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Abstract. The remote sensing technique, total column differ-
ential absorption LiDAR (TC-DIAL) has been proposed in a
number of feasibility studies as a suitable method for making
total column atmospheric CO2 measurements from space.
Among the sources of error associated with spaceborne TC-
DIAL retrievals is an undefined modulation of the received
signals resulting from the variability in the Earth’s surface
reflectance. This source of uncertainty is investigated from a
satellite perspective by the application of a computer model
for TC-DIAL instruments. The Earth’s surface reflectance
properties are simulated using a BRDF function modified to
account for the hot spot effect and parameterised by 500 m
resolution MODIS BRDF parameter data. Downscaling is
applied to the MODIS reflectance variability to represent the
spatial scale of TC-DIAL viewing geometry. Landsat 7 radi-
ance images at 30 m resolution are used to provide the higher
resolution data required for the downscaling process. The
modelled TC-DIAL system definition is based on a configu-
ration similar to the proposed ESA A-SCOPE mission, and
the surface regions simulated are specific areas of agriculture
in the US, England, France and the Czech Republic. Spa-
tial integration is applied directly to the retrievals of individ-
ual soundings by the calculation of the retrievals arithmetic
mean over 50 km surface intervals. The results from all data
sets considered indicate a retrieval bias of around 0.24 ppm
which varies significantly between regions.

1 Introduction

Carbon dioxide (CO2) is a naturally and anthropogenically
occurring greenhouse gas in the Earth’s atmosphere whose
concentration has increased over the last 200 years by ap-
proximately 30% (Keeling et al., 1995). Measurements ob-
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tained from ice cores provide an historical account of atmo-
spheric CO2 concentrations as far back as 650,000 years,
and via comparison with modern in-situ measurements it
has been shown that the atmospheric CO2 concentration is
now over 90 ppmv higher than it has ever been in that time
(Siegenthaler et al., 2005). The recent and sudden growth ob-
served has been attributed to anthropogenic activities such as
the burning of fossil fuels, cement production and land-use
change (IPCC, 2007).

Predicting the effect of increased CO2 levels on the cli-
mate requires improved understanding of the terrestrial pro-
cesses that control carbon fluxes, as well as any potential
feedback mechanisms on these processes which may develop
as a consequence of climate change (Sarmiento and Gru-
ber, 2002). Tighter constraints on transport models which
at present are only capable of calculating fluxes on continen-
tal scales are required (Gibert et al., 2004). To better con-
strain the present models more observations are needed on a
global scale to supplement the sparsely located in-situ mea-
surement networks. Satellite remote sensing has been shown
to provide the denser sampling required by inversion model-
ing and an improvement in flux estimation may be achieved
if the precision of total column measurements averaged over
monthly time scales on an 8◦x10◦ footprint is less than 2.5
ppmv (Rayner and O’Brien, 2001). There are a number of
satellite instruments at present measuring CO2 from space
including the SCIAMACHY instrument on board the ESA
ENVISAT satellite (Bovensmann et al., 1999), the AIRS in-
strument onboard the NASA AQUA satellite (Gautier et al.,
2003), the IASI instrument onboard the METOP-A satellite
(Chalon et al., 2001) and the GOSAT instrument launched
by JAXA in January 2009 (Hamazaki et al., 2005). Whilst
some of these systems may have shown the potential to meet
the required spatial coverage and precision to improve flux
estimates on continental scales (Barkley et al., 2006; Buch-
witz et al., 2006), they also have limitations. In particular
passive measurements which use the short wave infrared are
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limited by their reliance on solar illumination which restricts
their latitudinal coverage, and thermal infrared systems are
not sufficiently sensitive near the ground where the largest
fluxes occur. Furthermore, passive remote sensing systems
involve retrieval complexities which suffer from aerosol con-
tamination and radiation path length uncertainties.

