were equally involved in the classification process and the parameter k, the
number of considered neighbours (see Sect. 3.2), was set to 3 as a first guess. We
see an overall accuracy of about 96%, where the class clear shows the best classifi-
cation results with 98.8%. Confusions of these class primarily exist with cirrus clouds20

and also rarely with cumulus clouds in case of low cloudiness. This is caused by thin
and transparent parts of cirrus clouds which cannot be detected by the algorithm. Con-
sequently, such images are classified as clear sky. Moreover, the so-called “whitning
effect” provides a missclassification of cloud free pixels near the solar disk. Such pixels
are often whiter and brighter than the rest of the hemisphere due to forward scattering25

by aerosols and haze (see Fig. 3, left) and therefore interpreted as thin clouds by the
algorithm (see also Long et al., 2006).
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Most of the remaining cloud classes show accuracies of about 96% or 97%, except
for the cumulus class and the class of high cumulus. Both have slightly lower hit ratios
due to confusions among themselves which is caused by the difficulty in distinguishing
those two classes. They differ only in the size of the individual cloudlets for which no
clear boundary exists, so that a discrimination can be extremely difficult.5

The next remarkable errors occur between stratocumulus, stratus and the class of
thick clouds. Some cases of stratocumulus are classified as stratus, some images
showing stratus are assigned to those showing thick clouds and, in turn, images with
thick clouds are sometimes classified as stratocumulus. These confusions, however,
are well understood. All three classes occur frequently as transitional forms from one in10

the other and the automatic classification of such images could differ from the manual
preclassification.

Also, missclassification of some images displaying stratus and thick clouds appear to
be caused by raindrops on the camera protecting dome (see Fig. 3, right). The drops
are naturally also mapped on the images and lead to texture feature values similar to15

those representing patchy altocumulus and cirrocumulus.
Apart from these errors, the first results, based on the guess of using 3 nearest

neighbours, are quite good. However, we wanted to see if the performance of the
algorithm could be improved by using another value of k or by weighting the individual
features.20

Improved results: For the LOOCV discussed above, all features were equally
weighted. To assess whether improvements can be achieved by varying the impact
of the individual features, we added a weight vector and ran the LOOCV for different
configurations of this vector. Furthermore, because k, the number of neighbours con-
sidered, is a variable parameter, the LOOCV has also been carried out for different25

values of k.
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Table 3 presesents overall accuracies for k = 3 and k = 5 using the weight vectors
w y , defined by

w y (i ) :=
{
x, if i = y
1, if i 6= y

, (13)

i ∈ {1,...,12}. In other words, feature y is weighted x-times, whereas the others are
weighted once. As can be seen in Table 3, k = 3 superpasses k = 5 for all weights.5

Furthermore, weighted features appear to have certain potential to improve the clas-
sification rate. The best performance in our analyses realized the following weight
vector: EN, ENT, CON, MER , MEB, DRG, SD, SK and CC are rated once, HOM and
DRB are weighted twice and DGB is counted three times, which indicates that a dis-
tinction between the cloud classes defined in this study is most feasible by utilizing the10

sky homogenity and the sky color. The analyses also showed that values of k > 3, in
general, yield continuously decreasing performance. Thus, our first guess, the value
k =3, was confirmed to be the best choice.

Table 4 displays the confusion matrix of the LOOCV for k =3 using the weight vector
presented above. Compared to the first result (without weighted features), the overall15

performance raises to 97.1%. In particular, the hit rates of classes 1, 2, 3 and 7 in-
crease, whereby the cumulus class improves by almost 3%. The rate of class 4, the
class of clear sky, remains the same and the accuracy of classes 5 and 6 decrease
slightly due to more confusion between the last three classes compared to the first
results.20

