

Interactive comment on “An intercomparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpane loading” by J. L. Ambrose et al.

J. L. Ambrose et al.

jambrose@unh.edu

Received and published: 26 April 2010

Please see supplement for Author Responses.

Please also note the supplement to this comment:

<http://www.atmos-meas-tech-discuss.net/3/C268/2010/amtd-3-C268-2010-supplement.pdf>

Interactive comment on Atmos. Meas. Tech. Discuss., 3, 1, 2010.

C268

Fig. 1. (Figure 3) Portion of a chromatogram recorded at THF on 3 August, 04:23 LT during a period of enhanced monoterpane mixing ratios.

C269

Figure A. Average absolute percent deviation of each investigator's reported values from NCAR values for (a) Task 2, (b) Task 3 and (c) Task 4 of NMHCICE, respectively. The numbers above each bar represent the number of compounds reported by each investigator; the red stars designate the results of B. Sive. The results for select compounds showing the NIST (Task 2 only), NCAR before send, B. Sive and NCAR after return values are shown for (d) Task 2, (e) Task 3 and (f) Task 4, respectively.

Fig. 2. (Figure A)

C270

Table 4. Ranking With Respect to NCAR-NOMHICE Reference Results of Participants' Results for All 54 Compounds as Calculated by Equation (1)^a

Analysis	N	n	$n \leq \pm 10\%$	$\pm 10\% \leq n \leq \pm 25\%$	$\pm 25\% \leq n \leq \pm 50\%$	$n \geq \pm 50\%$	Rank
B. Sive Group 30	30	45	1.00	27	12	6	0 1
	23	50	0.96	21	20	9	0 2
	17	51	0.89	24	18	6	3 3
	10	45	1.09	21	15	6	3 4
	11	49	0.95	20	16	9	4 5
	13	37	0.96	16	15	5	1 6
	24	49	0.85	22	15	9	3 7
	22	35	0.86	12	19	4	0 8
	9	22	1.04	12	7	2	1 9
	16	23	1.08	15	4	2	2 10
	15	21	0.87	11	7	3	0 11
	12	9	1.09	6	2	0	1 12
	7	32	0.85	14	8	6	4 13
	25	50	0.78	14	14	15	7 14
	5	11	0.90	4	6	1	0 15
	1	15	1.20	8	5	1	1 16
	3	12	1.19	6	4	1	1 17
	26	49	0.72	17	10	10	12 18
	14	20	1.02	7	4	7	2 19
	21	33	0.79	9	9	12	3 20
	2	16	1.16	6	5	4	1 21
	18	39	0.87	14	7	5	13 22
	29	20	0.86	6	6	5	3 23
	6	33	1.61	14	6	5	8 24
	8	33	1.18	4	5	13	11 25
	19	10	0.79	1	2	6	1 26
	20	10	0.72	1	2	6	1 27
	27	30	0.61	1	3	6	20 28
	4	18	1.75	0	0	11	7 29
	28	15	5.80	4	4	0	7 30

^aThe overall rank is given in the last column with a rank of 1 being in closest agreement with the reference laboratory and a rank of 30 being in poorest from agreement with the reference laboratory. N is the total number of reported NMHCs. n is defined as $(\sum_i^N \delta_i)/N$ where $\delta_i = (\text{participant value, NMHC}_i) - (\text{NCAR-NOMHICE reference value, NMHC}_i)$. n is the total number of reported compounds falling within the given brackets of the reference analyses. See text for discussion.

Fig. 3. (Figure B) Table 4 of Apel et al. (2003b).

C271

Table 5. Ranking With Respect to NCAR-NOMHICE Reference Results of Participants' Results for Intercompared Compounds 1–37 as Calculated by Equation (1)^a

Analysis	<i>N</i>	<i>n</i>	$n \leq \pm 10\%$	$\pm 10\% \leq n \leq \pm 25\%$	$\pm 25\% \leq n \leq \pm 50\%$	$n \geq \pm 50\%$	Rank
B. Sive Group 30	30	33	1.02	23	7	3	1
	17	34	0.95	21	9	4	2
	10	32	1.07	19	8	4	3
	23	34	0.93	15	14	5	4
	24	32	0.91	17	10	5	5
	11	32	1.07	16	11	4	6
	13	28	0.93	12	13	3	7
	16	19	1.03	13	3	3	8
	26	32	0.85	16	7	9	9
	22	26	0.88	10	15	1	10
	7	24	0.94	14	6	3	11
	15	17	0.91	11	5	1	12
	9	19	1.04	10	6	2	13
	25	34	0.83	11	12	9	14
	12	3	1.10	2	1		15
	18	29	1.03	13	7	3	16
	21	29	0.82	9	8	11	0
	1	15	1.20	8	5	1	18
	5	11	0.90	4	6	1	19
	3	12	1.19	6	4	1	20
	14	16	1.04	7	3	4	21
	2	16	1.16	6	5	4	22
	29	16	0.78	5	6	4	23
	8	26	1.40	4	5	13	4
	6	23	1.89	12	4	2	25
	19	4	0.73	0	1	3	26
	28	11	2.41	3	5	3	27
	27	22	0.73	1	2	6	13
	20	4	0.57	0	0	3	1
	4	18	1.75	0	0	11	7
							30

^aThe overall rank is given in the last column with a rank of 1 being in closest agreement with the reference laboratory and a rank of 30 being in poorest from agreement with the reference laboratory. *N* is the total number of reported NMHCs. *n* is defined as $(\sum_i^N \delta_i)/N$ where $\delta_i = (\text{participant value, NMHC}_i)/(\text{NCAR-NOMHICE reference value, NMHC}_i)$. *n* is the total number of reported compounds falling within the given brackets of the reference analyses. See text for discussion.

Fig. 4. (Figure C) Table 5 of Apel et al. (2003b).

C272

19 - 14

APEL ET AL.: NOMHICE TASK 4

Fig. 5. (Figure D) Figure 9 of Apel et al. (2003b).

C273