Active remote sensing techniques such as total column dif-
ferential absorption LiDAR (TC-DIAL) offer an alternative
without some of these sources of uncertainty and has been
the focus of recent papers and feasibility studies (Amediek et
al., 2009; Dufour and Breon, 2003; Ehret et al., 2008; Ehret
and Kiemle, 2005; Gibert et al., 2004; Loth et al., 2005; Is-
mail et al., 2004). Many TC-DIAL advantages over current
passive remote sensing systems are a product of its use of
pulsed (active) radiation. The path length of the returned
pulses may be determined via the time between their trans-
mission and reception, measurements can be made equally
well at all latitudes both day and night, and by using a differ-
ential retrieval method, aerosol and thin cloud interference is
avoided. These advantages make TC-DIAL a flexible CO2

measuring technique capable of diurnal sampling with po-
tential for near-surface sensitivity and therefore an attractive
supplement to the current measurement systems (Loth et al.,
2005). At present there are no CO2 TC-DIAL instruments in
space, however breadboard demonstrators and aircraft cam-
paigns are being carried out to develop the technology for
space application, e.g. (Amediek et al., 2009).

The principle of TC-DIAL is the differential retrieval of
scattered intensities from two laser transmissions of similar
wavelengths known as the on and off-line pulses. The on-line
pulse frequency is very strongly absorbed by CO2 whereas
the off-line pulse frequency is very weakly absorbed by CO2

(Figure 1). Although the two transmissions have very dif-
ferent absorption cross sections they are closely situated in
frequency space to minimise any differences in their aerosol
and water vapour interactions.

Fig. 1. Diagrammatic representation of a satellite based DIAL mea-
surement showing four soundings within an integration interval.
The two transmissions which make up a single measurement are
closely located but do not completely overlap

Two spectral lines have been identified as particularly

appropriate for CO2 DIAL using temperature sensitivity,
strength and interference from other atmospheric species as
selection criteria (Loth et al., 2005). The two lines identi-
fied were 4875.748957 and 6367.223459 cm−1. The signal
returned to the detector with which a CO2 measurement is
made is reflected from aerosols, cloud and the Earth’s sur-
face. For TC-DIAL only the latter applies by definition, how-
ever instruments which operate by this principle may also be
able to use backscatter from clouds to retrieve above cloud
CO2 if the clouds are optically thick. The measurement pair
consisting of the on-line and off-line returned intensities is
used in a simple retrieval equation to calculate the volume
mixing ratio (VMR) (Ehret et al., 2008) (equations 1 to 3).

NCO2 =
∆τ∫ Sat

Surf
ν(l) dl

, (1)

∆τ =
1
2

ln
(
Soff
Son

)
, (2)

ν(l) =
[
P (l)
kT (l)

.
1

1 + ρw(l)

]
(σon(l)− σoff (l)) , (3)

where NCO2 is the CO2 VMR, ∆τ is the differential total
column optical depth, Son and Soff are the received on and
off line intensities respectively, k is the Boltzmanns constant,
T is the atmospheric temperature, P is the atmospheric pres-
sure, ρw is the atmospheric water vapour concentration, σon
and σoff are the absorption cross sections for the online and
offline pulses respectively and l is the orbital altitude.

The received intensities Son and Soff provide the only
information available to the TC-DIAL retrieval regarding
the probed volume of atmosphere. Any modulation in the
ratio of their intensities which does not arise from atmo-
spheric CO2 absorption creates errors in the differential opti-
cal depth. One such source of modulation is signal sensitivity
to variations in the Earth’s surface reflectance caused by im-
perfect surface footprint co-location (see Figure 1).

The co-location ambiguity present in each sounding is a
consequence of two independent factors. Firstly, laser point-
ing jitter within the spacecraft generates random offsets in
the relative positions of the on and off-line footprints lead-
ing to an overlap geometry which varies with each sounding.
Secondly, a time delay between the on and off-line transmis-
sions results in a predictable forward footprint separation ow-
ing to the satellites orbital velocity. The delay is designed
to avoid significant Son and Soff modulation which would
arise through the simultaneous detection of multiple pulses.

This paper investigates the uncertainties incurred by the
surface reflectance variability on TC-DIAL retrievals over
agriculture in the US, England, France and the Czech Re-
public. A LiDAR model configured with the instrument and
satellite specifications is given in Table 2.