4.2 Random test sample

In addition to the evaluation using the LOOCV, we tested the algorithm with an addi-
tional random data sample, called TEST, to point out the problems occuring by classify-
ing images not necessarily showing one unique cloud class or containing interferences
like dust (see Fig. 4).25
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From the data obtained on board “Polarstern” during ANT XXIV/1 (see Sect. 2.2)
a set of 275 images was randomly selected, covering all cloud classes as defined in
Table 1. We manually classified each of them in one unique cloud category, even if the
assignment was disputable. Consequently, differences in the classification results of
the algorithm compared to this manual “reference classification” are unavoidable and5

a certain bias has to be accepted.
Results: Table 5 shows the corresponding hit rates. Compared to the accuracies

achieved by the LOOCV we see a decrement of the mean classification rate from
97.06% to 74.58%, where the rate of the class stratocumulus is decisive. In rela-
tion to the manual classification, only 41.30% of these images are correctly classified.10

The remaining images are assigned to altocumulus clouds or stratus clouds, types of
misclassification already noted in Sect. 4.1 and in general difficult to avoid. Looking
at the corresponding images reveals that they display primarly clouds in transition and
the result of the algorithm is thus accurate. Moreover, for usage in radiative transfer
studies such mismatches, as well as some other misclassifications like confusions be-15

tween cumulus and altocumulus clouds, can be considered as “permissible” errors due
to similar impact on radiation (Rossow and Schiffer, 1991).

If we look as a next step only at “serious” errors in regards to radiation analyses, what
means, the confusions furthermore regarded as misclassifications are those of clouds
differing significantly in their impact on radiation (e.g. cirrus and stratus clouds), we20

obtain another result. The corresponding hit rates are constituted in Table 6, in which
misinterpretations of cumulus clouds as thick clouds and those of high cumulus clouds
as cirrus clouds are excluded as well since the involved images are marginal cases
and an assignment to both cloud classes is acceptable. Here, the random sample
TEST yields an overall classification rate of 87.52%. The main part of the remaining25

misclassifications are confusions between cumulus clouds, cirrus clouds and clear sky.
Checking again the corresponding images shows that without exception each of them
displays less than 0.3% cloudiness, indicating that this may be the source of error.
Another few confusions occur between images showing high cumulus, stratus or thick
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clouds. Once more, the respective images are marginal cases and each of these
assignments is acceptable.

5 Summary and conclusions

In this study, we presented an automatic method to classify simple digital images in
cloud classes similar to the genera of the international cloud classification. We have5

shown that the distinction of these generas is possible using only first and second order
statistic features, at least in combination with knowledge of the actual cloudiness.

Considering obviously assignable images, the classes best recognized by the the
kNN-algorithm are clear sky and cirrus. If ambiguous images are permitted to the clas-
sification process as well, some more confusions appear between these two classes10

due to the whitening effect presented in Sect. 4. An approach already tested in the
process of our study to avoid this error caused by the misinterpretation of pixels near
the sun is the determination of the position of the solar disk and its removal. This can
be accomplished by use of geometrical features, the knowledge of time and location
when the image is taken or the inspection of time series (if a “cloud” does not move,15

this “cloud” is likely to be the area around the visible sun). In case, the solar disk is
displayed in an image, the pixels around could be excluded geometrically from further
calculations or by use of an additional treshold.

Another remarkable error, the confusion between cirrus and cumulus clouds, occurs
primarily in the case of cloudiness amounts less than 0.3%. It is conceivable that here20

a hierarchical classification process may lead to improvements. After a first division
according to cloudiness, the further assignment to a cloud class, especially to one of
these classes, might be more evident.

The remaining classes are recognized quite well. Some more confusions exist be-
tween cumulus and high cumulus clouds due to their similarity in color and smooth25

transition in definition. Also confusions occur between the last three classes, stratocu-
mulus, stratus and thick clouds. The reason is the frequently changeover from one to
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another class, a natural phenomenon that will always lead to some misclassifications
of these classes using automatic methods.

