Atmos. Meas. Tech. Discuss., 3, C216–C227, 2010 www.atmos-meas-tech-discuss.net/3/C216/2010/ © Author(s) 2010. This work is distributed under the Creative Commons Attribute 3.0 License.

Interactive comment on "Differential optical absorption spectroscopy (DOAS) and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration" by V. V. Rozanov and A. V. Rozanov

Anonymous Referee #1

Received and published: 19 April 2010

1 General Comments

The paper is generally well written and adresses an important discussion with respect to the applicability of different DOAS variants in weak and strong absorption strength regimes. It introduces DOAS and intercompares four commonly known variants and the associated air mass factor concepts within a single mathematical framework. This consistent approach allows for a sensitive judgement of the different assumptions and simplifications made.

C216

There are however the following points of criticism, which are specified in more detail in the specific comments that follow.

a) The paper focusses especially on the DOAS analysis of spectra of multiply scattered (MS) Sun light. Contrastingly, the authors relate the DOAS variants applied to these spectra to the direct light (DL) experiment. Whereas for the DL experiment the Beer-Lambert law can be exploited to linearly relate the trace gas number densities to the logarithmic Sun normalised radiance even for the case of strong absorption, this approach is not valid for multiply scattered light in the case of strong absorption. The functional dependence between the radiance logarithm and the number density is therefore not equation (49) but the solution of the RTE in terms of the radiance as a function of the trace gas number density profile. A suitable representation can be obtained e.g. from the Neumann series Marchuk et al. (1976); Marshak and Davis (2005) or employing the equivalence theorem van de Hulst (1980).

b) Another striking difference between DL and MSL measurements is the wavelength independence of the slant column density. The reason is, that the light path is the same for all wavelengths in DL measurements, whereas it is different for different wavelengths in MSL spectra. The authors try to relate the MSL DOAS SCD to DL DOAS SCD by compelling the wavelength independence. The suggested SCD resp. AMF definition is unprecise and related to a certain setup of DOAS (especially a certain number of fit coefficients) in a certain wavelength window. It may be different for a slightly different fit window.

c) The paper focusses on satellite DOAS, but this is not properly reflected by the title. The difference becomes evident when analysing MDOAS UV box air mass factors for the retrieval of tropospheric ozone using DSCDs obtained from ground based measurements. Furthermore there is a lack of description of other features of the DOAS method, potentially interferring with the SCD retrieval as these are for instance de-

scribed in Wenig et al. (2005). The paper can therefore not be termed a review. I encourage the authors to explicitely write more about the separability of DOAS and RTM, since it is a key issue in your paper.

d) The paper is too long and has too many formulas. It is suggested to merge parts of the text as for example equations (9) and (10) in order to increase the readability.

2 Specific Comments

page 703

Equation (2): you should define l_1 and l_2 although it might be clear.

line 21: Why does the atmosphere need to be cloud free? I guess due to an increased scattered light contribution.

page 707

Equation (12): Does this definition require a constant absorption cross section?

page 713

lines 4 to 7: The wavelength dependence might formally be neglected but it will propagate into the lowermost polynomial coefficients, won't it? Please discuss how "greedy" the polynomial is, and how far a wavelength independent SCD definition will be related to the polynomial coefficients. (as for example stated in line 6, on page 740). However I can not clearly see a benefit of this SCD definition, because the β_k in equation (103) can only be obtained through computionally expensive calculations.

C218

page 716

lines 1 to 3: Please discuss differences between tropospheric ozone UV box air mass factors calculated according to definitions (32) and (57) in combination with (87). What are the implications for retrievals of profiles of strongly absorbing trace gases especially using DSCDs obtained from ground based measurements?

page 719

line 6: After introducing $L_{\lambda,j}$ you use it only on the next three pages.

page 720

line 1: What exactly is the slant optical thickness when regarding scattered Sun light? If one uses box air mass factors to calculate it in a case of strong absorption, how does it differ from $-L_{\lambda,j}(k)$? Of course it is a problem to use the same terms for direct light and scattered Sun light measurements, or not?

page 722

Equation (49): This is **not** the functional relationship between the number density profile of a gaseous absorber and the logarithmic Sun normalised radiance in a MS atmosphere. The correct relationship can be obtained e.g. through the Neumann series or approximately through the equivalence theorem.

page 725

Equation (59): If think instead of k and \bar{k} you wanted to write p and \bar{p} . The expression is generally interesting for other Jacobians as for example derivatives of the logarithmic radiance w.r. to aerosol properties.

page 732

Equation (75): right side of 3^{rd} equation symbol: I think it has to be $d \ln (I(\lambda))$.

lines 11 to 13: The sentence is problematic and has to be clarified, since the S_{λ} can be obtained through DOAS, but when obtaining it by RTM the light path information is contained in the $w_{\bar{k}}(\lambda, z)$.