The methods and results are compared to those from work
by Amediek et al. (2009), in which the problem of surface
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reflectance variability on TC-DIAL retrievals has also been
investigated (Amediek et al., 2009). A fundamental differ-
ence between these papers is the method by which the TC-
DIAL viewing geometry is achieved. Amediek et al. (2009)
tackled a viewing geometry under sampling problem by up-
scaling narrow swath, high resolution airborne LiDAR mea-
surements to full scale TC-DIAL surface footprints. In con-
trast, this work uses lower resolution spaceborne data which
is downscaled to simulate the TC-DIAL viewing geometry.
Both methods use assumptions and some level of interpola-
tion to obtain realistic results and therefore their agreement
is desirable.

2 Methodology

The Leicester LiDAR model (LLM) is a computer simulation
of physical processes associated with pulsed TC-DIAL sys-
tems, including interactions with aerosols, absorbing media
and the Earth’s surface. The LLM is linked with a low Earth
orbit simulator for nadir pointing laser systems which defines
the position in space and time of each TC-DIAL sounding.

2.1 Model Surface

The surface interaction is modeled using a bi-directional re-
flectance distribution function (BRDF) which is modified to
account for the hot spot effect and DIAL viewing geom-
etry (Equation 4). The parameterisation for the function
comes from the 500 m resolution MODIS BRDF data prod-
uct MCD43A1.5 (Strahler et al., 1999), which for the present
study required a co-addition of three data sets for cloud clear-
ing purposes. The dates used were the 5th, 15th and 25th of
May 2007. The MODIS MCD43 product has been shown to
have an RMS error of 0.0130 (equivalent to <5%) from con-
tinuous field observations of surface albedo at a number of
measurement locations (Salomon et al., 2006).

R(θ, ψ, φ,Λ) = fiso(Λ) + fvol(Λ)Kvol(θ, ψ, φ)
+fgeo(Λ)Kgeo(θ, ψ, φ) (4)

The BRDF model used is a sum of three parameters (Rou-
jean et al., 1992), fiso, fvol and fgeo, which combine to give
surface reflectivity R. Two of the parameters have associated
kernels, the volumetric kernel Kvol and the geometric ker-
nel Kgeo which provide the BRDF’s directional components
(Wanner et al., 1995).

The volumetric kernel (equation 5) is modified to account
for the hot-spot effect (Maignan et al., 2003), a characteristic
of DIAL transmission and viewing geometry (Equation 7).

Kvol =
4

3π

[
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]
.[
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((π
2
− ξ
)

cos ξ + sin ξ
)]
− 1

3
, (5)

where,

cos ξ = cos θs cos θv + sin θs sin θv cosφ, (6)

Fhs =
(

1 +
1

1 + ξ/0.03

)
, (7)

θs is the illumination azimuth angle, θv is the viewing az-
imuth angle, and φ is the illumination zenith angle.

The geometric kernel is given as

Kgeo = O(θ, ψ, φ)− sec θ′ − secψ′ +
1
2

(1 + cos ξ) sec θ′ secψ′), (8)

where,

O =
1
π

(t− sin t cos t)(sec θ′ + secψ′), (9)

cos t =
1
π

√
D2 + (tan θ′ tanψ′ sinφ)2

sec θ′ + secφ′
, (10)

D =
√

tan2 θ′ + tan2 ψ′ − 2 tan θ′ tanψ′ cosφ, (11)

θ′ = tan−1 (tan θ) , (12)

ψ′ = tan−1 (tanψ) . (13)

The result of applying the BRDF model is a global surface
reflectance map at 500 m resolution in units of sr−1. An
example is given over Europe in Figure 2.