One further problem, not visible in the results of the LOOCV, but occuring in the anal-
ysis of random data, is the incorrect class assignment due to simultaneous appearance
of more than one predefined cloud class. In nature, the sky often provides a wide spec-5

trum of different cloud types at the same time, e.g. cirrostratus and stratocumulus or
cirrus and cumulus frequently occur together. In order to avoid missclassifications
due to this phenomenon, we suggest an initial partitioning of the images into smaller
subimages and their separate classification. However, it is important to check if these
subimages still include enough information to assign the image parts to a cloud class.10

We are convinced that by use of the suggestions elucidated above and thus, an elim-
ination of errors caused by questionable images, an improvement of the algorithm is
possible. Moreover, other, not mentioned features also may lead to an increasing of the
algorithm’s performance. However, the algorithm here presented is already quite pow-
erful and suitable for research purposes. For example, at the Meteorological Institute15

of IFM-GEOMAR in Kiel the implemented algorithm is currently in use and available for
people interested.

Acknowledgements. We kindly acknowledge support in the data analysis and in making the sky
imager data available by John Kalisch. We thank Andreas Wassmann, Yann Zoll and the crew
of RV Polarstern cruise ANT XXIV/1 for performing and enabling the sky imager measurements20

used in this study. Moreover, we thank C. Patvardhan from the Dayalbagh Educational Institute
(Abrag, India) as well as Jaroslaw Piwonski from the Institute of Computer Science (University
of Kiel) for ideas to improve the algorithm.

286

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/3/269/2010/amtd-3-269-2010-print.pdf
http://www.atmos-meas-tech-discuss.net/3/269/2010/amtd-3-269-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
3, 269–299, 2010

Automatic cloud
classification of

whole sky images

A. Heinle et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

References

Bankert, R. L. and Wade, R. H.: Optimization of an instance-based GOES cloud classification
algorithm, J. Appl. Meteorol. Clim., 46, 36–49, 2007. 281
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Long, C. N., Sabburg, J., Calbó, J., and Pagès, D.: Retrieving cloud characteristics from ground-

based daytime colorall-sky images, J. Atmos. Ocean. Tech., 23, 633–652, 2006. 271, 272,
276, 281

Obasi, G. O.: International Cloud Atlas, Vol. 2, WMO, 1987. 27430

287

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/3/269/2010/amtd-3-269-2010-print.pdf
http://www.atmos-meas-tech-discuss.net/3/269/2010/amtd-3-269-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
3, 269–299, 2010

Automatic cloud
classification of

whole sky images

A. Heinle et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion
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Table 1. Classes to be distinguished.

Label Cloud genera according to WMO Description

1 Cirrus & Cirrostratus Cirrus clouds, wisplike or
sky covering, whitish, thin

2 Cirrocumulus & Altocumulus High patched clouds of small cloudlets,
mosaic-like, white

3 Stratocumulus Low or mid-level, lumpy layer of clouds,
broken to almost overcast, white or grey

4 Cumulus Low, puffy clouds with clearly defined edges,
white or light-grey

5 Cumulonimbus & Nimbostratus Dark, thick clouds, grey,
mostly overcast

6 Stratus Low or mid-level layer of clouds, uniform, grey,
usually overcast

7 Clear sky No clouds and cloudiness below 0.1%
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Table 2. Confusion matrix of CV for equally involved features in %.

True Classified as CV
class 1 2 3 4 5 6 7

1 93.73 1.57 4.31 0.39 0.00 0.00 0.00
2 0.72 97.13 1.07 1.07 0.00 0.00 0.00
3 2.49 1.93 95.30 0.00 0.28 0.00 0.00
4 0.00 1.20 0.00 98.80 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 96.43 3.57 0.00
6 0.00 0.00 0.94 0.00 0.00 96.23 2.83
7 0.00 0.00 1.84 0.00 1.38 0.00 96.77 96.13

291

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/3/269/2010/amtd-3-269-2010-print.pdf
http://www.atmos-meas-tech-discuss.net/3/269/2010/amtd-3-269-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
3, 269–299, 2010

Automatic cloud
classification of

whole sky images

A. Heinle et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 3. Overall accuracy for k = 3 (top) and k = 5 (bottom) for the LOOCV using weighted
features according to w y = (1,1,....,x,..,1) in %. That means, feature y is weighted x times as
often as the others.