3 Technical Corrections

page 699

line 7: "applied DOAS" \rightarrow applied the DOAS line 21+22: "extention" \rightarrow extension

page 701

line 1: "This" → These

page 705

line 3: "are unknown at this point polynomial coefficients" \rightarrow are polynomial coefficients, which are unknown at this point

line 4: "Clearly, this" \rightarrow This

C220

lines 10 to 11: "the rapidly [...] is usually" $\rightarrow \sigma_{\lambda}^{d}(l)$ is usually

page 706

line 5: "As clearly seen," \rightarrow As can be seen on the right side of equation (10) line 10: "trough" \rightarrow through

page 707

line 18: "coarse" \rightarrow course

page 709

line 16: "is so-called" \rightarrow is the so-called

page 713

line 9: "one have to" \rightarrow one has to line 11: "necessary" \rightarrow necessarily, "of the scattered" \rightarrow of scattered line 18: "in course" \rightarrow in the course

page 714

line 1: "who have introduced" \rightarrow who introduced C221

page 716

line 9: "As clearly seen," \rightarrow Therewith

page 719

lines 18 to 19: "as a sum of slowly and rapidly varying with the wavelength components" \rightarrow as a sum of two components, respectively varying slowly and rapidly with the wavelength

page 721

line 17: "arbitrary differentiable" \rightarrow arbitrary but differentiable

page 722

lines 10 to 11: "As clearly seen, at each wavelength, λ , the intensity logarithm" \rightarrow As formulated in (49), the intensity logarithm at each wavelength λ

line 16: "Considering" → Regarding

lines 16 to 17: "can be also obtained" \rightarrow can also be obtained

C222

page 726

line 18: "previos" \rightarrow previous

page 727

line 18: "of the second" \rightarrow of second line 21: "extention" \rightarrow extinction

page 732

line 11: "As clearly seen, S_{λ} coincides with" \rightarrow This means that S_{λ} is equivalent to

lines 11 to 13: <u>A major [...] without a knowledge of photon paths.</u> I believe that this sentence does not make sense, since the knowledge about the photon paths is included in $w_{\bar{k}}(\lambda, z)$.

page 732

line 16: "is the Fredholm" \rightarrow is a Fredholm

page 733

lines 1 to 2: "for the *i*-th layer bordered by altitudes z_{i-1} and z_i " \rightarrow associated with the

altitude layer [z_{i-1}, z_i]

page 735

line 4: "As clearly seen, " \rightarrow As can be seen here,

page 738

line 14: "rewitten" \rightarrow rewritten

page 739

line 1: "As clearly seen, Eq." \rightarrow Eq.

line 16: "covert" \rightarrow convert

page 740

lines 3 to 4: "Replacing [...], we have:" \rightarrow Replacing in this equation the wavelength dependent air mass factor $A_j(\lambda)$ by an constant value A_j , which is currently unknown, we have:

line 15: "spectral window that is in line" \rightarrow spectral window. This is in line

line 17: "A more convenient for a practical use equation" \rightarrow A practically more convenient equation

C224

page 741

lines 10 to 11: *"Thus, [...] of equations:"* \rightarrow Thus, the complete DOAS procedure to retrieve the vertical column is represented by the following system of equations:

line 21: "is clearly seen" \rightarrow has been revealed

page 742

line 12: "summarize" → summarizes

page 744

line 2: "under assumption of a" \rightarrow assuming

page 745

line 6: *"where the [...] given by"* \rightarrow where the weighting function for the entire atmosphere $W_j(\lambda)$ is given by

line 19: "in 425" \rightarrow in the 425

page 746

line 16: "derivative" \rightarrow the derivative

page 748

lines 20 to 21: *"calculated [...]* " \rightarrow calculated assuming the absorption cross section to be σ_{λ}^{c} instead of σ_{λ} .

lines 25 to 26: "its smoothly [...], σ_{λ}^{c} " $\rightarrow \sigma_{\lambda}^{c}$

page 750

lines 8 to 9: *"Here, [...] given by"* \rightarrow Here, $W(\lambda)$ is the variational derivative of the intensity with respect to the gaseous absorber number density integrated over the entire atmosphere and is given by

page 752

line 12: "for a priori ozone" \rightarrow for an a priori ozone

page 753

line 7: "For a sake of" \rightarrow For the sake of lines 13 to 14: "an error canceling is occurred" \rightarrow error canceling occurs lines 16 to 18: "The similar behavior" \rightarrow A similiar behavior

C226

page 754

line 2: "resulted" \rightarrow resulting

line 3: "in retrieved vertical" \rightarrow in the retrieved vertical

line 6: "that" \rightarrow which

References

van de Hulst, V. C.: Multiple Light Scattering, Tables, Formulas and Applications, Volume 2, Academic Press, Inc. (London) ltd., United Kingdom Edition, 1980

Marchuk, G. I., Mikhailov, G. A., Nazaraliev, M. A., Darbinyan, R. A., Kargin, B. A., Elepov, B. S.: Monte-Carlo Method in Atmospheric Optics, Springer Book, 1976

Marshak, A., Davis, A.: 3D Radiative Transfer in Cloudy Atmospheres, Springer Book, 2005 Wenig, M., Jähne, B., Platt, U.: Operator representation as a new differential optical absorption spectroscopy formalism, Opt. Soc. Am., 0003-6935/05/163246-08\$15.99/0, 2005

Interactive comment on Atmos. Meas. Tech. Discuss., 3, 697, 2010.