Fig. 2. Surface reflectance map over Europe generated by the Le-
icester LiDAR Model at 500m resolution
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2.2 Resolution scaling

The resolution of the MCD43 product imposes limitations on
the models representation of the surface reflectance variabil-
ity on the scale of TC-DIAL viewing geometry. Variations in
reflectance are expected to be observed over less than 50 m in
this study, yet the MODIS data product provides an average
figure over 500 m. To compensate a scaling factor is derived
from higher resolution data to mediate the gap between the
MODIS resolution and that of the reflectance variability ob-
served by a spaceborne TC-DIAL instrument.

Landsat 7 radiance data at 30 m spatial resolution are used
to provide the required higher resolution surface reflectance
scenes. The Landsat 7 instrument is a sun-synchronous scan-
ning radiometer with an equatorial overpass of between 10
and 11 am local time. A consequence of the Landsat orbit
is the solar zenith angle of the recorded scenes is sufficiently
low to produce shadowing in the data from tall objects on the
surface. To avoid biases in deriving the magnitude of surface
reflectivity from this data the scenes selected must avoid all
significant shadow producing objects such as tall buildings,
forests and cliffs. Rural agriculture on flat land is a surface
type which is sufficiently shadow free for the purpose of this
study as obstructions such as trees and hedge rows are suffi-
ciently short and sparse to be of substantial significance.

Careful vetting of the Landsat radiance data removes ar-
eas of settlements, forestry and any cloud obscuration within
the scenes. Aerosol contamination is corrected for using the
computer software ENVI.

The TC-DIAL viewing geometry of the on and off-line
transmissions creates two closely overlapping circles of laser
light on the surface. The energy across the footprints is
distributed as symmetrical 2 dimensional Gaussian distribu-
tions. This non-linearity in the spatial energy density of the
laser light allows variations in surface reflectance at any point
within the footprints to cause CO2 retrieval ambiguities. The
scaling factors for the various agricultural scenes are derived
with this viewing geometry in mind.

Each 120 km2 Landsat agricultural scene is divided up into
57,600 individual 500 m MODIS pixel sized areas (MPAs).
The 256 complete 30 m Landsat samples that occur within
each of the MPAs are averaged to simulate the reflectance
observed by individual 500 m resolution measurements. The
variability in the surface reflectance at 500 m resolution is
simulated by calculating the relative difference of two verti-
cally adjacent MPAs.

An arrangement of Landsat samples within each MPA pair
is selected by a Landsat arrangement template (LAT). The
template is set out to best match the footprint areas of the TC-
DIAL viewing geometry. Two LAT’s of equal dimensions
are defined to simulate the on and off-line transmissions with
one positioned a single Landsat pixel higher than the other to
simulate a 30 m footprint separation distance. Each LAT is
multiplied by a 2 dimensional Gaussian weighting function
to account for the power distribution across the footprints.

Fig. 3. Landsat 7 reflectance data for two vertically adjacent
MPAs with a single TC-DIAL viewing geometry LAT highlighted
in colour

The Gaussian weighted LAT pairs are moved around
within each MPA pair to all 324 possible positions. The re-
flectance difference within each pair is recorded to produce
the higher resolution data (Figure 3). This process is carried
out for all 28,800 MPA pairs and the difference between the
variability observed by the MPAs and that of the higher res-
olution LAT’s within the MPAs provides the scaling factors.

The scaling factors derived using the Landsat resolution
are limited to having a minimum footprint separation dis-
tance of 30 m, however it is expected that the separation dis-
tance of a TC-DIAL system will be no more than approxi-
mately 10 m. Two methods of compensation have been con-
sidered to reduce the footprint overlap from 30 m to 10 m
within the confines of the available resolution.

The first method uses data from (Amediek et al., 2009),
whose TC-DIAL aircraft campaign included a study into the
effect of footprint separation distance on the observed sur-
face reflectance. The study involved upscaling approaches to
increase the footprint size from their airborne TROPOLEX
system to that of a spaceborne system. They indicated a
factor of approximately 3.5 for the difference observed in
surface reflectance between footprints 10 m apart and 30 m
apart. Their spaceborne system had an assumed footprint di-
ameter of 100 m and consequently the variability reduction
factor is only directly applicable to this diameter. Unfortu-
nately the 30 m scaling factors generated by the LLM use a
footprint diameter of 150 m to coincide better with the Land-
sat resolution. In the absence of further information it is
assumed that upscaling the diameter of the footprints from
100 to 150 m will have relatively little effect on the variabil-
ity reduction factor as both footprints will scale equally with
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the same separation distance. The reduction factor of 3.5 is
therefore used to generate a series of scaling factors which
are presented alongside the standard 30 m scaling factors in
table 1.