k=3 EN ENT CON HOM MER MEB DRG DRB DGB SD SK CC

x
2 96.1 95.9 96.1 96.2 96.1 96.1 96.0 96.3 96.6 96.0 95.5 96.1
10 94.6 93.3 92.3 94.9 93.3 93.5 95.5 94.8 95.5 94.5 93.9 94.8
20 92.7 91.3 89.0 93.5 90.8 91.9 93.3 92.7 93.9 93.0 91.9 92.8

1 96.1

k=5 EN ENT CON HOM MER MEB DRG DRB DGB SD SK CC

x
2 95.1 95.0 95.0 95.3 95.1 95.1 95.4 95.4 95.7 95.1 94.7 95.3
10 93.1 92.1 92.3 94.3 91.9 92.9 94.3 93.9 94.6 92.9 93.0 93.4
20 90.6 89.5 88.7 91.5 89.7 91.2 91.8 91.2 92.1 91.2 91.2 92.1

1 95.3
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Table 4. Confusion matrix of CV for optimal weighted features in %.

True Classified as CV
class 1 2 3 4 5 6 7

1 96.47 1.18 1.96 0.39 0.00 0.00 0.00
2 0.72 98.57 0.36 0.36 0.00 0.00 0.00
3 1.93 1.66 96.41 0.00 0.00 0.00 0.00
4 0.00 1.20 0.00 98.80 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 95.54 3.57 0.89
6 0.00 0.00 0.00 0.00 1.89 94.34 3.77
7 0.00 0.00 1.84 0.00 0.46 0.00 97.70 97.06
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Table 5. Confusion matrix of the random sample TEST (275 images) in % and absolute.

True Classified as Mean
class 1 2 3 4 5 6 7

1 67.44 (58) 16.28 (14) 15.12 (13) 0.00 0.00 0.00 1.16 (1)
2 5.88 (2) 79.41 (27) 0.00 14.71 (5) 0.00 0.00 0.00
3 10.94 (7) 3.13 (2) 81.25 (52) 0.00 1.56 (1) 3.13 (2) 0.00
4 5.88 (1) 17.65 (3) 0.00 76.47 (13) 0.00 0.00 0.00
5 0.00 0.00 32.61 (15) 0.00 41.30 (19) 26.09 (12) 0.00
6 0.00 0.00 9.52 (2) 0.00 0.00 90.48 (19) 0.00
7 0.00 0.00 14.29 (1) 0.00 0.00 0.00 85.71 (6) 74.58
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Table 6. Confusion matrix of the random sample TEST (275 images) for serious errors in %
and absolute.

True Classified as Mean
class 1 2 3 4 5 6 7

1 83.72 (72) 16.28 (14) 0.00 0.00 0.00 0.00 0.00
2 5.88 (2) 79.41 (27) 0.00 14.71 (5) 0.00 0.00 0.00
3 0.00 0.00 96.87 (62) 0.00 0.00 3.13 (2) 0.00
4 5.88 (1) 17.65 (3) 0.00 76.47 (13) 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 100.00 (46) 0.00 0.00
6 0.00 0.00 9.52 (2) 0.00 0.00 90.48 (19) 0.00
7 0.00 0.00 14.29 (1) 0.00 0.00 0.00 85.71 (6) 87.52
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Fig. 1. An example of all-sky images used for training (02 November 2007, 12:48 UTC).
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Fig. 2. Segmentation for optical thick clouds (top) and clear sky (bottom) using a treshold of
R/B=0.8 (middle) and a treshold of R−B=30 (right).
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Fig. 3. Misclassification of clear sky caused by the “whitening effect” (left) and missclassification
of stratus due to raindrops (right).
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Fig. 4. Image showing cirrus and cumulus clouds (04 November 2007, 09:39 UTC) (left), image
showing clear sky during a dust event (08 November 2007, 13:40 UTC) (right).
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