The second method uses linear interpolation between
Landsat pixels to allow one of the LATs to shift by only a
1/3 of a pixel as opposed to a whole pixel. This allows the
second footprint to be displaced by only 10 m from the first.
In a similar sense to the first method this too is carried out
in the absence of higher resolution surface reflectance data,
and the generated scaling factors are presented alongside the
standard 30 m scaling factors in Table 1.

2.3 Reflectance variability

To accommodate the resolution scaling factor F , the surface
reflectance for each on and off-line footprint is calculated us-
ing equations 14, 15 and 16.

Son = Ron

(
A

l2

)
, (14)

Soff = (Ron + V F )
(
A

l2

)
, (15)

V = Roff −Ron. (16)

Son and Soff are unitless surface reflectance values used
by the LLM to define the quantity of returning laser light
from the surface to the detector. Ron and Roff are the simu-
lated laser intensities reflected back from the surface in units
of sr−1. A and l are the receiver mirror area and orbital al-
titude respectively which form the solid angle between the
surface and the satellite. F is a scaling factor defined to
account for the TC-DIAL viewing geometry and its spatial
resolution difference to the surface reflectance data, and V is
the surface reflectance variability between vertically adjacent
MODIS data points in units of sr−1.

2.4 Model Spectroscopy

To determine the consequence of surface reflectance variabil-
ity on a CO2 VMR retrieval, correct spectroscopy and real-
istic atmospheric profiles are required. For this purpose the
LLM uses spectral line shape calculations based on HITRAN
2008 line centres and associated parameters to define the po-
sition and behaviour of the relevant spectral lines (Lafferty et
al., 2009).

A convolution algorithm constrained by these parameters
is applied to the lines with a pressure and temperature de-
pendant Voigt line shape (Mitchell, 1971). The result is ver-
tically varying spectral lines incorporating collision and pres-
sure broadening and pressure shift that are used to define ver-
tically resolved absorption cross sections (Equation 17).

V (x) =
αυ0

π (
√
πγD)

∫ ∞
−∞

e−t
2/γ2

D

(v − t)2 + α2
dt, (17)

where

γD = ∆D

√
ln 2, (18)

α =
√

ln 2
(

∆L

∆D

)
, (19)

∆D =
(

∆L

π

)(
1

(υ − υ0)2 + ∆L

)
, (20)

∆L = Ref

(
P

101325

)(
273
T

)1/2

. (21)

Ref is the spectral lines half width half maximum for
a reference atmospheric temperature and pressure. For HI-
TRAN and therefore the LLM, these points are 101,325 Pa
and 273 K. υ is the wavenumber of the laser transmission, υ0

is the centre lines wave number (4875.74896 cm−1), P is the
atmospheric pressure and T is the atmospheric temperature.

The atmospheric profiles used for the Voigt line shape
calculations are latitude dependant MIPAS reference atmo-
spheres (Remedios et al., 2007).

The vertically resolved absorption cross sections define the
atmospheric absorption as a function of altitude for the laser
transmissions. The LLM simulates each atmospheric level
as a discrete entity, calculating the transmission through each
level via the Beer-Lambert law (equation 22).

Ii = Ii−1 exp (−niσil), (22)

where Ii is the intensity of light having passed through the
atmospheric level with index i, Ii−1 is the transmitted light
from the previous level, n is the atmospheric concentration
of CO2 in molecules cm−3, σ is the absorption cross section
in cm2, and l is the length of each atmospheric level in cm.

2.5 Model configuration

The LLM is configured using parameters partly based on
the system definition of the proposed A-SCOPE mission (A-
SCOPE, 2008). These parameters are presented in Table 2.

The vast majority of the MODIS pixels within the regions
given in Table 1 are sampled to avoid the possibility of a
scaling factor bias. This is achieved by the orbit simulator
being run many times with its starting longitude iterated by
500 m each time. This method allows high density coverage
whilst maintaining the correct satellite perspective for realis-
tic averaging. The footprints which lie within the boundary
of the limits given in Table 1 are flagged and used to create
the retrieval locations.

Each of the orbital positions given by the orbit simula-
tor defines the location of the on-line footprint with the off-
line footprint being defined as the next vertically adjacent
MODIS data value.

The error in the CO2 retrieval is calculated by simulating
a perfect (a-priori) retrieval (V = 0) and comparing this to a
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Country Lon min Lon max Lat min Lat max F (30 m) F (10 m scaled) F (10 m interp)
England -2.901 0.614 50.712 52.708 0.3957 0.1598 0.1624
US 1 -90.741 -87.801 37.864 39.861 0.3626 0.1468 0.1524
US 2 -90.196 -87.304 39.299 41.295 0.4123 0.1687 0.1751
France -2.457 0.830 47.899 49.863 0.4459 0.1832 0.1901
Czech R. 13.041 16.393 47.835 49.865 0.4088 0.1671 0.1734

Table 1. 500 m to 30 m and 10 m spatial resolution scaling factors for 5 agricultural scenes.

Model Parameter Value
Atmospheric depth 60 km
Satellite altitude 400 km
Integration distance 50 km
Orbit inclination 82◦

Footprint diameter 150 m
Footprint FWHM 60 m
On/Off footprint separation 10 m
Pulse repetition freq 50 Hz
Spectral line centre 4875.74896 cm−1

On-line offset -0.1 cm−1

Off-line offset 0.7 cm−1

Transmission energy 0.1 J/pulse
Receiver diameter 1 m

Table 2. List of model parameters used in the LLM for this study

total column retrieval calculated using modified off-line sur-
face reflectance’s (equations 14, 15 and 16).

A bias is expected to be present in the simulated CO2

retrieval error owing to the TC-DIAL equation being non-
linear and containing uncertainties in Son and Soff .

Amediek et al. (2009) avoided the presence of a retrieval
bias in their simulated retrievals by separating the measured
differential optical depth into two terms (measurement and
surface offset), and applying a power law expansion to con-
vert the natural log of the surface ratio into a relative differ-
ence, therefore removing the possibility of retrieval error bias
via the surface contribution term (equations 23 and 24).

∆τgas =
1
2

(
ln
Soff
Son

− ln
ρoff
ρon

)
, (23)

ln
ρoff
ρon

≈ ρoff − ρon
(ρon + ρoff ) /2

. (24)

∆τgas is the atmospheric differential optical depth, Soff
and Son are the measured off and on-line pulse energies, and
ρoff and ρon are the off and on-line surface reflectance’s
(Amediek et al., 2009).

To provide continuity, the approach used by Amediek et al.
(2009) was investigated for application in this study. It was
found that the power law approximation was incompatible
with the a-priori error approach adopted here. The informa-
tion provided by the considered TC-DIAL instrument (Son
and Soff ) does not allow discrimination of the reflectance

variability contribution from the atmospheric contribution. It
is therefore seen to be inappropriate in this instance to sepa-
rate out the optical depth contributors so as to apply a power
expansion to negate the presence of a retrieval bias. Further-
more, it is likely the inaccuracy of the power expansion will
lead to some level of error in the optical depth and therefore
the retrieval, especially in cases where the surface reflectance
variability is high. Therefore, the Amediek et al. (2009)
method was not used as a means of avoiding the retrieval
error bias in this study.

3 Results

Each TC-DIAL measurement consists of multiple soundings
integrated over a distance on the Earth’s surface. A num-
ber of possible integration methods may be applied. The ap-
proach chosen is to calculate the arithmatic mean of the re-
trievals from the individual atmospheric soundings. The re-
trieval error distributions produced using this averaging pro-
cess on the data obtained from each regional simulation are
defined by their mean and standard deviations in Table 3.

30 m 10 m scaled 10 m interp.
mean Sd Mean Sd Mean Sd

England 0.626 0.509 0.354 0.213 0.358 0.217
France 0.312 0.348 0.209 0.179 0.213 0.186

Czech R. 0.696 0.388 0.398 0.165 0.410 0.171
USA 1 0.275 0.219 0.145 0.093 0.148 0.097
USA 2 0.202 0.237 0.103 0.101 0.106 0.105

Average 0.422 0.338 0.242 0.150 0.247 0.155

Table 3. Surface reflectance uncertainty distribution statistics for
three scaling methods in units of ppm

The error statistics in Table 3 indicate a significant regional
variability in both the mean and standard deviations of the
retrieval errors, most notably between America and Europe.
The maximum regional difference in the mean and standard
deviation is approximately 0.3 ppm and 0.1 ppm respectively.
These large variations are indicative of the differences in the
size and layout of agriculture, especially between Europe and
America.

The retrieval averaging approach allows the highest level
of information to be applied to the retrievals as atmospheric
profiles are defined for each sounding. The addition of an
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error to the non-linear TC-DIAL equation introduces a bias
which is relatively inconsequential for individual measure-
ments (Figure 4) but significantly more important after the
application of the averaging procedure (figure 5).

Fig. 4. Single sounding retrieval error prior to averaging for all
simulated regions combined using the interpolation scaling method.
Mean = 0.092 ppm, sd = 2.4 ppm

Fig. 5. 50 km integrated single sounding retrieval errors for all
simulated regions combined using the interpolation scaling method.
Mean = 0.247 ppm, sd = 0.155 ppm

An alternative process of integration which does not pro-
duce a bias is the averaging of the received laser intensi-
ties, allowing only one retrieval to be carried out per integra-
tion distance. The consequences of this method of averaging
are the manifestation of extra uncertainties, such as the er-
rors associated with the numerical weighting of surfaces with
higher albedos over those with lower albedos, and the errors
associated with the assumption that a single atmospheric pro-
file is able to represent entire 50 km lengths of atmosphere.

Figure 6 is plotted to show an example of the application
of the intensity averaging technique. The uncertainties in the
retrievals that would result from such a procedure results in

this method not being used here to derive error distribution
statistics.

Fig. 6. 50 km integrated retrieval error using received intensity av-
eraging approach and interpolation scaling method. Produced as an
example of having no bias. Mean = 0.002 ppm, sd = 0.093 ppm

4 Conclusions

A retrieval bias in the integrated measurements has been
identified with an average magnitude of 0.25 ppm and a re-
gional variability ranging from approximately 0.1 to 0.4 ppm
across the scenes considered. Removal of the bias has not
been possible in this study owing to the retrieval method of
averaging and the a-priori method by which the errors were
determined. The results obtained are representative of those
that would be observed by a spaceborne TC-DIAL system
should it’s retrieval adopt the same averaging scheme as the
one used here.

The results derived are constrained to specific regions of
agriculture owing to the requirement that the surfaces con-
sidered are reasonably flat and shadow free. The importance
of agriculture in the carbon cycle and its high surface re-
flectance variability has led to it being focused upon in this
study, however the application of the methods described here
are not necessarily limited to this biome alone.

A direct comparison with the results from Amediek et al.
(2009) is relatively difficult owing to the difference in the
range of surface types considered and the presence of a bias
in this paper, however, the magnitude of errors from both
papers are indeed similar, with Amediek et al. (2009) quoting
an overall RMS error of 0.22 ppm.

It has therefore been demonstrated that spaceborne BRDF
data may be downscaled using higher resolution surface ra-
diance data to simulate the reflectance variability error in a
TC-DIAL retrieval. Utilizing an a-priori approach, the actual
error observed in a TC-DIAL retrieval has been calculated
and a regionally varying retrieval bias has been shown to be
present. Careful consideration for this regional variability
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would be required if such TC-DIAL measurements were to
be assimilated into a carbon flux model.
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